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1 INTRODUCTION

The word problem of a finitely generated group𝐺 is the most fundamental algorithmic problem in group theory: given a

word over the generators of𝐺 , the question is whether this word represents the identity of𝐺 . The original motivation for

the word problem came from topology and group theory [16], within Hilbert’s “Entscheidungsproblem”. Nevertheless,

it also played a role in early computer science when Novikov and Boone constructed finitely presented groups with an

undecidable word problem [11, 52]. Still, in many classes of groups it is (efficiently) decidable, a prominent example
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being the class of linear groups: Lipton and Zalcstein [43] (for linear groups over a field of characteristic zero) and

Simon [57] (for linear groups over a field of prime characteristic) showed that their word problem is in LOGSPACE.

The classNC1
consists of those languages that are accepted by families of boolean circuits of logarithmic depth. When

combined with appropriate uniformity conditions it yields the subclass ALOGTIME, which is contained in LOGSPACE –

so it is a very small complexity class of problems efficiently solvable in parallel. A striking connection between the word

problem for groups and complexity theory was established by Barrington [4]: for every finite non-solvable group 𝐺 ,

the word problem of 𝐺 is NC1
-complete. Moreover, the reduction is as simple as it could be: every output bit depends

on only one input bit. Thus, one can say that NC1
is completely characterized via group theory. Moreover, this idea

has been extended to characterize ACC0
by solvable monoids [5]. On the other hand, the word problem of a finite

𝑝-group is in ACC0 [𝑝], so Smolensky’s lower bound [58] implies that it is strictly easier than the word problem of a

finite non-solvable group.

Barrington’s construction is based on the observation that an and-gate can be simulated by a commutator. This

explains the connection to non-solvability. In this light it seems natural that the word problem of finite 𝑝-groups is not

NC1
-hard: they are all nilpotent, so iterated commutators eventually become trivial. For infinite groups, a construction

similar to Barrington’s was used by Robinson [54] to show that the word problem of a non-abelian free group is

NC1
-hard. Since by [43] the word problem of a free group is in LOGSPACE, the complexity is narrowed down quite

precisely (although no completeness result has been shown so far).

The first contribution of this paper is to identify the essence of Barrington’s and Robinson’s constructions. For

this we introduce a strengthened condition of non-solvability, which we call SENS (strongly efficiently non-solvable);

see Definition 5.1. In a SENS group there are balanced nested commutators of arbitrary depth and whose word lengths

grow at most exponentially. We also introduce uniformly SENS groups, where these balanced commutators are efficiently

computable in a certain sense. We then follow Barrington’s arguments and show that for every (uniformly) SENS group

the word problem is hard for (uniform) NC1
(Theorems 6.1 and 6.3). This does not exclude the possibility that there is a

non-solvable group𝐺 whose word problem is not hard for (non-uniform) NC1
, but it means that for such a group the

word lengths of the𝐺-elements witnessing the non-solvability must grow super-exponentially. We give in Example 5.11

a non-solvable group in which the latter happens.

Finite non-solvable groups and non-abelian free groups are easily seen to be uniformly SENS. We go beyond these

classes and present a general criterion that implies the uniform SENS-condition. Using this criterion we show that

Thompson’s groups [13] and weakly branched self-similar groups [7, 51] are uniformly SENS. As a corollary we get:

Corollary A. The word problems for the following groups are hard for ALOGTIME:

• the three Thompson’s groups 𝐹 , 𝑇 , and 𝑉 ,

• weakly branched self-similar groups with a finitely generated branching subgroup.

Thompson’s groups 𝐹 < 𝑇 < 𝑉 (introduced in 1965) belong due to their unusual properties to the most intensively

studied infinite groups. From a computational perspective it is interesting to note that all three Thompson’s groups

are co-context-free (i.e., the set of all non-trivial words over any set of generators is a context-free language) [40].

This implies that the word problems for Thompson’s groups are in LOGCFL. To the best of our knowledge no better

upper complexity bound is known. Weakly branched groups form an important subclass of the self-similar groups [51],

containing several celebrated groups like the Grigorchuk group (the first example of a group with intermediate word

growth) and the Gupta-Sidki groups. We also show that the word problem for contracting self-similar groups is in
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Groups with ALOGTIME-hard word problems and PSPACE-complete compressed word problems 3

LOGSPACE. This result is well-known, but to the best of our knowledge no explicit proof appears in the literature. The

Grigorchuk group as well as the Gupta-Sidki groups are contracting and have finitely generated branching subgroups.

Another corollary of Theorem 6.3 is the following dichotomy result for finitely generated linear groups: for every

finitely generated linear group the word problem is either in DLOGTIME-uniform TC0
or ALOGTIME-hard (Theo-

rem 6.4). To prove this we use the Tits alternative (every finitely generated linear group either contains a free group

of rank two or is virtually solvable) [59] together with a result from [38] stating that the word problem for a finitely

generated solvable linear group is in DLOGTIME-uniform TC0
.

In the second part of the paper we study the compressed word problem [46]. This is a succinct version of the word

problem, where the input word is represented by a so-called straight-line program. A straight-line program is a context-

free grammar that produces exactly one string. The length of this string can be exponentially larger than the size of

the straight-line program. The compressed word problem for a finitely generated group𝐺 is equivalent to the circuit

evaluation problem for 𝐺 . In the latter the input is a circuit where the input gates are labelled with generators of 𝐺 and

the internal gates compute the product of their inputs. There is a distinguished output gate, and the question is whether

this output gate evaluates to the group identity. For finite groups (and also monoids), the circuit evaluation problem has

been studied in [9]. The circuit viewpoint also links the compressed word problem to the famous polynomial identity

testing problem (the question whether an algebraic circuit over a polynomial ring evaluates to the zero-polynomial); see

[56] for a survey: the compressed word problem for the group SL3 (Z) is equivalent to the polynomial identity testing

problem with respect to polynomial time reductions [46, Theorem 4.16].

From a group theoretic viewpoint, the compressed word problem is interesting not only because group elements

are naturally represented as straight line programs, but also because several classical (uncompressed) word problems

reduce to compressed word problems. For instance, the word problem for a finitely generated subgroup of Aut(𝐺)
reduces to the compressed word problem for 𝐺 [46, Theorem 4.6]. Similar statements hold for certain group extensions

[46, Theorems 4.8 and 4.9]. This motivates the search for groups in which the compressed word problem can be solved

efficiently. For the following groups, the compressed word problem can be solved in polynomial time: finitely generated

nilpotent groups [38] (for which the compressed word problem can be even solved in NC2
), hyperbolic groups [34]

(more generally, groups that are hyperbolic relative to a collection of free abelian subgroups [33]) and virtually special

groups [46]. The latter are defined as finite extensions of subgroups of right-angled Artin groups and form a very rich

class of groups containing for instance Coxeter groups [25], fully residually free groups [64] and fundamental groups of

hyperbolic 3-manifolds [2]. Moreover, for finitely generated linear groups the compressed word problem belongs to

coRP (complement of randomized polynomial time).

In this paper, we aremainly interested in lower bounds for compressedword problems. It is known that the compressed

word problem for non-solvable finite groups and non-abelian free groups is P-complete [9, 44]. The proofs for these

results use again the above mentioned constructions of Barrington and Robinson. For wreath products of the form

𝐺 ≀ Z with 𝐺 non-abelian the compressed word problem is coNP-hard [46, Theorem 4.21]. Moreover, recently, Wächter

and the fourth author constructed an automaton group (a finitely generated group of tree automorphisms, where

the action of generators is defined by a Mealy automaton) with a PSPACE-complete word problem and EXPSPACE-

complete compressed word problem [62] – thus, the compressed word problem is provably more difficult than the word

problem. The group arises from a quite technical construction; in particular, one cannot call this group natural. Here, we

exhibit several natural groups (that were intensively studied in other parts of mathematics) with a PSPACE-complete

compressed word problem and a word problem in LOGSPACE:

Manuscript submitted to ACM



4 L. Bartholdi, M. Figelius, M. Lohrey and A. Weiß

Corollary B. The compressed word problem for the following groups is PSPACE-complete:

• wreath products 𝐺 ≀ Z where 𝐺 is finite non-solvable or free of rank at least two,

• Thompson’s groups,

• the Grigorchuk group, and

• all Gupta-Sidki groups.

To get the first point, we completely characterize the complexity of the compressed word problem for a wreath

product 𝐺 ≀ Z, where 𝐺 has a trivial center, in terms of the leaf language class defined by the word problem of𝐺 ; see

Theorem 8.2. This characterization implies that the compressed word problem for𝐺 ≀ Z with𝐺 a uniformly SENS group

is PSPACE-hard. To get PSPACE-hardness of the compressed word problems for Thompson’s groups, the Grigorchuk

group, and the Gupta-Sidki groups we use a self-embedding property: each of these groups 𝐺 has the property that

it contains a copy of a wreath product 𝐺 ≀ 𝐴 for some 𝐴 ≠ 1. Thompson’s group 𝐹 has this property for 𝐴 = Z [23].

For the Grigorchuk group, the Gupta-Sidki groups and more generally all weakly branched groups 𝐺 that satisfy an

additional technical condition (the branching subgroup 𝐾 of𝐺 is finitely generated and has elements of finite order) we

show that one can take 𝐴 = Z/𝑝 for some 𝑝 ≥ 2. Based on Theorem 8.2 we show that every group 𝐺 with the property

that 𝐺 ≀𝐴 ≤ 𝐺 for some non-trivial 𝐴 has a PSPACE-hard compressed word problem (Theorem 9.6).

1.1 Related work.

Uniformly SENS groups were used in the recent paper [17] in the context of the power word problem and knapsack

problem. In the power word problem for a finitely generated group 𝐺 [48], the input is an expression of the form

𝑤
𝑧1

1
𝑤
𝑧2

2
· · ·𝑤𝑧𝑛

𝑛 , where the𝑤𝑖 are words over the generators of𝐺 and the exponents 𝑧𝑖 are binary encoded integers, and

it is asked whether𝑤
𝑧1

1
𝑤
𝑧2

2
· · ·𝑤𝑧𝑛

𝑛 = 1 in𝐺 . It is shown in [17] that the power word problem for a wreath product𝐺 ≀Z
with 𝐺 uniformly SENS is coNP-hard. It follows that Thompson’s group 𝐹 has a coNP-complete power word problem.

In addition it is shown in [17] that the so-called knapsack problem for a wreath product 𝐺 ≀ Z with 𝐺 uniformly SENS

is hard for Σ
𝑝

2
(second existential level of the polynomial time hierarchy). In the knapsack problem for a group 𝐺 the

question is whether an equation𝑤
𝑥1

1
𝑤
𝑥2

2
· · ·𝑤𝑥𝑛

𝑛 = 𝑤 , where the 𝑥𝑖 are variables, has a solution in the natural numbers.

This work is the full version of the conference paper [6]. Here we give full proofs and some additional details; in

particular, we present an example of a non-solvable group which is not SENS.

2 GENERAL NOTATIONS

For 𝑎, 𝑏 ∈ Zwe write [𝑎..𝑏] for the interval {𝑧 ∈ Z | 𝑎 ≤ 𝑧 ≤ 𝑏}. We use common notations from formal language theory.

In particular, we use Σ∗ to denote the set of words over an alphabet Σ including the empty word Y. Let𝑤 = 𝑎0 · · ·𝑎𝑛−1 ∈ Σ∗

be a word over Σ (𝑛 ≥ 0, 𝑎0, . . . , 𝑎𝑛−1 ∈ Σ). The length of𝑤 is |𝑤 | = 𝑛. We write Σ≤𝑑
for {𝑤 ∈ Σ∗ | |𝑤 | ≤ 𝑑} and Σ<𝑑

for {𝑤 ∈ Σ∗ | |𝑤 | < 𝑑}. For a letter 𝑎 ∈ Σ let |𝑤 |𝑎 = |{𝑖 | 𝑎 = 𝑎𝑖 }| be the number of occurrences of 𝑎 in𝑤 . For 0 ≤ 𝑖 < 𝑛
let 𝑤 [𝑖] = 𝑎𝑖 and for 0 ≤ 𝑖 ≤ 𝑗 < 𝑛 let 𝑤 [𝑖 : 𝑗] = 𝑎𝑖𝑎𝑖+1 · · ·𝑎 𝑗 . Moreover 𝑤 [: 𝑖] = 𝑤 [0 : 𝑖]. Note that in the notations

𝑤 [𝑖] and𝑤 [𝑖 : 𝑗] we take 0 as the first position in𝑤 . This will be convenient later.

The lexicographic order on N∗ is defined as follows: a word 𝑢 ∈ N∗ is lexicographically smaller than a word 𝑣 ∈ N∗

if either 𝑢 is a prefix of 𝑣 or there exist𝑤, 𝑥,𝑦 ∈ N∗ and 𝑖, 𝑗 ∈ N such that 𝑢 = 𝑤𝑖𝑥 , 𝑣 = 𝑤 𝑗𝑦, and 𝑖 < 𝑗 .

A finite ordered tree is a finite set𝑇 ⊆ N∗ such that for all𝑤 ∈ N∗, 𝑖 ∈ N: if𝑤𝑖 ∈ 𝑇 , then𝑤,𝑤 𝑗 ∈ 𝑇 for every 0 ≤ 𝑗 < 𝑖 .

The set of children of 𝑢 ∈ 𝑇 is 𝑢N ∩𝑇 . A node 𝑢 ∈ 𝑇 is a leaf of 𝑇 if it has no children. A complete binary tree is a subset

𝑇 ⊆ {0, 1}∗ such that 𝑇 = {𝑠 ∈ {0, 1}∗ | |𝑠 | ≤ 𝑘} for some 𝑘 ≥ 0 where 𝑘 is called the depth of 𝑇 .
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The boolean function nand : {0, 1}2 → {0, 1} (negated and) is defined by nand(0, 0) = nand(0, 1) = nand(1, 0) = 1

and nand(1, 1) = 0. Note that the standard boolean functions not and binary and and or can be expressed in terms of

nand.

3 GROUPS

We assume that the reader is familiar with the basics of group theory, see e.g. [35, 55] for more details. Let 𝐺 be a

group. We always write 1 for the group identity element. The group 𝐺 is called finitely generated if there exist a finite

set 𝑆 and a surjective homomorphism of the free group over 𝑆 onto 𝐺 . In this situation, the set Σ = 𝑆 ∪ 𝑆−1 ∪ {1}
is our preferred generating set for 𝐺 and we have a surjective monoid homomorphism 𝜋 : Σ∗ → 𝐺 . The symbol 1 is

useful for padding. We call the generating set Σ standard. We have a natural involution on words over Σ defined by

(𝑎1 · · ·𝑎𝑛)−1 = 𝑎−1

𝑛 · · ·𝑎−1

1
for 𝑎𝑖 ∈ Σ (which is the same as forming inverses in the group). For words 𝑢, 𝑣 ∈ Σ∗ we

usually say that 𝑢 = 𝑣 in 𝐺 or 𝑢 =𝐺 𝑣 in case 𝜋 (𝑢) = 𝜋 (𝑣). For group elements 𝑔, ℎ ∈ 𝐺 or words 𝑔, ℎ ∈ Σ∗ we write

𝑔ℎ for the conjugate ℎ−1𝑔ℎ and [ℎ,𝑔] for the commutator ℎ−1𝑔−1ℎ𝑔. We call 𝑔 a 𝑑-fold nested commutator, if 𝑑 = 0 or

𝑔 = [ℎ1, ℎ2] for (𝑑 − 1)-fold nested commutators ℎ1, ℎ2.

A subquotient of 𝐺 is a quotient of a subgroup of 𝐺 . The center of 𝐺 , 𝑍 (𝐺) for short, is the set of all elements 𝑔 ∈ 𝐺
that commute with every element from 𝐺 . The center of 𝐺 is a normal subgroup of 𝐺 .

The word problem for the finitely generated group 𝐺 , WP(𝐺) for short, is defined as follows:

Input: a word𝑤 ∈ Σ∗.

Question: does𝑤 =𝐺 1 hold?

We will also write WP(𝐺, Σ) for the set {𝑤 ∈ Σ∗ | 𝑤 =𝐺 1}.
The word problem may be stated for any group whose elements may be written as words over a finite alphabet. This

applies to subquotients 𝐻/𝐾 of 𝐺 (also if 𝐻 is not finitely generated): given a word𝑤 ∈ Σ∗ with the guarantee that it

belongs to 𝐻 , does it actually belong to 𝐾? Note that the decidability of this problem depends on the actual choice of 𝐻

and 𝐾 , not just on the isomorphism type of 𝐻/𝐾 .
We will consider groups𝐺 that act on a set 𝑋 on the left or right. For 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋 we write 𝑥𝑔 ∈ 𝑋 (resp.,

𝑔𝑥 ) for

the result of a right (resp., left) action. A particularly important case arises when 𝐺 = Sym(𝑋 ) is the symmetric group

on a set 𝑋 , which acts on 𝑋 on the right.

3.1 Wreath products

A fundamental group construction that we shall use is the wreath product: given groups𝐺 and 𝐻 acting on the right on

sets 𝑋 and 𝑌 respectively, their wreath product 𝐺 ≀ 𝐻 is a group acting on 𝑋 × 𝑌 . We start with the restricted direct

product 𝐺 (𝑌 )
(the base group) of all mappings 𝑓 : 𝑌 → 𝐺 having finite support supp(𝑓 ) = {𝑦 | 𝑓 (𝑦) ≠ 1} with the

operation of pointwise multiplication. The group 𝐻 has a natural left action on𝐺 (𝑌 )
: for 𝑓 ∈ 𝐺 (𝑌 )

and ℎ ∈ 𝐻 , we define

ℎ𝑓 ∈ 𝐺 (𝑌 )
by (ℎ𝑓 ) (𝑦) = 𝑓 (𝑦ℎ). The corresponding semidirect product 𝐺 (𝑌 ) ⋊ 𝐻 is the wreath product 𝐺 ≀ 𝐻 . In other

words:

• Elements of 𝐺 ≀ 𝐻 are pairs (𝑓 , ℎ) ∈ 𝐺 (𝑌 ) × 𝐻 and we simply write 𝑓 ℎ for this pair.

• The multiplication in 𝐺 ≀ 𝐻 is defined as follows: Let 𝑓1ℎ1, 𝑓2ℎ2 ∈ 𝐺 ≀ 𝐻 . Then 𝑓1ℎ1 𝑓2ℎ2 = 𝑓1
ℎ1𝑓2ℎ1ℎ2, where the

product 𝑓1
ℎ1𝑓2 : 𝑦 ↦→ 𝑓1 (𝑦) 𝑓2 (𝑦ℎ1 ) is the pointwise product.

The wreath product 𝐺 ≀ 𝐻 acts on 𝑋 × 𝑌 by (𝑥,𝑦) 𝑓 ℎ = (𝑥 𝑓 (𝑦) , 𝑦ℎ). The wreath product defined above is also called the

(restricted) permutational wreath product. There is also the variant where 𝐺 = 𝑋 and 𝐻 = 𝑌 and both groups act on
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6 L. Bartholdi, M. Figelius, M. Lohrey and A. Weiß

themselves by right-multiplication, which is called the (restricted) regular wreath product (or standard wreath product). A

subtle point is that the permutational wreath product is an associative operation whereas the regular wreath product is

in general not. The term “restricted” refers to the fact that the base group is𝐺 (𝑌 )
, i.e., only finitely supported mappings

are taken into account. If𝐺 (𝑌 )
is replaced by𝐺𝑌

(i.e., the set of all mappings from 𝑌 to𝐺 with pointwise multiplication),

then one speaks of an unrestricted wreath product. For 𝑌 finite this makes of course no difference. There will be only

two situations (Examples 5.11 and 5.12) where we need an unrestricted wreath product. The action of 𝐺 on 𝑋 in the

permutational wreath product is usually not important for us, but it is nice to have an associative operation. For the

right group 𝐻 , we will only make use of the following cases:

• 𝐻 = Sym(𝑌 ) acting on 𝑌 ,
• 𝐻 a (finite or infinite) cyclic group acting on itself.

Thus, if 𝐻 is cyclic, the permutational wreath product and the regular wreath product (both denoted by 𝐺 ≀ 𝐻 ) coincide.

Nevertheless, be aware that 𝐺 ≀ (𝐻 ≀ 𝐻 ) = (𝐺 ≀ 𝐻 ) ≀ 𝐻 holds only for the permutational wreath product even if 𝐻 is

cyclic. Note that if 𝐺 is generated by Σ and 𝐻 is generated by Γ then 𝐺 ≀ 𝐻 is generated by Σ ∪ Γ.

3.2 Richard Thompson’s groups

In 1965 Richard Thompson introduced three finitely presented groups 𝐹 < 𝑇 < 𝑉 acting on the unit-interval, the

unit-circle and the Cantor set, respectively. Of these three groups, 𝐹 received most attention (the reader should not

confuse 𝐹 with a free group). This is mainly due to the still open conjecture that 𝐹 is not amenable, which would imply

that 𝐹 is another counterexample to a famous conjecture of von Neumann (a counterexample was found by Ol’shanskii).

A standard reference of Thompson’s groups is [13]. The group 𝐹 consists of all homeomorphisms of the unit interval

that are piecewise affine, with slopes a power of 2 and dyadic breakpoints. Famously, 𝐹 is generated by two elements

𝑥0, 𝑥1 defined by

𝑥0 (𝑡) =


2𝑡 if 0 ≤ 𝑡 ≤ 1

4
,

𝑡 + 1

4
if

1

4
≤ 𝑡 ≤ 1

2
,

𝑡
2
+ 1

2
if

1

2
≤ 𝑡 ≤ 1,

𝑥1 (𝑡) =

𝑡 if 0 ≤ 𝑡 ≤ 1

2
,

1

2
+ 𝑥0 (2𝑡−1)

2
if

1

2
≤ 𝑡 ≤ 1.

The pattern repeats with 𝑥𝑛+1 acting trivially on the left subinterval and as 𝑥𝑛 on the right subinterval. We have

𝑥𝑘+1
= 𝑥

𝑥𝑖
𝑘

for all 𝑖 < 𝑘 . In fact,

𝐹 = ⟨𝑥0, 𝑥1, 𝑥2, . . . | 𝑥𝑥𝑖𝑘 = 𝑥𝑘+1
(𝑖 < 𝑘)⟩ = ⟨𝑥0, 𝑥1 | [𝑥0𝑥

−1

1
, 𝑥−1

0
𝑥1𝑥0], [𝑥0𝑥

−1

1
, 𝑥−2

0
𝑥1𝑥

2

0
]⟩. (1)

The group 𝐹 is orderable (so in particular torsion-free), its derived subgroup [𝐹, 𝐹 ] is simple and the center of 𝐹 is trivial.

Important for us is the following fact:

Lemma 3.1 ([23, Lemma 20]). The group 𝐹 contains a subgroup isomorphic to 𝐹 ≀ Z.

Proof. The copy of Z is generated by 𝑥0, and the copies of 𝐹 in 𝐹 (Z) are the conjugates of ⟨𝑥1𝑥2𝑥
−2

1
, 𝑥2

1
𝑥2𝑥

−3

1
⟩ under

powers of 𝑥0. □

It follows, by iteration, that 𝐹 contains arbitrarily iterated wreath products Z ≀ · · · ≀Z, as well as the limit ((· · · ≀Z) ≀Z) ≀Z.

3.3 Weakly branched groups

We continue our list of examples with an important class of groups acting on rooted trees. For more details, the

monographs [7, 51] serve as good references.
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Let 𝑋 be a finite set.
1
The free monoid 𝑋 ∗

serves as the vertex set of a regular rooted tree with an edge between 𝑣 and

𝑣𝑥 for all 𝑣 ∈ 𝑋 ∗
and all 𝑥 ∈ 𝑋 . The group𝑊 of automorphisms of this tree naturally acts on the set 𝑋 of level-1 vertices,

and permutes the subtrees hanging from them. Exploiting the bijection 𝑋+ = 𝑋 ∗ × 𝑋 , we thus have an isomorphism

𝜑 : 𝑊 →𝑊 ≀ Sym(𝑋 ) =𝑊𝑋 ⋊ Sym(𝑋 ), (2)

mapping 𝑔 ∈𝑊 to elements 𝑓 ∈𝑊𝑋
and 𝜋 ∈ Sym(𝑋 ) as follows: 𝜋 is the restriction of 𝑔 to 𝑋 ⊆ 𝑋 ∗

, and 𝑓 is uniquely

defined by (𝑥𝑣)𝑔 = 𝑥𝜋𝑣 𝑓 (𝑥) . We always write 𝑔@𝑥 for 𝑓 (𝑥) and call it the state (or coordinate) of 𝑔 at 𝑥 . If 𝑋 = [0..𝑘],
we write 𝑔 = ⟨⟨𝑔@0, . . . , 𝑔@𝑘⟩⟩𝜋 .

Definition 3.2. A subgroup 𝐺 ≤𝑊 is self-similar if 𝜑 (𝐺) ≤ 𝐺 ≀ Sym(𝑋 ). In other words: the actions on subtrees 𝑥𝑋 ∗

are given by elements of𝐺 itself. A self-similar group𝐺 is weakly branched if there exists a non-trivial subgroup 𝐾 ≤ 𝐺
with 𝜑 (𝐾) ≥ 𝐾𝑋

. In other words: for every 𝑘 ∈ 𝐾 and every 𝑥 ∈ 𝑋 the element acting as 𝑘 on the subtree 𝑥𝑋 ∗
and

trivially elsewhere belongs to 𝐾 . A subgroup 𝐾 as above is called a branching subgroup.

Note that we are weakening the usual definition of “weakly branched”: indeed it is usually additionally required

that 𝐺 act transitively on 𝑋𝑛
for all 𝑛 ∈ N. This extra property is not necessary for our purposes, so we elect to simply

ignore it. In fact, all the results concerning branched groups that we shall use will be proven directly from Definition 3.2.

Note also that the join ⟨𝐾1 ∪𝐾2⟩ of two branching subgroups 𝐾1 and 𝐾2 is again a branching subgroup. Hence, there

exists a maximal branching subgroup. It immediately follows from the definition that, if 𝐺 is weakly branched, then for

every 𝑣 ∈ 𝑋 ∗
there is in 𝐺 a copy of its branching subgroup 𝐾 whose action is concentrated on the subtree 𝑣𝑋 ∗

. We

denote this copy with 𝑣 ∗ 𝐾 . With 𝑣 ∗ 𝑘 (𝑘 ∈ 𝐾 ) we denote the element of 𝐾 acting as 𝑘 on the subtree 𝑣𝑋 ∗
and trivially

elsewhere.

Our main focus is on finitely generated groups. We first note that the group𝑊 itself is weakly branched. Here are

countable weakly branched subgroups of𝑊 : For a subgroup Π of Sym(𝑋 ), define Π∞ ≤𝑊 as follows: set Π0 = 1 ≤𝑊
(the trivial subgroup) and Π𝑛+1 = 𝜑−1 (Π𝑛 ≀ Π). We clearly have Π𝑛 ≤ Π𝑛+1, and we set Π∞ =

⋃
𝑛≥0

Π𝑛 . In words, Π𝑛

consists of permutations of 𝑋 ∗
that may only modify the first 𝑛 symbols of strings, and Π∞ consists of permutations

that may only modify a bounded-length prefix of strings. Clearly Π∞ is countable and 𝜑 (Π∞) = Π∞ ≀ Π.
Numerous properties are known to follow from the fact that a group is weakly branched. For example, it satisfies

no group identity [1]. In fact, if 𝐺 is a weakly branched self-similar group and its branching subgroup 𝐾 contains an

element of order 𝑝 , then 𝐾 contains a copy of (Z/𝑝)∞, see [7, Theorem 6.9].

There exist important examples of finitely generated self-similar weakly branched groups, notably the Grigorchuk

group 𝐺 , see [21]. It may be described as a self-similar group in the following manner: it is a group generated by

{𝑎, 𝑏, 𝑐, 𝑑}, and acts on the rooted tree 𝑋 ∗
for 𝑋 = {0, 1}. The action, and therefore the whole group, are defined by the

restriction of 𝜑 to 𝐺 ’s generators:

𝜑 (𝑎) = (0, 1), 𝜑 (𝑏) = ⟨⟨𝑎, 𝑐⟩⟩, 𝜑 (𝑐) = ⟨⟨𝑎, 𝑑⟩⟩, 𝜑 (𝑑) = ⟨⟨1, 𝑏⟩⟩,

where we use the notation (0, 1) for the non-trivial element of Sym(𝑋 ) (that permutes 0 and 1) and ⟨⟨𝑤0,𝑤1⟩⟩ for a tuple
in 𝐺 {0,1} � 𝐺 ×𝐺 . We record some classical facts:

Lemma 3.3. The Grigorchuk group𝐺 is infinite, torsion (i. e., all elements are of finite order), weakly branched, and all its

finite subquotients are 2-groups (so in particular nilpotent). It has a branching subgroup 𝐾 of finite index, which is therefore

finitely generated.

1
There will be one occasion (Proposition 5.13), where we will allow an infinite 𝑋 .
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(Recall that every weakly branched group is infinite and non-solvable, since it satisfies no identity. There are also

easy direct proofs of these facts.)

Proof. That 𝐺 is an infinite torsion group is one of the raison d’être of 𝐺 , see [21]. Let 𝐾 ≤ 𝐺 be the normal closure

of [𝑏, 𝑎] in 𝐺 . It is easy to see that it has index 16, and 𝜑 (
[
[𝑏, 𝑎], 𝑑

]
) = ⟨⟨1, [𝑏, 𝑎]⟩⟩ so 𝜑 (𝐾) ≥ 𝐾 × 𝐾 and 𝐺 is weakly

branched; see also [7] for details. It is known that every element of 𝐺 has order a power of 2 [21], so the same holds for

every subquotient of 𝐺 . □

Other examples of finitely generated self-similar weakly branched groups with a f.g. branching subgroup include

the Gupta-Sidki groups [24], the Hanoi tower groups [22], and all iterated monodromy groups of degree-2 complex

polynomials [8] except 𝑧2
and 𝑧2 − 2.

3.4 Contracting self-similar groups

Recall the notation 𝑔@𝑥 for the coordinates of 𝜑 (𝑔). We iteratively define 𝑔@𝑣 = 𝑔@𝑥1 · · ·@𝑥𝑛 for any word 𝑣 =

𝑥1 · · · 𝑥𝑛 ∈ 𝑋 ∗
.

Definition 3.4 ([51, Definition 2.11.1]). A self-similar group 𝐺 is called contracting if there is a finite subset 𝑁 ⊆ 𝐺
(called the nucleus) such that, for all 𝑔 ∈ 𝐺 , we have 𝑔@𝑣 ∈ 𝑁 whenever 𝑣 is long enough (depending on 𝑔).

If 𝐺 is a finitely generated contracting group with word norm ∥ · ∥ (i.e., for 𝑔 ∈ 𝐺 , ∥𝑔∥ is the length of a shortest

word over a fixed generating set of𝐺 that represents 𝑔), then a more quantitative property holds: there are constants

0 < _ < 1, ℎ ≥ 1 and 𝑘 ≥ 0 such that for all 𝑔 ∈ 𝐺 we have

∥𝑔@𝑣 ∥ ≤ _∥𝑔∥ + 𝑘 for all 𝑣 ∈ 𝑋ℎ,

see e.g. [35, Proposition 9.3.11]. Then, for 𝑐 = −ℎ/log _ and a possibly larger 𝑘 we have 𝑔@𝑣 ∈ 𝑁 whenever |𝑣 | ≥
𝑐 log ∥𝑔∥ + 𝑘 . One of the cornerstones of Nekrashevych’s theory of iterated monodromy groups is the construction of a

contracting self-similar group that encodes a given expanding self-covering of a compact metric space. It is well-known

and easy to check that the Grigorchuk group, the Gupta-Sidki groups and the Hanoi tower group for three pegs are

contracting. The following result has been quoted numerous times, but has never appeared in print. A proof for the

Grigorchuk group may be found in [20]:

Proposition 3.5. Let𝐺 be a finitely generated contracting self-similar group. Then WP(𝐺) can be solved in LOGSPACE
(deterministic logarithmic space).

Proof. Fix a finite generating set Σ for𝐺 and assume that𝐺 is contracting with 0 < _ < 1, ℎ ≥ 1 and 𝑘 ≥ 0 as above.

We can assume that 𝑘 ≥ 1. Let 𝑁 be the nucleus of𝐺 . By replacing the tree alphabet 𝑋 by 𝑋ℎ
we get ∥𝑔@𝑥 ∥ ≤ _∥𝑔∥ +𝑘

for all 𝑥 ∈ 𝑋 . Hence, if ∥𝑔∥ ≤ 𝑘/(1 − _) then also ∥𝑔@𝑥 ∥ ≤ 𝑘/(1 − _) for all 𝑥 ∈ 𝑋 . We now replace Σ by the set of

all 𝑔 ∈ 𝐺 with ∥𝑔∥ ≤ 𝑘/(1 − _) (note that 𝑘/(1 − _) ≥ 1) and get 𝜑 (Σ) ⊆ Σ𝑋 × Sym(𝑋 ). Furthermore, there exists𝑚

such that every non-trivial element of 𝑁 acts non-trivially on 𝑋𝑚
. Recall that for 𝑐 = −1/log _ and a possibly larger

𝑘 we have 𝑔@𝑣 ∈ 𝑁 whenever |𝑣 | ≥ 𝑐 log ∥𝑔∥ + 𝑘 . Hence, if 𝑔 is non-trivial then there must exist a 𝑣 ∈ 𝑋 ∗
with

|𝑣 | = 𝑐 log ∥𝑔∥ + 𝑘 +𝑚 such that 𝑔 does not fix 𝑣 .

The following algorithm solves WP(𝐺): given 𝑔 ∈ Σ∗, enumerate all vertices in 𝑋𝑑
for 𝑑 = 𝑐 log |𝑔| + 𝑘 +𝑚, and

return “true” precisely when they are all fixed by 𝑔. The algorithm is correct by the previous remarks, and it remains to

show that it requires logarithmic space. The vertices in 𝑋𝑑
are traversed by lexicographically enumerating them. They
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can be stored explicitly since their length is bounded by O(log |𝑔|). Now given a vertex 𝑣 ∈ 𝑋𝑑
, we apply the letters of 𝑔

to it one after the other. Again, this is done by a simple loop requiring O(log |𝑔|) bits. Finally, to apply a generator to 𝑣 ,

we use the property that all its states are generators (𝜑 (Σ) ⊆ Σ𝑋 × Sym(𝑋 )), and traverse 𝑣 by performing |𝑣 | lookups
in the table storing (𝜑 (𝑎))𝑎∈Σ. □

4 COMPLEXITY THEORY

We assume that the reader is familiar with the complexity classes LOGSPACE (deterministic logarithmic space), P

(deterministic polynomial time), and PSPACE (polynomial space); see e.g. [3] for details. With polyL we denote that

union of all classes NSPACE(log
𝑐 𝑛) for a constant 𝑐 . Since we also deal with sublinear time complexity classes, we

use Turing machines with random access (this has no influence on the definition of the above classes). Such a machine

has an additional index tape and some special query states. Whenever the Turing machine enters a query state, the

following transition depends on the input symbol at the position which is currently written on the index tape in binary

notation.

We use the abbreviations DTM (deterministic Turing machine), NTM (non-deterministic Turing machine) and ATM

(alternating Turing machine). An ATM is an NTM together with a partition of the state set into existential and universal

states. A configuration is called existential (resp., universal) if the current state in the configuration is existential (resp.,

universal). An existential configuration is accepting if there exists an accepting successor configuration, whereas a

universal configuration is accepting if all successor configurations are accepting. Note that a universal configuration

which does not have a successor configuration is accepting, whereas an existential configuration which does not have a

successor configuration is non-accepting. Finally, an input word is accepted if the corresponding initial configuration is

accepted. An ATM is in input normal form if its input alphabet is {0, 1} and on any computation path it queries at most

one input bit and halts immediately after returning the value of the input bit or its negation (depending on the current

state of the Turing machine). We define the following complexity classes:

• DLINTIME: the class of languages that can be accepted by a DTM in linear time.

• DLOGTIME: the class of languages that can be accepted by a DTM in logarithmic time.

• ALOGTIME: the class of languages that can be accepted by an ATM in logarithmic time.

• APTIME: the class of languages that can be accepted by an ATM in polynomial time.

If 𝑋 is one of the above classes, we speak of an 𝑋 -machine with the obvious meaning. It is well known that APTIME =

PSPACE. Moreover, every language in ALOGTIME can be recognized by an ALOGTIME-machine in input normal form

[60, Lemma 2.41].

A nand-machine is an NTM in which each configuration has either zero or two successor configurations and

configurations are declared to be accepting, respectively non-accepting, according to the following rules, where 𝑐 is a

configuration:

• If 𝑐 has no successor configurations and the state of 𝑐 is final (resp., non-final), then 𝑐 is accepting (resp.,

non-accepting).

• If 𝑐 has two successor configurations and both of them are accepting, then 𝑐 is not accepting.

• If 𝑐 has two successor configurations and at least one them is non-accepting, then 𝑐 is accepting.

Since the boolean functions and and or can be obtained with nand, it follows easily that PSPACE (resp., ALOGTIME)

coincides with the class of all languages that can be accepted by a polynomially (resp., logarithmically) time-bounded

nand-machine.
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For a complexity class C we denote by ∀C the class of all languages 𝐿 such that there exists a polynomial 𝑝 (𝑛)
and a language 𝐾 ∈ C such that 𝐿 = {𝑢 | ∀𝑣 ∈ {0, 1}𝑝 ( |𝑢 |) : 𝑢#𝑣 ∈ 𝐾}. We have for instance ∀P = coNP and

∀PSPACE = PSPACE. Likewise we define the class Mod𝑚C by 𝐿 ∈ Mod𝑚C if there exists a polynomial 𝑝 (𝑛) and a

language 𝐾 ∈ C such that 𝐿 =
{
𝑢 | |{𝑣 ∈ {0, 1}𝑝 ( |𝑢 |) : 𝑢#𝑣 ∈ 𝐾}| . 0 mod 𝑚

}
.

4.1 Efficiently computable functions

A function 𝑓 : Γ∗ → Σ∗ is DLOGTIME-computable if there is some polynomial 𝑝 with |𝑓 (𝑥) | ≤ 𝑝 ( |𝑥 |) for all 𝑥 ∈ Γ∗

and the set 𝐿𝑓 = {(𝑥, 𝑎, 𝑖) | 𝑥 ∈ Γ∗ and the 𝑖-th letter of 𝑓 (𝑥) is 𝑎} belongs to DLOGTIME. Here 𝑖 is a binary coded

integer. Note that a DLOGTIME-machine for 𝐿𝑓 can first (using binary search) compute the binary coding of |𝑥 | in
time O(log |𝑥 |). Assume that the length of this binary coding is ℓ . If 𝑖 has more than ℓ bits, the machine can reject

immediately. As a consequence of this (and since |Σ| is a constant), the running time of a DLOGTIME-machine for

𝐿𝑓 on input (𝑥, 𝑎, 𝑖) can be bounded by O(log |𝑥 |) (independently of the actual bit length of 𝑖). We can also assume

that the DLOGTIME-machine outputs the letter 𝑎 on input of 𝑥 and 𝑖 . In case 𝑖 > |𝑥 | we can assume that the machine

outputs a distinguished letter. A DLOGTIME-reduction is a DLOGTIME-computable many-one reduction. We say that

a DLOGTIME-machine strongly computes a function 𝑓 : Σ∗ → Γ∗ with |𝑓 (𝑥) | ≤ 𝐶 log( |𝑥 |) for all 𝑥 ∈ Σ∗ and for some

constant 𝐶 if it computes the function value by writing it sequentially on a separate output tape (be aware of the subtle

difference and that strong DLOGTIME-computability is not a standard terminology, but it coincides with FDLOGTIME

in [14].)

A PSPACE-transducer is a deterministic Turing-machine with a read-only input tape, a write-only output tape and a

work tape, whose length is polynomially bounded in the input length 𝑛. The output is written sequentially on the output

tape. Moreover, we assume that the transducer terminates for every input. This implies that a PSPACE-transducer

computes a mapping 𝑓 : Σ∗ → Γ∗, where |𝑓 (𝑥) | is bounded by 2
|𝑥 |O(1)

. We call this mapping PSPACE-computable. We

need the following simple lemma, see [47]:

Lemma 4.1. Assume that the mapping 𝑓 : Σ∗ → Γ∗ is PSPACE-computable and let 𝐿 ⊆ Γ∗ be a language in polyL.

Then 𝑓 −1 (𝐿) belongs to PSPACE.

4.2 Leaf languages

In the following, we introduce basic concepts related to leaf languages, more details can be found in [12, 28, 30, 31, 36].

An NTM𝑀 with input alphabet Γ is adequate, if (i) for every input 𝑥 ∈ Γ∗,𝑀 does not have an infinite computation on

input 𝑥 , (ii) the finite set of transition tuples of 𝑀 is linearly ordered, and (iii) when terminating 𝑀 prints a symbol

𝛼 (𝑞) from a finite alphabet Σ, where 𝑞 is the current state of𝑀 . For an input 𝑥 ∈ Γ∗, we define the computation tree

by unfolding the configuration graph of 𝑀 from the initial configuration. By condition (i) and (ii), the computation

tree can be identified with a finite ordered tree 𝑇 (𝑥) ⊆ N∗. For 𝑢 ∈ 𝑇 (𝑥) let 𝑞(𝑢) be the𝑀-state of the configuration

that is associated with the tree node 𝑢. Then, the leaf string leaf (𝑀,𝑥) is the string 𝛼 (𝑞(𝑣1)) · · ·𝛼 (𝑞(𝑣𝑘 )) ∈ Σ+, where

𝑣1, . . . , 𝑣𝑘 are all leaves of 𝑇 (𝑥) listed in lexicographic order.

An adequate NTM𝑀 is called balanced, if for every input 𝑥 ∈ Γ∗, 𝑇 (𝑥) is a complete binary tree. With a language

𝐾 ⊆ Σ∗ we associate the language

LEAF(𝑀,𝐾) = {𝑥 ∈ Γ∗ | leaf (𝑀,𝑥) ∈ 𝐾}.
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Finally, we associate two complexity classes with 𝐾 ⊆ Σ∗:

LEAF(𝐾) = {LEAF(𝑀,𝐾) | 𝑀 is an adequate polynomial time NTM}

bLEAF(𝐾) = {LEAF(𝑀,𝐾) | 𝑀 is a balanced polynomial time NTM}

These classes are closed under polynomial time reductions. We clearly have bLEAF(𝐾) ⊆ LEAF(𝐾). The following
result was shown in [36] by padding computation trees to complete binary trees.

Lemma 4.2. Assume that 𝐾 ⊆ Σ∗ is a language such that Σ contains a symbol 1 with the following property: if 𝑢𝑣 ∈ 𝐾
for 𝑢, 𝑣 ∈ Σ∗ then 𝑢1𝑣 ∈ 𝐾 . Then LEAF(𝐾) = bLEAF(𝐾).

In particular, we obtain the following lemma:

Lemma 4.3. Let 𝐺 be a finitely generated group and Σ a finite standard generating set for 𝐺 . Then LEAF(WP(𝐺, Σ)) =
bLEAF(WP(𝐺, Σ)).

Moreover, we have:

Lemma 4.4. Let 𝐺 be finitely generated group and Σ, Γ finite standard generating sets for 𝐺 . Then LEAF(WP(𝐺, Σ)) =
LEAF(WP(𝐺, Γ)).

Proof. Consider a language 𝐿 ∈ LEAF(WP(𝐺, Σ)). Thus, there exists an adequate polynomial time NTM 𝑀 such

that 𝐿 = LEAF(𝑀,WP(𝐺, Σ)). We modify𝑀 as follows: If𝑀 terminates and prints the symbol 𝑎 ∈ Σ, it enters a small

nondeterministic subcomputation that produces the leaf string𝑤𝑎 , where𝑤𝑎 ∈ Γ∗ is a word that evaluates to the same

group element as 𝑎. Let 𝑀 ′
be the resulting adequate polynomial time NTM. It follows that LEAF(𝑀,WP(𝐺, Σ)) =

LEAF(𝑀 ′,WP(𝐺, Γ)). □

Lemma 4.4 allows to omit the standard generating set Σ in the notations LEAF(WP(𝐺, Σ)) and bLEAF(WP(𝐺, Σ)).
We will always do that. In [30] it was shown that PSPACE = LEAF(WP(𝐺)) for every finite non-solvable group.

4.3 Circuit complexity

We define a polynomial length projection (or just projection) as a function 𝑓 : {0, 1}∗ → {0, 1}∗ such that there is a

function 𝑑 (𝑛) ∈ O(log𝑛) with |𝑓 (𝑥) | = |𝑓 (𝑦) | = 2
𝑑 (𝑛)

for all 𝑥,𝑦 with |𝑥 | = |𝑦 | = 𝑛 and such that each output

bit depends on at most one input bit in the following sense: For every 𝑛 ∈ N, there is a mapping 𝑞𝑛 : {0, 1}𝑑 (𝑛) →
{⟨ 𝑗, 𝑎, 𝑏⟩ | 𝑗 ∈ [1..𝑛], 𝑎, 𝑏, ∈ {0, 1}}, where 𝑞𝑛 (𝑖) = ⟨ 𝑗, 𝑎, 𝑏⟩ means that for all 𝑥 ∈ {0, 1}𝑛 the 𝑖-th bit of 𝑓 (𝑥) is 𝑎 if the
𝑗-th bit of 𝑥 is 1 and 𝑏 if it is 0. Here, we identify 𝑖 ∈ {0, 1}𝑑 (𝑛) with a binary coded number from [0..2𝑑 (𝑛) − 1] (so the

first position in the output is zero). We also assume that the input position 𝑗 ∈ [1..𝑛] is coded in binary, i.e., by a bit

string of length O(log𝑛). Note that the output length 2
𝑑 (𝑛)

is polynomial in 𝑛. Restricting the output length to a power

of two (instead of an arbitrary polynomial) is convenient for our purpose but in no way crucial. Our definition of a

projection is the same as in [14] except for our restriction on the output length. Moreover, in [14] projections were

defined for arbitrary alphabets.

Let 𝑞 : {1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1} × {0, 1} with 𝑞(1𝑛, 𝑣) = 𝑞𝑛 (𝑣). We assume that 𝑞(1𝑛, 𝑣) is a special dummy

symbol if |𝑣 | ≠ 𝑑 (𝑛). We call 𝑞 the query mapping associated with the projection 𝑓 . The projection 𝑓 is called uniform if

(i) 1
𝑑 (𝑛)

is strongly computable in DLOGTIME from the string 1
𝑛
, and (ii) 𝑞 is strongly DLOGTIME-computable. Notice

that if a language 𝐾 is reducible to 𝐿 via a uniform projection, then 𝐾 is also DLOGTIME-reducible to 𝐿.
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We are mainly interested in the circuit complexity class NC1
. A language 𝐿 ⊆ {0, 1}∗ is in NC1

if it can be recognized

by a family of logarithmic depth boolean circuits of bounded fan-in. More precisely, 𝐿 ⊆ {0, 1}∗ belongs to NC1
if there

exists a family (𝐶𝑛)𝑛≥0 of boolean circuits which, apart from the input gates 𝑥1, . . . , 𝑥𝑛 , are built up from not-, and-

and or-gates. In the following we also use nand-gates. All gates must have bounded fan-in, where the fan-in of a gate is

the number of incoming edges of the gate. Without loss of generality, we assume that all and-, or- and nand-gates have

fan-in two. The circuit 𝐶𝑛 must accept exactly the words from 𝐿 ∩ {0, 1}𝑛 , i.e., if each input gate 𝑥𝑖 receives the input

𝑎𝑖 ∈ {0, 1}, then a distinguished output gate evaluates to 1 if and only if 𝑎1𝑎2 · · ·𝑎𝑛 ∈ 𝐿. Finally, the depth (maximal

length of a path from an input to the distinguished output) of 𝐶𝑛 must grow logarithmically in 𝑛. In the following, we

also consider DLOGTIME-uniform NC1
, which is well-known to coincide with ALOGTIME (see e. g. [60, Corollary

2.52]). DLOGTIME-uniform means that there is a DLOGTIME-machine which decides on input of two gate numbers 𝑖

and 𝑗 in 𝐶𝑛 (given in binary), a binary string𝑤 , and the string 1
𝑛
whether, when starting at gate 𝑖 in 𝐶𝑛 and following

the path labelled by𝑤 , we reach gate 𝑗 . Here, following the path labelled by𝑤 means that we go to the left (right) input

of 𝑖 if𝑤 starts with a 0 (1) and so on. Moreover, we require that on input of 𝑖 in binary and the string 1
𝑛
, the type of the

gate 𝑖 in 𝐶𝑛 is computable in DLOGTIME. For more details on these definitions we refer to [60] (but we will not need

the above definition of DLOGTIME-uniformity). For a language 𝐿 over a non-binary alphabet Σ, one first has to fix a

binary encoding of the symbols in Σ. For membership in NC1
the concrete encoding is irrelevant. However, we still

assume that all letters of Σ are encoded using the same number of bits.

The class AC0
is defined as the class of languages (respectively functions) accepted (respectively computed) by

circuits of constant depth and polynomial size with not-gates and unbounded fan-in and- and or-gates.

We will also work with a very restricted class of circuit families, where every circuit is a complete binary tree of

nand-gates. For such a circuit, all the information is given by the labelling function for the input gates.

Definition 4.5. A family of balanced nand-tree-circuits of logarithmic depth (𝐶𝑛)𝑛∈N is given by a mapping 𝑑 (𝑛) ∈
O(log𝑛) and a query mapping 𝑞 : {1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1} × {0, 1}, which defines a projection 𝑓 mapping bit

strings of length 𝑛 to bit strings of length 2
𝑑 (𝑛)

. The corresponding circuit 𝐶𝑛 for input length 𝑛 is then obtained by

taking {0, 1}≤𝑑 (𝑛) as the set of gates. Every gate 𝑣 ∈ {0, 1}<𝑑 (𝑛) computes the nand of 𝑣0 and 𝑣1. If 𝑥 ∈ {0, 1}𝑛 is the

input string for 𝐶𝑛 and 𝑓 (𝑥) = 𝑎1𝑎2 · · ·𝑎2
𝑑 (𝑛) , then the 𝑖-th leaf 𝑣 ∈ {0, 1}𝑑 (𝑛) (in lexicographic order) is set to 𝑎𝑖 .

Lemma 4.6. For every 𝐿 in (non-uniform) NC1
there is a (non-uniform) family of balanced nand-tree-circuits of

logarithmic depth.

Proof. The proof is straightforward: clearly, or, and, and not gates can be simulated by nand gates. Now take the

circuit 𝐶𝑛 for input length 𝑛. We first unfold 𝐶𝑛 into a tree by duplicating gates with multiple outputs. Since 𝐶𝑛 has

constant fan-in and logarithmic depth, the resulting tree has still polynomial size (and logarithmic depth). To transform

this tree into a complete binary tree, we replace leafs by complete binary subtrees. If we replace a leaf labelled with 𝑥𝑖

by a subtree of even (resp. odd) height, then we label all leafs of the subtree with ⟨𝑖, 1, 0⟩ (resp., ⟨𝑖, 0, 1⟩). This labelling
defines the query mapping 𝑞 in the natural way. □

Lemma 4.7. For every 𝐿 in ALOGTIME there is a family C = (𝐶𝑛)𝑛≥0 of balanced nand-tree-circuits of logarithmic

depth such that the mapping 1
𝑛 ↦→ 1

𝑑 (𝑛)
and the query mapping 𝑞 from Definition 4.5 can be strongly computed in

DLOGTIME.

Proof sketch. We start with an ALOGTIME-machine 𝑀 for 𝐿 and construct a circuit family with the required

properties. We can assume that 𝑀 works in two stages: first it computes the binary coding of the input length in
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DLOGTIME (using binary search). The second stage performs the actual computation. We can assume that the second

stage is in input normal form [60, Lemma 2.41] meaning that each computation path queries exactly one input position

𝑖 and halts immediately after querying that position (returning a bit that is determined by the 𝑖-th bit of the input).

Furthermore, we can assume that the computation tree of the second stage of𝑀 is a complete binary tree. For this we

enforce all computation paths to be of the same length. Note that the running time of the second stage of 𝑀 can be

bounded by 𝑐 · |𝑢 |, where 𝑐 is a fixed constant and 𝑢 is the binary coding of the input length which has been computed

before. Hence, the second stage of the machine makes in parallel to the actual computation 𝑐 runs over 𝑢. Finally, we

also assume that there is an alternation in every step (this can be ensured as in the transformation of an arbitrary

NC1
-circuit into a balanced nand-tree-circuit) and that the initial state is existential. The computation tree gives a

tree-shaped circuit in a natural way (for details see [60, Theorem 2.48]). The depth of this tree is 𝑑 B 𝑐 · |𝑢 | (whose
unary encoding is strongly computable in DLOGTIME by the above arguments). Since we start with an existential

state and there is an alternation in every step, the resulting circuit uses only nand-gates (recall that 𝑥 nand 𝑦 = (not

𝑥) or (not 𝑦)). The fact that every computation path queries only one input position yields the query function 𝑞 from

Definition 4.5. More precisely, let 𝑣 ∈ {0, 1}𝑑 be an input gate of the balanced nand-tree-circuit. Then 𝑣 determines a

unique computation path of𝑀 . We simulate𝑀 in DLOGTIME along this path and output the triple ⟨𝑖, 𝑎, 𝑏⟩ if𝑀 queries

the 𝑖-th position of the input string (note that the binary coding of 𝑖 must be on the query tape of 𝑀) and outputs 𝑎

(resp., 𝑏) if the 𝑖-th input bit is 1 (resp., 0). □

4.3.1 𝑮-programs. For infinite groups we have to adapt Barrington’s notion of a 𝐺-program slightly. Our notation

follows [60].

Definition 4.8. Let 𝐺 be a group with the finite standard generating set Σ. Recall our assumption that 1 ∈ Σ. A

(𝐺, Σ)-program 𝑃 of length 𝑚 and input length 𝑛 is a sequence of instructions ⟨𝑖 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ⟩ for 0 ≤ 𝑗 ≤ 𝑚 − 1 where

𝑖 𝑗 ∈ [1..𝑛] and 𝑏 𝑗 , 𝑐 𝑗 ∈ Σ. On input of a word 𝑥 = 𝑎1 · · ·𝑎𝑛 ∈ {0, 1}∗, an instruction ⟨𝑖 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ⟩ evaluates to 𝑏 𝑗 if 𝑎𝑖 𝑗 = 1

and to 𝑐 𝑗 otherwise. The evaluation of a (𝐺, Σ)-program is the product (in the specified order) of the evaluations of its

instructions, and is denoted with 𝑃 [𝑥] ∈ Σ∗.

A family P = (𝑃𝑛)𝑛∈N of (𝐺, Σ)-programs, where 𝑃𝑛 has input length 𝑛, defines a function 𝑓P : {0, 1}∗ → 𝐺 : 𝑓P (𝑥) is
the group element represented by 𝑃 |𝑥 | [𝑥]. The language 𝐿 accepted by the family of (𝐺, Σ)-programs is the set of words

𝑥 ∈ {0, 1}∗ such that 𝑓P (𝑥) = 1 in 𝐺 . For brevity, we also speak of a family of 𝐺-programs instead of (𝐺, Σ)-programs

with the understanding that there is some finite standard generating set Σ which is shared by all programs of the family.

Notice two differences compared with the original definition: firstly, we fix the finite alphabet Σ, and secondly, for

the accepted language we only take the preimage of 1 instead of a finite set of final states. The latter is more restrictive,

but for the purpose of NC1
-hardness causes no difference.

A family P = (𝑃𝑛)𝑛∈N of (𝐺, Σ)-programs is called uniform if the length of 𝑃𝑛 is 2
𝑑 (𝑛)

for some function 𝑑 (𝑛) ∈
O(log𝑛), the mapping 1

𝑛 ↦→ 1
𝑑 (𝑛)

is strongly computable in DLOGTIME, and the mapping that assigns to 1
𝑛
and

𝑗 ∈ {0, 1}𝑑 (𝑛) (the latter is interpreted as a binary coded number) the instruction ⟨𝑖 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ⟩ of the 𝑛-input program 𝑃𝑛

is strongly computable in DLOGTIME. Notice that 𝑖 𝑗 requires log𝑛 bits and 𝑏 𝑗 , 𝑐 𝑗 require only a constant number of

bits – thus, the tuple ⟨𝑖 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ⟩ can be written down in DLOGTIME. Be aware that here we slightly differ from [60,

Definition 4.42, Definition 4.51] (which does not require strong DLOGTIME computability).

Remark 4.9. If a language 𝐿 is accepted by a family of polynomially length-bounded (𝐺, Σ)-programs (by padding

one can enforce the length to be of the form 2
𝑑 (𝑛)

), then 𝐿 is reducible via projections to WP(𝐺) – and, thus, also via
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AC0
-many-one reductions. This can be seen as follows: encode every letter in Σ by a word over {0, 1} of some fixed

constant length. Then the map assigning the evaluation of the (𝐺, Σ)-program to an input word is a projection since

the output at every position depends on only one input bit.

A similar statement holds in the uniform case (uniformity follows immediately from the definition): if 𝐿 is accepted

by a uniform family of (𝐺, Σ)-programs, then 𝐿 is reducible via uniform projections to WP(𝐺).

5 EFFICIENTLY NON-SOLVABLE GROUPS

We now define the central group theoretic property that allows us to carry out a Barrington style construction:

Definition 5.1. We call a group 𝐺 with the finite standard generating set Σ strongly efficiently non-solvable (SENS) if

for every 𝑑 ∈ N there is a collection of 2
𝑑+1 − 1 elements 𝑔𝑑,𝑣 ∈ Σ∗ for 𝑣 ∈ {0, 1}≤𝑑 such that

(a) there is some constant ` ∈ N with

��𝑔𝑑,𝑣 �� = 2
`𝑑

for all 𝑣 ∈ {0, 1}𝑑 ,
(b) 𝑔𝑑,𝑣 =

[
𝑔𝑑,𝑣0

, 𝑔𝑑,𝑣1

]
for all 𝑣 ∈ {0, 1}<𝑑 (here we take the commutator of words),

(c) 𝑔𝑑,Y ≠ 1 in 𝐺 .

The group 𝐺 is called uniformly strongly efficiently non-solvable if, moreover,

(d) given 𝑣 ∈ {0, 1}𝑑 , a number 𝑖 encoded in binary with `𝑑 bits, and 𝑎 ∈ Σ one can decide in DLINTIME whether the

𝑖-th letter of 𝑔𝑑,𝑣 is 𝑎.

If 𝑄 = 𝐻/𝐾 is a subquotient of 𝐺 , we call 𝑄 SENS in 𝐺 if 𝐺 satisfies the conditions of a SENS group, all 𝑔𝑑,𝑣 evaluate to

elements of 𝐻 , and 𝑔𝑑,Y ∉ 𝐾 . This definition is already interesting for 𝐾 = 1.

Here are some simple observations:

• A strongly efficiently non-solvable group clearly cannot be solvable, so the above terminology makes sense.

• If one can find suitable 𝑔𝑑,𝑣 of length at most 2
`𝑑
, then these words can always be padded to length 2

`𝑑
thanks

to the padding letter 1.

• It suffices to specify 𝑔𝑑,𝑣 for 𝑣 ∈ {0, 1}𝑑 ; the other 𝑔𝑑,𝑣 are then defined by Condition (b).

• We have

��𝑔𝑑,𝑣 �� = 2
`𝑑+2(𝑑−|𝑣 |)

for all 𝑣 ∈ {0, 1}≤𝑑 . Thus, all 𝑔𝑑,𝑣 have length 2
O(𝑑)

.

• Equivalently to Condition (d), we can require that given 𝑣 ∈ {0, 1}𝑑 and a binary encoded number 𝑖 with `𝑑 bits,

one can compute the 𝑖-th letter of 𝑔𝑑,𝑣 in DLINTIME.

Henceforth, whenever 𝑑 is clear, we simply write 𝑔𝑣 instead of 𝑔𝑑,𝑣 .

The reason for the “strongly” in the name of SENS is that there is also a similar, but more general, property which

we call ENS (see Remark 5.8 below). As there is little benefit from the extra definition, we only present it briefly in

Remark 5.8 but refrain from proving any further results about it. We continue with some further observations about

SENS groups.

Lemma 5.2. The property of being SENS is independent of the choice of the standard generating set. The same applies to

uniformly SENS.

Proof. Let Σ′ be another standard generating set. Then, for some constant integer 𝑘 , every element of Σ may be

written (thanks to the padding letter 1) as a word of length 2
𝑘
in Σ′. In particular, if 𝑔𝑑,𝑣 has length 2

`𝑑
with respect to Σ,

then it has length 2
𝑘+`𝑑

with respect to Σ′. There is also a simple DLINTIME-algorithm for computing the 𝑖-th letter of

𝑔𝑑,𝑣 ∈ (Σ′)∗: given 𝑣 , and 𝑖 , it runs the DLINTIME-algorithm for Σ on input 𝑣 and

⌊
𝑖/2

𝑘
⌋
, obtaining a letter 𝜎 ∈ Σ. Then,

it looks up the length-2
𝑘
representation of 𝜎 over Σ′, and extracts the (𝑖 mod 2

𝑘 )-th letter of that representation. □
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Later (Example 5.12) we will give an example of a f.g. non-SENS group 𝐻 which is uniformly SENS in a group 𝐺 .

Lemma 5.3. If𝑄 = 𝐻/𝐾 is a finitely generated subquotient of a finitely generated group𝐺 and𝑄 is SENS (resp. uniformly

SENS), then 𝐺 is also SENS (resp. uniformly SENS).

Proof. Let Γ be a standard generating set of𝑄 and fix for every 𝑎 ∈ Γ an element ℎ𝑎 ∈ 𝐻 ≤ 𝐺 such that ℎ𝑎 is mapped

to 𝑎 under the canonical projection 𝜋 : 𝐻 → 𝑄 = 𝐻/𝐾 . By Lemma 5.2 we can assume that all elements ℎ𝑎 belong to the

generating set of𝐺 . Let ℎ𝑑,𝑣 ∈ Γ∗ be the words witnessing the fact that𝑄 is (uniformly) SENS (in Definition 5.1 they are

denoted with 𝑔𝑑,𝑣 ). We then define words 𝑔𝑑,𝑣 by replacing every letter 𝑎 in ℎ𝑑,𝑣 by the letter ℎ𝑎 . Clearly, 𝜋 (𝑔𝑑,𝑣) = ℎ𝑑,𝑣
holds. In particular, 𝑔𝑑,Y is non-trivial, since ℎ𝑑,Y is non-trivial. □

Lemma 5.4. If 𝐺 is SENS (resp. uniformly SENS) and 𝑁 a normal subgroup such that 𝐺/𝑁 is solvable, then 𝑁 is SENS

(resp. uniformly SENS) in 𝐺 .

Notice that Lemma 5.4, in particular, implies that, if𝐺 is SENS (resp. uniformly SENS), then the commutator subgroup

𝐺 ′
is SENS (resp. uniformly SENS) in 𝐺 .

Proof. Assume that 𝐺/𝑁 is solvable of derived length 𝛿 . Hence, any 𝛿-fold nested commutator of elements in 𝐺

is contained in 𝑁 . Let ℎ𝑑,𝑣 be the elements witnessing that 𝐺 is (uniformly) SENS. Given 𝑑 and 𝑣 ∈ {0, 1}≤𝑑 define

𝑔𝑑,𝑣 = ℎ𝑑+𝛿,𝑣 . Then all these elements are 𝛿-fold nested commutators and, hence, contained in 𝑁 . The length bounds

and uniformity condition are also clear. Thus, the elements 𝑔𝑑,𝑣 witness that 𝑁 is (uniformly) SENS in 𝐺 . □

Lemma 5.5. If 𝐺 is SENS and 𝑁 a solvable normal subgroup of 𝐺 , then 𝐺/𝑁 is SENS.

Be aware that we do not know whether there is a variant of Lemma 5.5 for uniformly SENS. The problem is to

compute the word 𝑢 in the proof below.

Proof. Again, we only prove the statement for the case that𝐺 is SENS. As in the proof of Lemma 5.4, let ℎ𝑑,𝑣 for

𝑑 ∈ N and 𝑣 ∈ {0, 1}≤𝑑 denote the elements witnessing that 𝐺 is SENS. Let 𝛿 denote the derived length of 𝑁 . Assume

for contradiction that all the elements ℎ𝑑+𝛿,𝑣 for 𝑣 ∈ {0, 1}𝛿 are in 𝑁 . Then, ℎ𝑑+𝛿,Y would be trivial because it is a 𝛿-fold

nested commutator of the ℎ𝑑+𝛿,𝑣 for 𝑣 ∈ {0, 1}𝛿 and the derived length of 𝑁 is 𝛿 . Thus, there exists some 𝑢 ∈ {0, 1}𝛿

such that ℎ𝑑+𝛿,𝑢 ∉ 𝑁 . We fix this 𝑢 and set 𝑔𝑑,𝑣 = ℎ𝑑+𝛿,𝑢𝑣 for 𝑣 ∈ {0, 1}≤𝑑 . Since 𝑔𝑑,Y = ℎ𝑑+𝛿,𝑢 ∉ 𝑁 , this shows that

𝐺/𝑁 is SENS. □

Lemma 5.6. If 𝐺 is SENS (resp. uniformly SENS), then 𝐺/𝑍 (𝐺) is SENS (resp. uniformly SENS).

Proof. As before, let ℎ𝑑,𝑣 for 𝑑 ∈ N and 𝑣 ∈ {0, 1}≤𝑑 denote the elements witnessing that 𝐺 is (uniformly) SENS.

We set 𝑔𝑑,𝑣 = ℎ𝑑+1,0𝑣 for 𝑣 ∈ {0, 1}≤𝑑 . Then 𝑔𝑑,Y = ℎ𝑑+1,0 cannot be in 𝑍 (𝐺) for otherwise ℎ𝑑+1,Y = [𝑔𝑑,Y , ℎ𝑑+1,1] would
be trivial. This shows that 𝐺/𝑍 (𝐺) is (uniformly) SENS. □

5.1 Finite and free groups and the ENS property

The following result is, for 𝐺 = 𝐴5, the heart of Barrington’s argument:

Lemma 5.7. If 𝐺 is a finite non-solvable group, then 𝐺 is uniformly SENS.

Proof. Let us first show the statement for a non-abelian finite simple group𝐺 . By the proof of Ore’s conjecture [41],

every element of 𝐺 is a commutator. This means that we may choose 𝑔Y ≠ 1 at will, and given 𝑔𝑣 we define 𝑔𝑣0, 𝑔𝑣1 by
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table lookup, having chosen once and for all for each element of 𝐺 a representation of it as a commutator. Computing

𝑔𝑣 requires |𝑣 | steps and bounded memory.

If𝐺 is finite non-solvable, then any composition series of𝐺 contains a non-abelian simple composition factor𝐺𝑖/𝐺𝑖+1.

Hence, we can apply Lemma 5.3. □

Notice that at the time of Barrington’s original proof [4], Ore’s conjecture was not known to hold. This explains that

he used only what we call efficiently non-solvable (as defined in the following remark) in order to establish his result

on NC1
-hardness:

Remark 5.8. We can formulate a weaker condition than being strongly efficiently non-solvable which is closer to

Barrington’s original proof [4], but slightly more complicated to state: We call a group𝐺 efficiently non-solvable (ENS) if

there is an even constant 𝑙 such that for every 𝑑 ∈ N, there is a collection of elements (𝑔𝑑,𝑣)𝑣∈[1..𝑙 ]≤𝑑 with

(a)

��𝑔𝑑,𝑣 �� ∈ 2
O(𝑑)

when |𝑣 | = 𝑑 ,
(b) 𝑔𝑑,𝑣 = [𝑔𝑑,𝑣1

, 𝑔𝑑,𝑣2
] · · · [𝑔𝑑,𝑣 (𝑙−1) , 𝑔𝑑,𝑣𝑙 ] when |𝑣 | < 𝑑 ,

(c) 𝑔𝑑,Y ≠ 1 in 𝐺 .

Analogously to Definition 5.1, we can define uniformly ENS if the letters of 𝑔𝑑,𝑣 for |𝑣 | = 𝑑 can be computed in

DLINTIME.

To not overload the presentation, we prove our results only for SENS groups. Moreover, as the following lemma

shows, in the non-uniform case the two definitions are indeed equivalent. Only in the uniform case, we do not know

whether the two definitions agree – however, all examples of groups in our work are already uniformly SENS or not

even ENS.

Lemma 5.9. If 𝐺 is ENS, then 𝐺 is SENS.

Proof. Let (𝑔𝑑,𝑣)𝑣∈[1..𝑙 ])≤𝑑 be as in Remark 5.8, meaning that, in particular, 𝑔𝑑,Y ≠ 1 in 𝐺 . We can think of 𝑔𝑑,Y as

a word over the alphabet

{
𝑔±1

𝑑,𝑣

��� |𝑣 | = 𝑑}. Using the identity [𝑥, 𝑧𝑦] = [𝑥,𝑦] [𝑥, 𝑧]𝑦 , we can rewrite 𝑔𝑑,Y as a product

ℎ1ℎ2 · · ·ℎ𝑘 of balanced nested commutators ℎ𝑖 of depth 𝑑 (where no product appears inside any commutator). For this,

observe that, since [𝑥, 𝑧]𝑦 = [𝑥𝑦, 𝑧𝑦], we can pull all conjugations inside the commutators. By doing so, we have to

replace the 𝑔𝑑,𝑣 for |𝑣 | = 𝑑 by conjugates of the original 𝑔𝑑,𝑣 . Notice that by Remark 5.8(a) and the recursive definition

(b) we know that

��𝑔𝑑,𝑣 �� ∈ 2
O(𝑑)

for all 𝑣 ∈ [1..𝑙]≤𝑑 . Therefore the conjugates of the 𝑔𝑑,𝑣 are of length 2
O(𝑑)

as well.

Since 𝑔𝑑,Y ≠ 1 in 𝐺 , at least one of the balanced nested commutators ℎ𝑖 is non-trivial. This ℎ𝑖 is a non-trivial balanced

nested commutator of depth 𝑑 , hence, witnessing that 𝐺 is SENS. □

For the special case of finite non-solvable groups, the proof of Lemma 5.9 can be extended to actually show the

uniform SENS property without using the deep result [41]:

Second proof of Lemma 5.7. First of all, by the very definition of non-solvability, every non-abelian finite simple𝐺

group is ENS (as defined in Remark 5.8) by taking the full group as set of generators. Thus, Lemma 5.9 tells us that 𝐺 is

SENS. Let 𝑔𝑑,𝑣 be the words from Definition 5.1. It remains to show Condition (d) from Definition 5.1. Since 𝐺 is finite,

we can find a subset 𝑆 of 𝐺 such that for each 𝑔 ∈ 𝑆 there are ℎ1, ℎ2 ∈ 𝑆 with 𝑔 = [ℎ1, ℎ2]. In order to find such 𝑆 , take

𝑑0 = |𝐺 | + 1. Then on any path from the root Y to a leaf 𝑣 ∈ {0, 1}𝑑0
in the complete binary tree of depth 𝑑0, there must

be vertices 𝑢𝑣, 𝑡𝑣 with |𝑢𝑣 | < |𝑡𝑣 | (i. e., 𝑢𝑣 is a prefix of 𝑡𝑣 and the latter is a prefix of 𝑣) and 𝑔𝑑0,𝑢𝑣
= 𝑔𝑑0,𝑡𝑣 in 𝐺 . Let 𝑆 be

just the union over all 𝑔𝑑0,𝑢 with 𝑢 being a prefix of some 𝑡𝑣 . Using this 𝑆 (which can be hard-wired in our algorithm for
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computing the 𝑔𝑑,𝑣 ), the uniformity condition can be seen as follows: for each 𝑔 ∈ 𝑆 fix ℎ1, ℎ2 ∈ 𝑆 with 𝑔 = [ℎ1, ℎ2]
(also hard-wired in the algorithm). We can define new 𝑔𝑑,𝑣 for the uniform SENS condition using this recursion by

starting with some arbitrary fixed 𝑔Y = 𝑔𝑑,Y ∈ 𝑆 for all 𝑑 . Now it is clear that 𝑔𝑑,𝑣 can be computed in DLINTIME from

𝑣 – actually by a finite state automaton (note that it is independent of 𝑑): the states are just the elements of 𝑆 with initial

state 𝑔Y . If the current state is 𝑔 = [ℎ1, ℎ2] and the next input bit from 𝑣 is 0, then the next state is ℎ1, otherwise, it is

ℎ2. □

By Lemma 5.3 and Lemma 5.7, every group having a subgroup with a finite, non-solvable quotient is uniformly SENS.

Since every free group projects to a finite simple group, we get:

Corollary 5.10. If 𝐹𝑛 is a finitely generated free group of rank 𝑛 ≥ 2, then 𝐹𝑛 is uniformly SENS.

This result was essentially shown by Robinson [54], who showed that the word problem of a free group of rank two

is NC1
-hard. He used a similar commutator approach as Barrington. One can prove Corollary 5.10 also directly by

exhibiting a free subgroup of infinite rank whose generators are easily computable. For example, in 𝐹2 = ⟨𝑥0, 𝑥1⟩ take
𝑔𝑣 = 𝑥

−𝑣
0
𝑥1𝑥

𝑣
0
for 𝑣 ∈ {0, 1}𝑑 viewing the string 𝑣 as a binary encoded number (the other 𝑔𝑣 for 𝑣 ∈ {0, 1}<𝑑 are then

defined by the commutator identity in Definition 5.1), and appropriately padding with 1’s. It is even possible to take the

𝑔𝑣 of constant length: consider a free group 𝐹 = ⟨𝑥0, 𝑥1, 𝑥2⟩, and the elements 𝑔𝑣 = 𝑥𝑣 mod 3
with 𝑣 read as the binary

representation of an integer. It is easy to see that the nested commutator 𝑔Y is non-trivial.

5.2 Further examples of (not) SENS groups

Example 5.11. Here is a finitely generated group that is not solvable, has decidable word problem, but is not SENS.

The construction is inspired from [63].

Start with the trivial group 𝐻0 = 1 and set 𝐻𝑛+1 = 𝐻𝑛 ≀ Z. We have a natural embedding 𝐻0 ≤ 𝐻1, which induces

for all 𝑛 an embedding 𝐻𝑛 ≤ 𝐻𝑛+1. We set 𝐻 =
⋃

𝑛≥0
𝐻𝑛 , and denote by 𝑥0, 𝑥1, . . . the generators of 𝐻 , starting with

Z = ⟨𝑥0⟩. In particular, 𝐻𝑑 B ⟨𝑥0, . . . , 𝑥𝑑 ⟩ is solvable of class precisely 𝑑 whereas 𝐻 is non-solvable.

For an injective function 𝜏 : N → N to be specified later, consider in the unrestricted wreath product 𝐻Z ⋊ Z the

subgroup 𝐺 generated by the following two elements:

• the generator 𝑡 of Z and

• the function 𝑓 : Z→ 𝐻 defined by 𝑓 (𝜏 (𝑛)) = 𝑥𝑛 and all other values being 1.

We make the assumption that 𝜏 has the following property: For every integer 𝑧 ∈ Z \ {0} there is at most one pair

(𝑚, 𝑖) ∈ N × N with 𝑧 = 𝜏 (𝑚) − 𝜏 (𝑖). For instance, the mapping 𝜏 (𝑛) = 2
𝑛
has this property.

Let us define the conjugated mapping 𝑓𝑖 = 𝑡
𝜏 (𝑖) 𝑓 𝑡−𝜏 (𝑖) ∈ 𝐺 . We have 𝑓𝑖 (0) = 𝑥𝑖 and more generally 𝑓𝑖 (𝜏 (𝑚) −𝜏 (𝑖)) =

𝑥𝑚 (and 𝑓 −1

𝑖
(𝜏 (𝑚) − 𝜏 (𝑖)) = 𝑥−1

𝑚 ) for all 𝑚. Consider now a product 𝑔 = 𝑓
𝛼1

𝑖1
· · · 𝑓 𝛼𝑘

𝑖𝑘
(𝛼1, . . . , 𝛼𝑘 ∈ {−1, 1}). We get

𝑔(0) = 𝑥𝛼1

𝑖1
· · · 𝑥𝛼𝑘

𝑖𝑘
. For a position 𝑧 ∈ Z \ {0} which is not a difference of two different 𝜏-values we have 𝑔(𝑧) = 1. For

all other non-zero positions 𝑧 there is a unique pair (𝑚, 𝑖) such that 𝑧 = 𝜏 (𝑚) − 𝜏 (𝑖), which yields 𝑔(𝑧) = 𝑥𝑒𝑚 , where 𝑒 is

the sum of those 𝛼 𝑗 such that 𝑖 𝑗 = 𝑖 . Hence, the commutator [𝑔, ℎ] of two mappings 𝑔 = 𝑓
𝛼1

𝑖1
· · · 𝑓 𝛼𝑘

𝑖𝑘
and ℎ = 𝑓

𝛽1

𝑗1
· · · 𝑓 𝛽𝑙

𝑗𝑙

satisfies [𝑔, ℎ] (0) = [𝑥𝛼1

𝑖1
· · · 𝑥𝛼𝑘

𝑖𝑘
, 𝑥

𝛽1

𝑗1
· · · 𝑥𝛽𝑙

𝑗𝑙
] and [𝑔, ℎ] (𝑧) = 0 for all 𝑧 ∈ Z \ {0}. Hence, 𝐺 contains the restricted

wreath product [𝐻,𝐻 ] ≀ Z, so in particular is infinite and non-solvable; and𝐺 ′
contains the restricted direct product

[𝐻,𝐻 ] (Z) .
We now assume that 𝜏 grows superexponentially (take for instance 𝜏 (𝑛) = 2

𝑛2

). Note that if 𝑘 ∈ Z is not of the form
𝜏 (𝑖) − 𝜏 ( 𝑗) for some 𝑖, 𝑗 ∈ N, then 𝑡𝑘 𝑓 𝑡−𝑘 and 𝑓 commute. It follows that the intersection of 𝐺 ′′

with the ball of radius
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𝑅 in𝐺 is contained in [𝐻𝑑 , 𝐻𝑑 ]Z for 𝑑 growing sublogarithmically in 𝑅 (more precisely as O(
√︁

log𝑅)), and in particular

does not contain a nested non-trivial commutator of depth Ω(log𝑅). This implies that 𝐺 is not SENS.

Furthermore, if 𝜏 is computable, then WP(𝐺) is decidable: given a word𝑤 ∈
{
𝑡±1, 𝑓 ±1

}∗
, compute its exponent sum

in the letters 𝑡±1
and 𝑓 ±1

(which must both vanish if𝑤 =𝐺 1) and the coordinates −|𝑤 |, . . . , |𝑤 | of its image in 𝐻Z. Each

of these coordinates belongs to a finitely iterated wreath product Z ≀ · · · ≀ Z, in which the word problem is decidable

(again by counting exponents and computing coordinates).

Example 5.12. Here is an example of a f.g. non-SENS group which is uniformly SENS in a larger group. We continue

on the notation of Example 5.11.

Consider the non-SENS group 𝐺 = ⟨𝑡, 𝑓 ⟩ from Example 5.11. The reason that 𝐺 fails to be SENS is the following:

there are elements 𝑦𝑖 ∈ 𝐺 (𝑖 ≥ 0) such that a non-trivial depth-𝑑 nested commutator may uniformly be constructed

using 𝑦0, . . . , 𝑦𝑑−1
, but the 𝑦𝑖 have length growing superexponentially in 𝑖 .

Essentially by the same construction as in Example 5.11 one can embed 𝐺 as a heavily distorted subgroup in a

finitely generated subgroup 𝐺 B ⟨𝑡, 𝑓 , 𝑡, ˜𝑓 ⟩ of the unrestricted wreath product𝐺Z ⋊ Z, thereby bringing the 𝑦𝑖 back to

exponential length: the elements 𝑡, 𝑓 are the generators of 𝐺 , seen as elements of 𝐺Z supported at 0; 𝑡 is the generator

of Z; and ˜𝑓 ∈ 𝐺Z takes value 𝑦𝑖 at 2
𝑖
. Then 𝐺 is uniformly SENS in 𝐺 , since the [𝑦𝑖 , 𝑦 𝑗 ] are expressible as words of

length 2
O(𝑖+𝑗)

in
˜𝑓 , 𝑡 , and their inverses.

The following technical result will be used to prove that weakly branched groups and Thompson’s group 𝐹 are

uniformly SENS.

Proposition 5.13. Let 𝐺 be a finitely generated group with the standard generating set Σ. Moreover, let ℎ𝑑 (𝑑 ∈ N) be
words over Σ with |ℎ𝑑 | ∈ 2

O(𝑑)
and such that given 1

𝑑
and a binary coded number 𝑖 with O(𝑑) bits one can compute in

DLINTIME the 𝑖-th letter of ℎ𝑑 . Assume that 𝐻 = ⟨ℎ0, ℎ1, . . . ⟩ acts on a tree of words 𝑋 ∗
(where 𝑋 is not necessarily finite),

and that 𝑋 contains pairwise distinct elements 𝑣−1, 𝑣, 𝑣1 such that

• ℎ𝑑 fixes all of 𝑋 ∗ \ 𝑣𝑑𝑋 ∗
, and

• (𝑣𝑑𝑣−1)ℎ𝑑 = 𝑣𝑑+1
and (𝑣𝑑+1)ℎ𝑑 = 𝑣𝑑𝑣1.

Then 𝐻 is uniformly SENS in 𝐺 , so in particular 𝐺 is uniformly SENS. Moreover, if 𝐻 is finitely generated and the ℎ𝑑 are

words over the generators of 𝐻 , then 𝐻 is uniformly SENS.

Proof. For non-negative integers 𝑑, 𝑞 and 𝑠 ∈ {−1, 1}, consider the following elements 𝑔𝑑,𝑠,𝑞 , defined inductively:

𝑔0,𝑠,𝑞 = ℎ𝑞, 𝑔𝑑,𝑠,𝑞 = [𝑔𝑠
𝑑−1,−1,0

, 𝑔𝑑−1,1,𝑞+1
] if 𝑑 > 0.

We claim that 𝑔𝑑,1,0 ≠𝐺 1. This implies the proposition: By definition 𝑔𝑑,1,0 is a 𝑑-fold nested commutator of words

of the form ℎ±1

𝑟 for various 𝑟 ≤ 𝑑 . It is easy to see that given 𝑣 ∈ {0, 1}𝑑 , the index 𝑟𝑣 corresponding to the leaf of

the commutator tree that is indexed by 𝑣 is computable in DLINTIME and by the hypothesis of the proposition ℎ𝑟𝑣 is

DLINTIME-computable.

Thus, it remains to show that 𝑔𝑑,1,0 is non-trivial. Indeed, we claim that, for 𝑑 > 0, the element 𝑔𝑑,𝑠,𝑞 acts only on the

subtrees below 𝑣𝑑+𝑞 and 𝑣𝑑−1𝑣𝑠 , and furthermore acts as ℎ𝑑+𝑞 on the subtree below 𝑣𝑑+𝑞 .

We prove this claim by induction on 𝑑 . Recall that for 𝑔 ∈ Aut(𝑋 ∗) and a node 𝑤 ∈ 𝑋 ∗
we write 𝑤 ∗ 𝑔 for the

element of Aut(𝑋 ∗) that acts as 𝑔 on the subtree 𝑤𝑋 ∗
and trivially elsewhere. Note that a conjugate (𝑤 ∗ 𝑔)ℎ with

ℎ ∈ Aut(𝑋 ∗) can be written as (𝑤 ∗𝑔)ℎ = 𝑤ℎ ∗𝑔′ for some 𝑔′ ∈ Aut(𝑋 ∗). With this notation, we may write ℎ𝑟 = 𝑣𝑟 ∗𝑘𝑟
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for 𝑘𝑟 = ℎ𝑟@𝑣𝑟 ∈ Aut(𝑋 ∗). Our claim becomes (□ represents an arbitrary element of Aut(𝑋 ∗) that is not important)

𝑔𝑑,𝑠,𝑞 = (𝑣𝑑+𝑞 ∗ 𝑘𝑑+𝑞) (𝑣𝑑−1𝑣𝑠 ∗ □).

For 𝑑 = 1 we have

𝑔1,𝑠,𝑞 = [ℎ𝑠
0
, ℎ1+𝑞] =

(
ℎ
ℎ𝑠

0

1+𝑞
)−1

ℎ1+𝑞 =
(
(𝑣1+𝑞 ∗ 𝑘1+𝑞)ℎ

𝑠
0

)−1 (𝑣1+𝑞 ∗ 𝑘1+𝑞).

Moreover, the conjugate (𝑣1+𝑞 ∗𝑘1+𝑞)ℎ
𝑠
0 is of the form (𝑣1+𝑞)ℎ𝑠0 ∗□ = 𝑣𝑠 ∗□ and we get 𝑔1,𝑠,𝑞 = (𝑣𝑠 ∗□)−1 (𝑣1+𝑞 ∗𝑘1+𝑞) =

(𝑣1+𝑞 ∗ 𝑘1+𝑞) (𝑣𝑠 ∗ □).
Consider now 𝑑 > 1. By induction, 𝑔𝑑−1,−1,0 = (𝑣𝑑−1 ∗𝑘𝑑−1

) (𝑣𝑑−2𝑣−1 ∗□) and 𝑔𝑑−1,1,𝑞+1
= (𝑣𝑑+𝑞 ∗𝑘𝑑+𝑞) (𝑣𝑑−2𝑣1 ∗□).

Now 𝑣𝑑−2𝑣−1 ∗ 𝑓 , 𝑣𝑑−1 ∗ 𝑔, and 𝑣𝑑−2𝑣1 ∗ ℎ commute for all 𝑓 , 𝑔, ℎ ∈ Aut(𝑋 ∗) since they act non-trivially on disjoint

subtrees. We get

𝑔𝑑,𝑠,𝑞 = [𝑔𝑠
𝑑−1,−1,0

, 𝑔𝑑−1,1,𝑞+1
] = [𝑣𝑑−1 ∗ 𝑘𝑠

𝑑−1
, 𝑣𝑑+𝑞 ∗ 𝑘𝑑+𝑞] = (𝑣𝑑−1𝑣𝑠 ∗ □) (𝑣𝑑+𝑞 ∗ 𝑘𝑑+𝑞)

using arguments as for the case 𝑑 = 1. □

Theorem 5.14. Let 𝐺 be a finitely generated group with 𝐺 ≀ 𝐻 ≤ 𝐺 for some non-trivial group 𝐻 . Then 𝐺 is uniformly

SENS.

Proof. By possibly replacing 𝐻 with a cyclic subgroup, we can assume that 𝐻 = Z or 𝐻 = Z/𝑝 for some 𝑝 ∈ Z.
Moreover, we can assume that 𝑝 ≥ 3: if 𝑝 = 2, we can use the associativity of the permutational wreath product:

𝐺 ≀ (Z/2 ≀Z/2) = (𝐺 ≀Z/2) ≀Z/2 ≤ 𝐺 ≀Z/2 ≤ 𝐺 . Thus, since Z/2 ≀Z/2 contains an element of order 4, we have𝐺 ≀Z/4 ≤ 𝐺 .
Hence, we have 𝐺 ≀𝐻 ≤ 𝐺 for 𝐻 = Z or 𝐻 = Z/𝑝 with 𝑝 ≥ 3. Let 𝑡 be a generator of 𝐻 and Σ be a standard generating

set for 𝐺 . W. l. o. g. we can assume that 𝑡 ∈ Σ.

Now, consider the endomorphism 𝜎 : 𝐺 → 𝐺 given by the embedding𝐺 ≀𝐻 ≤ 𝐺 . After padding with the appropriate

number of 1’s, we can view 𝜎 as a substitution 𝜎 : Σ → Σ2
_
for some constant _. We then define words ℎ𝑑 = 𝜎𝑑 (𝑡)

for all 𝑑 ∈ N, and note that |ℎ𝑑 | = 2
_𝑑
. It is straightforward to see that on input of 1

𝑑
and a binary coded number 𝑖

one can compute in DLINTIME the 𝑖-th letter of ℎ𝑑 . Moreover, it follows that ⟨ℎ0, . . . , ℎ𝑘 ⟩ is the 𝑘-fold iterated wreath

product of cyclic groups and so ⟨ℎ0, ℎ1, . . . ⟩ � (· · · ≀ Z) ≀ Z or ⟨ℎ0, ℎ1, . . . ⟩ � (· · · ≀ (Z/𝑝)) ≀ (Z/𝑝), which acts on the

rooted tree 𝑋 ∗
with 𝑋 = 𝐻 in the canonical way. We then apply Proposition 5.13 with (𝑣−1, 𝑣, 𝑣1) = (−1, 0, 1) (or

(𝑣−1, 𝑣, 𝑣1) = (𝑝 − 1, 0, 1)). □

As an immediate consequence of Theorem 5.14 and Lemma 3.1, we obtain:

Corollary 5.15. Thompson’s groups 𝐹 < 𝑇 < 𝑉 are uniformly SENS.

One can also show Corollary 5.15 directly without using Proposition 5.13. Consider the infinite presentation (1).

From the relations 𝑥−1

𝑖
𝑥𝑘𝑥𝑖 = 𝑥𝑘+1

(𝑖 < 𝑘) the reader can easily check that 𝑔 = 𝑥3𝑥
−1

2
satisfies the identity

𝑔 = [𝑔,𝑔𝑥
−1

0 ]𝑥1 = [𝑔𝑥1 , 𝑔𝑥
−1

0
𝑥1 ] .

Nesting this identity 𝑑 times and pushing conjugations to the leaf level of the resulting tree yields the words 𝑔𝑑,𝑣 . More

precisely, let us define words 𝑐𝑣 (𝑣 ∈ {0, 1}∗) by 𝑐Y = Y, 𝑐𝑣0 = 𝑥1𝑐𝑣 , and 𝑐𝑣1 = 𝑥−1

0
𝑥1𝑐𝑣 . We then define 𝑔𝑑,𝑣 = 𝑔𝑐𝑣 for

𝑣 ∈ {0, 1}≤𝑑 and immediately get 𝑔𝑑,𝑣 = [𝑔𝑑,𝑣0
, 𝑔𝑑,𝑣1

] in 𝐹 . Clearly, the word 𝑐𝑣 can be computed in DTIME(O(|𝑣 |)).
Hence, 𝑔𝑑,𝑣 can be computed in DTIME(O(𝑑)).

Theorem 5.16. Let𝐺 be a weakly branched self-similar group, and assume that it admits a finitely generated branching

subgroup 𝐾 . Then 𝐾 and hence 𝐺 are uniformly SENS.
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Proof. Let 𝐾 be a finitely generated branching subgroup of𝐺 and let 𝑋 ∗
be the tree on which𝐺 acts. Let 𝜑 as in (2).

First, we may find an element 𝑘 ∈ 𝐾 and a vertex 𝑣 ∈ 𝑋 ∗
such that 𝑣, 𝑣−1 B 𝑣𝑘

−1

, and 𝑣1 B 𝑣𝑘 are pairwise distinct.

Indeed 𝐾 contains an element 𝑘 ≠ 1. If 𝑘 has order > 2 (possibly ∞), then there is a vertex 𝑣 on which it acts as a cycle

of length > 2. If 𝑘2 = 1, then take a vertex 𝑣 with 𝑣𝑘 ≠ 𝑣 . Then the orbit of 𝑣𝑣 under 𝑘 · (𝑣 ∗ 𝑘) has length four, so we

only have to replace 𝑘 by 𝑘 · (𝑣 ∗ 𝑘) and 𝑣 by 𝑣𝑣 . After replacing 𝑋 by 𝑋 |𝑣 |
, we can assume that 𝑣−1, 𝑣, 𝑣1 ∈ 𝑋 .

Since𝜑 (𝐾) contains𝐾𝑋
, there exists an endomorphism𝜎 of𝐾 , given on generators of𝐾 by𝜎 (𝑔) = 𝜑−1 (1, . . . 1, 𝑔, 1, . . . , 1)

with the unique 𝑔 in position 𝑣 . We fix a standard generating set Σ for 𝐾 and express 𝜎 as a substitution 𝜎 : Σ → Σ∗.

By padding its images with 1’s, we may assume that 𝜎 maps every generator to a word of length 2
`
for some fixed `.

Also without loss of generality, we may assume that the 𝑘 from the previous paragraph is a generator. In particular, the

words ℎ𝑑 = 𝜎𝑑 (𝑘) ∈ Σ∗ have length 2
`𝑑
, and the letter at a given position of ℎ𝑑 can be computed in DTIME(O(𝑑)). We

then apply Proposition 5.13. □

By Lemma 3.3 and Theorem 5.16 the Grigorchuk group is uniformly SENS. For this special case we want to explore

an alternative (and simpler) proof: indeed, we show that there exist non-trivial nested commutators of arbitrary depth

with individual entries of bounded (and not merely exponentially-growing) length and computable in DLINTIME:

Proposition 5.17. Consider in the Grigorchuk group 𝐺 = ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ the elements

𝑥 = (𝑎𝑏𝑎𝑑)2
and 𝑦 = 𝑥𝑏 = 𝑏𝑎𝑏𝑎𝑑𝑎𝑏𝑎𝑐.

Define recursively elements 𝑧𝑣 ∈
{
𝑥,𝑦, 𝑥−1, 𝑦−1

}
for all 𝑣 ∈ {0, 1}∗ as follows:

• 𝑧Y = 𝑥 ;
• if 𝑧𝑣 is defined, then we define 𝑧𝑣0 and 𝑧𝑣1 according to the following table:

𝑧𝑣 𝑧𝑣0 𝑧𝑣1

𝑥 𝑥−1 𝑦−1

𝑥−1 𝑦−1 𝑥−1

𝑦 𝑦 𝑥

𝑦−1 𝑥 𝑦

For every 𝑑 ∈ N and 𝑣 ∈ {0, 1}≤𝑑 let 𝑔𝑑,𝑣 = 𝑧𝑣 for |𝑣 | = 𝑑 and 𝑔𝑑,𝑣 = [𝑔𝑣0, 𝑔𝑣1] if |𝑣 | < 𝑑 . We then have 𝑔𝑑,Y ≠ 1 in 𝐺 . In

particular, 𝐺 is uniformly SENS.

Proof. That 𝑥 ≠ 1 ≠ 𝑦 is easy to check by computing their action on the third level of the tree. Now the following

equations are easy to check in 𝐺 :

[𝑥,𝑦] =
〈〈

1,
〈〈

1, 𝑦−1
〉〉〉〉
,

[𝑥−1, 𝑦−1] = ⟨⟨1, ⟨⟨1, 𝑥⟩⟩⟩⟩,

[𝑦, 𝑥] = ⟨⟨1, ⟨⟨1, 𝑦⟩⟩⟩⟩,

[𝑦−1, 𝑥−1] =
〈〈

1,
〈〈

1, 𝑥−1
〉〉〉〉
.

In other words: [𝑧𝑣0, 𝑧𝑣1] = ⟨⟨1, ⟨⟨1, 𝑧𝑣⟩⟩⟩⟩. The checks are tedious to compute by hand, but easy in the GAP package FR

(note that vertices are numbered from 1 in GAP and from 0 here):
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gap> LoadPackage("fr");

gap> AssignGeneratorVariables(GrigorchukGroup);

gap> x := (a*b*a*d)^2; y := x^b;

gap> Assert(0,Comm(x,y) = VertexElement([2,2],y^-1));

gap> Assert(0,Comm(x^-1,y^-1) = VertexElement([2,2],x));

gap> Assert(0,Comm(y,x) = VertexElement([2,2],y));

gap> Assert(0,Comm(y^-1,x^-1) = VertexElement([2,2],x^-1));

We wish to prove that 𝑔𝑑,Y ≠ 1 in𝐺 . Now the equation [𝑧𝑣0, 𝑧𝑣1] = ⟨⟨1, ⟨⟨1, 𝑧𝑣⟩⟩⟩⟩ immediately implies that 𝑔𝑑,𝑣 acts as 𝑧𝑣

on the subtree below vertex 1
2(𝑑−|𝑣 |)

and trivially elsewhere. In particular, 𝑔𝑑,Y acts as 𝑧Y = 𝑥 ≠ 1 on the subtree below

vertex 1
2𝑑

and is non-trivial.

With this definition, the 𝑔𝑑,𝑣 satisfy the definition of a SENS group. Moreover, given some 𝑣 ∈ {0, 1}𝑑 , 𝑔𝑑,𝑣 can be

computed in time O(𝑑) by a deterministic finite state automaton with state set

{
𝑥±1, 𝑦±1

}
. □

6 EFFICIENTLY NON-SOLVABLE GROUPS HAVE NC1-HARDWORD PROBLEM

We are ready to state and prove our generalization of Barrington’s theorem, namely that SENS groups have NC1
-hard

word problems, both in the non-uniform and uniform setting. We start with the non-uniform setting.

Theorem 6.1. Let𝐺 be strongly efficiently non-solvable and let Σ be a finite standard generating set for 𝐺 . Then every

language in NC1
can be recognized by a family of (𝐺, Σ)-programs of polynomial length. In particular, WP(𝐺) is hard for

NC1
under projection reductions as well as AC0

-many-one-reductions.

Note that for the second statement we need the padding letter 1 in the generating set for 𝐺 ; otherwise, we get a

TC0
-many-one reduction.

The proof of Theorem 6.1 essentially follows Barrington’s proof that the word problem of finite non-solvable groups

is NC1
-hard [4]. The crucial observation here is that it suffices to construct for every gate 𝑣 only one 𝐺-program (plus

one for the inverse) which evaluates to 𝑔𝑑,𝑣 or to 1 depending on the truth value 𝑣 evaluates to, where 𝑔𝑑,𝑣 is from

Definition 5.1.

Also note that Barrington uses conjugates of commutators in his proof and iterates this process. However, since

𝑧−1 [𝑥,𝑦]𝑧 = [𝑧−1𝑥𝑧, 𝑧−1𝑦𝑧] in every group, the conjugating elements can be pushed through to the inner-most level.

Proof. Given a language 𝐿 in NC1
, we start by constructing a family of𝐺-programs for 𝐿. For this let (𝐶𝑛)𝑛∈N be an

NC1
circuit family for 𝐿. Let us fix an input length 𝑛 and write𝐶 = 𝐶𝑛 . Since NC1

is closed under complementation, we

can assume that for every input word 𝑥 ∈ {0, 1}𝑛 , we have 𝑥 ∈ 𝐿 if and only if the output gate of the circuit𝐶 evaluates

to 0 on input 𝑥 . By Lemma 4.6 we may assume that 𝐶 is a balanced nand-tree-circuit of depth 𝑑 ∈ O(log𝑛) with each

leaf labelled by a possibly negated input variable or constant via the input mapping 𝑞𝑛 : {0, 1}𝑑 → [1..𝑛] × {0, 1}×{0, 1}.
All non-leaf gates are nand-gates.

For each gate 𝑣 ∈ {0, 1}≤𝑑 let 𝑔𝑣 = 𝑔𝑑,𝑣 as in Definition 5.1. We construct two 𝐺-programs 𝑃𝑣 and 𝑃
−1

𝑣 (both of input

length 𝑛) such that for every input 𝑥 ∈ {0, 1}𝑛 (𝑥 is taken as the input for 𝐶 , 𝑃𝑣 , and 𝑃
−1

𝑣 ) we have

𝑃𝑣 [𝑥] =𝐺

𝑔𝑣 if 𝑣 evaluates to 1,

1 if 𝑣 evaluates to 0,
(3)
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and 𝑃−1

𝑣 [𝑥] = 𝑃𝑣 [𝑥]−1
in 𝐺 . Notice that we have 𝑔𝑣𝑃

−1

𝑣 [𝑥] = 𝑔𝑣 if 𝑣 evaluates to 0 and 𝑔𝑣𝑃
−1

𝑣 [𝑥] = 1, otherwise. Thus,

𝑔𝑣𝑃
−1

𝑣 is a𝐺-program for the “negation” of 𝑃𝑣 . Moreover, by Eq. (3), 𝑃Y evaluates to 1 on input 𝑥 if and only if the output

gate evaluates to 0 which by our assumption was the case if and only if 𝑥 ∈ 𝐿.
The construction of the 𝑃𝑣 and 𝑃

−1

𝑣 is straightforward: For an input gate 𝑣 ∈ {0, 1}𝑑 we simply define 𝑃𝑣 to be a

𝐺-program evaluating to 𝑔𝑣 or 1 – in which case it evaluates to which element depends on 𝑞𝑛 (𝑣). More precisely, write

𝑔𝑣 = 𝑎1 · · ·𝑎𝑚 with 𝑎𝑖 ∈ Σ. If 𝑞𝑛 (𝑣) = ⟨𝑖, 𝑎, 𝑏⟩ for 𝑖 ∈ [1..𝑛] and 𝑎, 𝑏 ∈ {0, 1}, we set 𝑃𝑣 = ⟨𝑖, 𝑎𝑎
1
, 𝑎𝑏

1
⟩ · · · ⟨𝑖, 𝑎𝑎𝑚, 𝑎𝑏𝑚⟩ and

𝑃−1

𝑣 = ⟨𝑖, 𝑎−𝑎𝑚 , 𝑎−𝑏𝑚 ⟩ · · · ⟨𝑖, 𝑎−𝑎
1
, 𝑎−𝑏

1
⟩. For a nand-gate 𝑣 with inputs from 𝑣0 and 𝑣1, we define

𝑃𝑣 = 𝑔𝑣 [𝑃𝑣1, 𝑃𝑣0] = 𝑔𝑣𝑃−1

𝑣1
𝑃−1

𝑣0
𝑃𝑣1𝑃𝑣0,

𝑃−1

𝑣 = [𝑃𝑣0, 𝑃𝑣1]𝑔−1

𝑣 = 𝑃−1

𝑣0
𝑃−1

𝑣1
𝑃𝑣1𝑃𝑣1𝑔

−1

𝑣 ,

where the 𝑔𝑣 and 𝑔
−1

𝑣 represent constant 𝐺-programs evaluating to 𝑔𝑣 and 𝑔
−1

𝑣 , respectively, irrespective of the actual

input (such constant 𝐺-programs consist of triples of the form ⟨1, 𝑎, 𝑎⟩ for 𝑎 ∈ Σ). These constant 𝐺-programs are

defined via the commutator identities 𝑔𝑣 =
[
𝑔𝑣0, 𝑔𝑣1

]
for 𝑣 ∈ {0, 1}<𝑑 in Definition 5.1.

Clearly, by induction we have 𝑃𝑣 [𝑥]−1 = 𝑃−1

𝑣 [𝑥] in𝐺 (for every input 𝑥 ). Let us show that Eq. (3) holds: For an input

gate 𝑣 ∈ {0, 1}𝑑 , Eq. (3) holds by definition. Now, let 𝑣 ∈ {0, 1}<𝑑 . Then, by induction, we have the following equalities

in 𝐺 :

𝑃𝑣 [𝑥] = 𝑔𝑣 [𝑃𝑣1 [𝑥], 𝑃𝑣0 [𝑥]] =

𝑔𝑣 if 𝑣0 or 𝑣1 evaluates to 0,

𝑔𝑣 [𝑔𝑣1, 𝑔𝑣0] if 𝑣0 and 𝑣1 evaluate to 1,

=


𝑔𝑣 if 𝑣 evaluates to 1,

1 if 𝑣 evaluates to 0.

Note that [𝑔𝑣1, 𝑔𝑣0] = [𝑔𝑣0, 𝑔𝑣1]−1 = 𝑔−1

𝑣 for the last equality. Thus, 𝑃𝑣 satisfies Eq. (3). For 𝑃
−1

𝑣 the analogous statement

can be shown with the same calculation. For a leaf 𝑣 ∈ {0, 1}𝑑 , we have |𝑔𝑣 | ∈ 2
O(𝑑) = 𝑛O(1)

by Condition (a) from

Definition 5.1 (recall that 𝑑 ∈ O(log𝑛)). Hence, 𝑃−1

𝑣 and 𝑃𝑣 have polynomial length in 𝑛. Finally, also 𝑃Y has polynomial

length in 𝑛 (with the same argument as for 𝑔Y ; see the remark after Definition 5.1).

The fact that WP(𝐺) is NC1
-hard under projection reductions as well as AC0

-many-one-reductions follows now

form Remark 4.9. □

Remark 6.2. The above construction also shows that from a given Boolean formula (i.e., a tree-like circuit that is

given as an expression) 𝐹 with variables 𝑥1, . . . , 𝑥𝑛 one can compute in LOGSPACE a 𝐺-program 𝑃 with input length 𝑛

such that for every 𝑥 = 𝑎1 · · ·𝑎𝑛 ∈ {0, 1}𝑛 we have 𝑃 [𝑥] = 1 if and only if 𝐹 evaluates to true when variable 𝑥𝑖 receives

the truth value 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛. To show this, one first has to balance 𝐹 in the sense that 𝐹 is transformed into an

equivalent Boolean formula of depth O(log |𝐹 |). This can be done even in TC0
[18].

Theorem 6.3. Let 𝐺 be uniformly strongly efficiently non-solvable and Σ be a finite standard generating set of 𝐺 . Then

every language in ALOGTIME can be recognized by a uniform family of polynomial length (𝐺, Σ)-programs. In particular,

WP(𝐺) is hard for ALOGTIME under uniform projection reductions (thus, also under DLOGTIME-reductions).

Notice that again for this theorem we need the padding letter 1 in Σ and that all letters of Σ are encoded using the

same number of bits; otherwise, we get a TC0
-many-one reduction.

The proof of Theorem 6.3 is conceptually simple, but the details are quite technical: We know that ALOGTIME is

the same as DLOGTIME-uniform NC1
, so we apply the construction of Theorem 6.1. By a careful padding with trivial
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𝐺-programs, we can ensure that from the binary representation of some index 𝑖 , we can read in DLOGTIME the input

gate of the NC1
-circuit on which the 𝑖-th instruction in the 𝐺-program depends (this is the main technical part of the

proof). Then the theorem follows easily from the requirements of being uniformly SENS and from the special type of

DLOGTIME-uniformity of the circuit shown in Lemma 4.7.

Proof. By Theorem 6.1, we know that every language 𝐿 in ALOGTIME can be recognized by a family of polynomial

length (𝐺, Σ)-programs. It remains to show that the construction of the 𝐺-programs is uniform. In order to do so, we

refine the construction of Theorem 6.1.

Fix a constant ` such that for all 𝑣 ∈ {0, 1}𝑑 the word 𝑔𝑣 = 𝑔𝑑,𝑣 has length 2
`𝑑
. We start with an ALOGTIME-machine

𝑀 . By Lemma 4.7, we can assume that the balanced nand-tree-circuit family (𝐶𝑛)𝑛∈N in the proof of Theorem 6.1 is

DLOGTIME-uniform in the sense that the depth function 1
𝑛 ↦→ 1

𝑑 (𝑛)
as well as the input mapping 𝑞 from Definition 4.5

can be strongly computed in DLOGTIME. Fix an input length 𝑛 and let 𝑑 = 𝑑 (𝑛) be the depth of the circuit 𝐶 = 𝐶𝑛 .

From 1
𝑛
we can strongly compute 1

𝑑
in DLOGTIME by the above assumptions.

We now follow the recursive definition of the𝐺-programs 𝑃𝑣 and 𝑃
−1

𝑣 from the proof of Theorem 6.1. In order to have

a nicer presentation, we wish that all 𝐺-programs corresponding to one layer of the circuit have the same length. To

achieve this, we also define the constant𝐺-programs 𝑔𝑣 and 𝑔
−1

𝑣 precisely (which evaluate to the recursive commutators

from Definition 5.1). Moreover, for each 𝑣 ∈ {0, 1}≤𝑑 we introduce a new constant 𝐺-program 1𝑣 of the same length as

𝑔𝑣 which evaluates to 1 in𝐺 . For 𝑣 ∈ {0, 1}𝑑 the program 1𝑣 is the instruction ⟨1, 1, 1⟩ repeated 2
`𝑑

times. The programs

1𝑣 are only there for padding reasons and 1𝑢 and 1𝑣 are the same for |𝑢 | = |𝑣 |.
Now the 𝐺-programs 𝑃𝑣 , 𝑃

−1

𝑣 , 𝑔𝑣 , 𝑔
−1

𝑣 , and 1𝑣 corresponding to a gate 𝑣 ∈ {0, 1}<𝑑 are defined as follows (note that

each of these programs consists of 8 blocks):

𝑃𝑣 = 𝑔−1

𝑣0
𝑔−1

𝑣1
𝑔𝑣0 𝑔𝑣1 𝑃−1

𝑣1
𝑃−1

𝑣0
𝑃𝑣1 𝑃𝑣0 (4)

𝑃−1

𝑣 = 𝑃−1

𝑣0
𝑃−1

𝑣1
𝑃𝑣0 𝑃𝑣1 𝑔

−1

𝑣1
𝑔−1

𝑣0
𝑔𝑣1 𝑔𝑣0 (5)

𝑔𝑣 = 𝑔−1

𝑣0
𝑔−1

𝑣1
𝑔𝑣0 𝑔𝑣1 1𝑣0 1𝑣0 1𝑣0 1𝑣0 (6)

𝑔−1

𝑣 = 𝑔−1

𝑣1
𝑔−1

𝑣0
𝑔𝑣1 𝑔𝑣0 1𝑣0 1𝑣0 1𝑣0 1𝑣0 (7)

1𝑣 = 1𝑣0 1𝑣0 1𝑣0 1𝑣0 1𝑣0 1𝑣0 1𝑣0 1𝑣0 . (8)

Clearly, these 𝐺-programs all evaluate as described in the proof of Theorem 6.1 and all programs corresponding to one

layer have the same length. Moreover, for 𝑣 ∈ {0, 1}<𝑑 with |𝑣 | = 𝑐 the length of the𝐺-program 𝑔𝑣 is exactly 2
`𝑑+3(𝑑−𝑐)

and, thus, also the length of 𝑃𝑣 and 𝑃
−1

𝑣 is exactly 2
`𝑑+3(𝑑−𝑐)

.

For the 𝐺-program 𝑃Y (which has length 2
(`+3)𝑑

) we can prove the uniformity condition: Given the string 1
𝑛
and a

binary coded integer 𝑖 ∈ [0..2(`+3)𝑑 − 1] with (` + 3)𝑑 ∈ O(log𝑛) bits, we want to compute in DLOGTIME the 𝑖-th

instruction in 𝑃Y , where 𝑃Y is the𝐺-program assigned to the 𝑛-input circuit. Note that DLOGTIMEmeans time O(log𝑛)
(due to the input 1

𝑛
). Since we have computed 1

𝑑
already in DLOGTIME, we can check in DLOGTIME whether 𝑖 has

indeed (` + 3)𝑑 bits.

Next, given 𝑖 and 1
𝑛
, the DLOGTIME-machine goes over the first 3𝑑 bits of 𝑖 and thereby computes an input gate

𝑣 ∈ {0, 1}𝑑 of 𝐶 bit by bit together with one of the five symbols 𝜎 ∈ {𝑃∗, 𝑃−1

∗ , 𝑔∗, 𝑔−1

∗ , 1∗}. The meaning of 𝑣 and 𝜎 is

that 𝜎 [∗ → 𝑣] (which is obtained by replacing ∗ by 𝑣 ∈ {0, 1}𝑑 in 𝜎) is the 𝐺-program to which the 𝑖-th instruction in

𝑃Y belongs to. The approach is similar to [60, Theorem 4.52]. We basically run a deterministic finite state transducer

with states 𝑃∗, 𝑃−1

∗ , 𝑔∗, 𝑔−1

∗ , 1∗ that reads three bits of 𝑖 and thereby outputs one bit of 𝑣 . We start with 𝜎 = 𝑃∗. Note
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each of the 𝐺-programs 𝑃𝑣 , 𝑃
−1

𝑣 , 𝑔𝑣 , 𝑔
−1

𝑣 , 1𝑣 for |𝑣 | < 𝑑 consists of 8 = 2
3
blocks of equal length. The next three bits in

𝑖 determine to which block we have to descend. Moreover, the block determines the next bit of 𝑣 and the next state.

Let us give an example: assume that the current state 𝜎 is 𝑃∗ and 𝑏 ∈ {0, 1}3
is the next 3-bit block of 𝑖 . Recall that

𝑃𝑣 = 𝑔
−1

𝑣0
𝑔−1

𝑣1
𝑔𝑣0𝑔𝑣1𝑃

−1

𝑣1
𝑃−1

𝑣0
𝑃𝑣1𝑃𝑣0 for |𝑣 | < 𝑑 . The following operations are done:

• If 𝑏 = 000, then print 0 and set 𝜎 := 𝑔−1

∗ (descend to block 𝑔−1

𝑣0
).

• If 𝑏 = 001, then print 1 and set 𝜎 := 𝑔−1

∗ (descend to block 𝑔−1

𝑣1
).

• If 𝑏 = 010, then print 0 and set 𝜎 := 𝑔∗ (descend to block 𝑔𝑣0).

• If 𝑏 = 011, then print 1 and set 𝜎 := 𝑔∗ (descend to block 𝑔𝑣1).

• If 𝑏 = 100, then print 1 and set 𝜎 := 𝑃−1

∗ (descend to block 𝑃−1

𝑣1
).

• If 𝑏 = 101, then print 0 and set 𝜎 := 𝑃−1

∗ (descend to block 𝑃−1

𝑣0
).

• If 𝑏 = 110, then print 1 and set 𝜎 := 𝑃∗ (descend to block 𝑃𝑣1).

• If 𝑏 = 111, then print 0 and set 𝜎 := 𝑃∗ (descend to block 𝑃𝑣0).

For other values of 𝜎 the behavior of the machine is similar and implements the definitions for 𝑃−1

𝑣 , 𝑔𝑣 , 𝑔
−1

𝑣 , and 1𝑣 in

(5)–(8).

Assume now that the above DLOGTIME-machine has computed 𝑣 ∈ {0, 1}𝑑 and 𝜎 ∈ {𝑃∗, 𝑃−1

∗ , 𝑔∗, 𝑔−1

∗ , 1∗}. If 𝜎 = 1∗,

then the 𝑖-th instruction of 𝑃Y is the padding instruction ⟨1, 1, 1⟩. If 𝜎 ∈ {𝑃∗, 𝑃−1

∗ , 𝑔∗, 𝑔−1

∗ }, then the machine reads the

last `𝑑 bits of the binary encoding of 𝑖 . These `𝑑 bits are interpreted as a binary coded position 𝑗 in 𝑔𝑑,𝑣 or 𝑔
−1

𝑑,𝑣
. Assume

that 𝜎 ∈ {𝑃∗, 𝑔∗}. The machine then computes the 𝑗-th symbol 𝑎 ∈ Σ of 𝑔𝑑,𝑣 inDTIME(O(𝑑)) according to Definition 5.1

(and, thus, in DLOGTIME as 𝑑 ∈ O(log𝑛) and 1
𝑛
is part of the input) and outputs the instruction ⟨1, 𝑎, 𝑎⟩ in case 𝜎 = 𝑔∗.

If 𝜎 = 𝑃∗, then 𝑞(1𝑛, 𝑣) has to be computed, which can be done in DLOGTIME by Lemma 4.7. If 𝑞(1𝑛, 𝑣) = ⟨𝑘,𝑏, 𝑐⟩ with
𝑘 ∈ [1..𝑛] and 𝑏, 𝑐 ∈ {0, 1}, the machine then outputs the instruction ⟨𝑘, 𝑎𝑏 , 𝑎𝑐 ⟩. If 𝜎 = {𝑃−1

∗ , 𝑔−1

∗ }, then we proceed in a

similar fashion. Instead of the 𝑗-th letter of 𝑔𝑣 we have to compute the 𝑗-the letter of 𝑔−1

𝑣 , which is the inverse of the

(2`𝑑 − 𝑗 + 1)-th letter of 𝑔𝑣 . The binary coding of 2
`𝑑 − 𝑗 + 1 can be computed in time O(log𝑛) (and hence DLOGTIME)

since subtraction can be done in linear time. Thus, we have obtained a DLOGTIME-uniform family of𝐺-programs for 𝐿.

The second part of the theorem (that WP(𝐺) is hard for ALOGTIME under uniform projection reductions) follows

again from Remark 4.9. □

Recall that Corollary A from the introduction states that the word problems for the three Thompson’s groups 𝐹 , 𝑇 ,

and 𝑉 as well as for weakly branched self-similar groups with a finitely generated branching subgroup are hard for

ALOGTIME. Now, this is a direct consequence of Corollary 5.15, Theorem 5.16, and Theorem 6.3.

6.1 Consequences for linear groups

Here is another application of Theorem 6.3: in [38] it was shown that for every f.g. linear solvable group the word

problem belongs to DLOGTIME-uniform TC0
. It was also asked whether for every f.g. linear group the word problem

is in DLOGTIME-uniform TC0
or ALOGTIME-hard (be aware that it might be the case that DLOGTIME-uniform TC0

= ALOGTIME). We can confirm this. Recall that a group 𝐺 is called C1-by-C2 for group classes C1 and C2 if 𝐺 has a

normal subgroup 𝐾 ∈ C1 such that 𝐺/𝐾 ∈ C2.

Theorem 6.4. For every f.g. linear group the word problem is in DLOGTIME-uniform TC0
or ALOGTIME-hard. More

precisely: let 𝐺 be a f.g. linear group.

• If 𝐺 is finite solvable, then WP(𝐺) belongs to DLOGTIME-uniform ACC0
.
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• If𝐺 is infinite solvable, then WP(𝐺) is complete for DLOGTIME-uniform TC0
(via uniform AC0

Turing reductions).

• If 𝐺 is solvable-by-(finite non-solvable), then WP(𝐺) is complete for ALOGTIME (via DLOGTIME or uniform

projection reductions).

• In all other cases, WP(𝐺) is ALOGTIME-hard and in LOGSPACE.

Note that we can obtain a similar dichotomy for hyperbolic groups: they are either virtually abelian or contain a

non-abelian free subgroup. In the first case, the word problem is in DLOGTIME-uniform TC0
, in the second case it is

ALOGTIME-hard.

Proof. Let 𝐺 be f.g. linear. First of all, by [43, 57], WP(𝐺) belongs to LOGSPACE. By Tits’ alternative [59], 𝐺 either

contains a free subgroup of rank 2 or is virtually solvable (meaning that it has a solvable subgroup of finite index). In

the former case, WP(𝐺) is ALOGTIME-hard by Corollary 5.10 and Theorem 6.3. Let us now assume that 𝐺 is virtually

solvable. Let 𝐾 be a solvable subgroup of 𝐺 of finite index. By taking the intersection of all conjugates of 𝐾 in 𝐺 ,

we can assume that 𝐾 is a normal subgroup of 𝐺 . If also 𝐺/𝐾 is solvable, then 𝐺 is solvable. Hence, WP(𝐺) is in
DLOGTIME-uniform ACC0

(if 𝐺 is finite) or, by [38], complete for DLOGTIME-uniform TC0
(if 𝐺 is infinite). Finally,

assume that the finite group𝐺/𝐾 is non-solvable (thus,𝐺 is solvable-by-(finite non-solvable). By Lemmas 5.3 and 5.7,𝐺

is uniformly SENS, and Theorem 6.3 implies that WP(𝐺) is ALOGTIME-hard. Moreover, by [54, Theorem 5.2], WP(𝐺) is
AC0

-reducible to WP(𝐾) and WP(𝐺/𝐾). The latter belongs to ALOGTIME and WP(𝐾) belongs to DLOGTIME-uniform

ACC0
if 𝐾 is finite and to DLOGTIME-uniform TC0

if 𝐾 is infinite (note that 𝐾 as a finite index subgroup of 𝐺 is

f.g. linear too). In all cases, WP(𝐺) belongs to ALOGTIME. □

7 COMPRESSEDWORDS AND THE COMPRESSEDWORD PROBLEM

In the rest of the paper we deal with the compressed word problem, which is a succinct version of the word problem,

where the input word is given in a compressed form by a so-called straight-line program. In this section, we introduce

straight-line programs and the compressed word problem and state a few simple facts. For more details on the compressed

word problem see [46].

A straight-line program (SLP for short) over the alphabet Σ is a triple G = (𝑉 , 𝜌, 𝑆), where 𝑉 is a finite set of

variables such that 𝑉 ∩ Σ = ∅, 𝑆 ∈ 𝑉 is the start variable, and 𝜌 : 𝑉 → (𝑉 ∪ Σ)∗ is a mapping such that the relation

{(𝐴, 𝐵) ∈ 𝑉 ×𝑉 : 𝐵 occurs in 𝜌 (𝐴)} is acyclic. For the reader familiar with context free grammars, it might be helpful

to view the SLP G = (𝑉 , 𝜌, 𝑆) as the context-free grammar (𝑉 , Σ, 𝑃, 𝑆), where 𝑃 contains all productions 𝐴 → 𝜌 (𝐴) for
𝐴 ∈ 𝑉 . The definition of an SLP implies that this context-free grammar derives exactly one terminal word, which will

be denoted by val(G). Formally, one can extend 𝜌 to a morphism 𝜌 : (𝑉 ∪ Σ)∗ → (𝑉 ∪ Σ)∗ by setting 𝜌 (𝑎) = 𝑎 for all
𝑎 ∈ Σ. The above acyclicity condition on 𝜌 implies that for𝑚 = |𝑉 | we have 𝜌𝑚 (𝑤) ∈ Σ∗ for all𝑤 ∈ (𝑉 ∪ Σ)∗. We then

define valG (𝑤) = 𝜌𝑚 (𝑤) (the string derived from the sentential form𝑤 ) and val(G) = valG (𝑆).
The word 𝜌 (𝐴) is also called the right-hand side of 𝐴. Quite often, it is convenient to assume that all right-hand

sides are of the form 𝑎 ∈ Σ or 𝐵𝐶 with 𝐵,𝐶 ∈ 𝑉 . This corresponds to the well-known Chomsky normal form for

context-free grammars. There is a simple linear time algorithm that transforms an SLP G with val(G) ≠ Y into an SLP

G′
in Chomsky normal form with val(G) = val(G′), see e.g. [46, Proposition 3.8].

We define the size of the SLP G = (𝑉 , 𝜌, 𝑆) as the total length of all right-hand sides: |G| = ∑
𝐴∈𝑉 |𝜌 (𝐴) |. SLPs

offer a succinct representation of words that contain many repeated substrings. For instance, the word (𝑎𝑏)2
𝑛
can be

produced by the SLP G = ({𝐴0, . . . , 𝐴𝑛}, 𝜌, 𝐴𝑛) with 𝜌 (𝐴0) = 𝑎𝑏 and 𝜌 (𝐴𝑖+1) = 𝐴𝑖𝐴𝑖 for 0 ≤ 𝑖 ≤ 𝑛 − 1. It was shown
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independently in [32, 50, 53] that one can check in polynomial time whether two given SLPs produce the same string.

We need the following upper bound on the length of the word val(G):

Lemma 7.1 (c.f. [15]). For every SLP G we have |val(G)| ≤ 3
|G |/3

.

We also need polynomial time algorithms for a few algorithmic problems for SLPs:

Lemma 7.2 ([46, Chapter 3]). The following problems can be solved in polynomial time, where G is an SLP over a

terminal alphabet Σ, 𝑎 ∈ Σ, and 𝑝, 𝑞 ∈ N (the latter are given in binary notation):

• Given G, compute the length |val(G)|.
• Given G and 𝑎, compute the number |val(G)|𝑎 of occurrences of 𝑎.

• Given G and 𝑝 , compute the symbol val(G)[𝑝] ∈ Σ (in case 0 ≤ 𝑝 < |val(G)| does not hold, the algorithm outputs

a special symbol).

• Given G and 𝑝, 𝑞, compute an SLP for the string val(G)[𝑝 : 𝑞] (in case 0 ≤ 𝑝 ≤ 𝑞 < |val(G)| does not hold, the
algorithm outputs a special symbol).

Lemma 7.3 (c.f. [46, Lemma 3.12]). Given a symbol 𝑎0 ∈ Σ and a sequence of morphisms 𝜑1, . . . , 𝜑𝑛 : Σ∗ → Σ∗,

where every 𝜑𝑖 is given by a list of the words 𝜑𝑖 (𝑎) for 𝑎 ∈ Σ, one can compute in LOGSPACE an SLP for the word

𝜑1 (𝜑2 (· · ·𝜑𝑛 (𝑎0) · · · )).

The compressed word problem for a finitely generated group𝐺 with the finite standard generating set Σ,CompressedWP(𝐺, Σ)
for short, is the following decision problem:

Input: an SLP G over the alphabet Σ.

Question: does val(G) = 1 hold in 𝐺?

It is an easy observation that the computational complexity of the compressed word problem for𝐺 does not depend on the

chosen generating set Σ in the sense that if Σ′ is another finite standard generating set for𝐺 , then CompressedWP(𝐺, Σ)
is LOGSPACE-reducible to CompressedWP(𝐺, Σ′) [46, Lemma 4.2]. Therefore we do not have to specify the generating

set and we just write CompressedWP(𝐺).
The compressed word problem for𝐺 is equivalent to the problem whether a given circuit over the group𝐺 evaluates

to 1: Take an SLP G = (𝑉 , 𝜌, 𝑆) in Chomsky normal form and built a circuit by taking𝑉 is the set of gates. If 𝜌 (𝐴) = 𝑎 ∈ Σ

then 𝐴 is an input gate that is labelled with the group generator 𝑎. If 𝜌 (𝐴) = 𝐵𝐶 with 𝐵,𝐶 ∈ 𝑉 then 𝐵 is left input

gate for 𝐴 and 𝐶 is the right input gate for 𝐴. Such a circuit can be evaluated in the natural way (every internal gate

computes the product of its input values) and the circuit output is the value at gate 𝑆 .

From a given SLP G a PSPACE-transducer can compute the word val(G). With Lemma 4.1 we get:

Lemma 7.4. If 𝐺 is a finitely generated group such that WP(𝐺) belongs to polyL, then CompressedWP(𝐺) belongs to
PSPACE.

8 COMPRESSEDWORD PROBLEMS FORWREATH PRODUCTS

In this section we consider regular wreath products of the form 𝐺 ≀ Z. The following result was shown in [46] (for 𝐺

non-abelian) and [39] (for 𝐺 abelian). In this section all hardness results are with respect to LOGSPACE reductions.

Theorem 8.1 (c.f. [39, 46]). If 𝐺 is a finitely generated group, then

• CompressedWP(𝐺 ≀ Z) is coNP-hard if 𝐺 is non-abelian and
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• CompressedWP(𝐺 ≀ Z) belongs to coRP (complement of randomized polynomial time) if 𝐺 is abelian.

In this section, we prove the following result, which improves upon the first statement of Theorem 8.1.

Theorem 8.2. Let 𝐺 be a finitely generated non-trivial group.

• CompressedWP(𝐺 ≀ Z) belongs to ∀LEAF(WP(𝐺)).
• CompressedWP(𝐺 ≀ Z) is hard for the class ∀LEAF(WP(𝐺/𝑍 (𝐺))).

In particular, if 𝑍 (𝐺) = 1, then CompressedWP(𝐺 ≀ Z) is complete for ∀LEAF(WP(𝐺)).

Be aware that in the case that 𝐺 is abelian, WP(𝐺/𝑍 (𝐺)) is the set of all words over the generators, and so

∀LEAF(WP(𝐺/𝑍 (𝐺))) consists of only the universal language. Therefore, for abelian 𝐺 , the hardness statement in

Theorem 8.2 is trivial.

The proof of the lower bound uses some of the techniques from the paper [45], where a connection between leaf

strings and SLPs was established. In Sections 8.1–8.3 we will introduce these techniques. The proof of Theorem 8.2 will

be given in Section 8.4.

Remark 8.3. Let 𝐺 be a finite solvable group with composition series 1 = 𝐺0 ≤ 𝐺1 ≤ · · · ≤ 𝐺𝑟 = 𝐺 meaning

that 𝐺𝑖−1 is normal in 𝐺𝑖 and 𝐺𝑖/𝐺𝑖−1 is cyclic of prime order 𝑝𝑖 for 𝑖 ∈ {1, . . . , 𝑟 }. In this case, [27, Satz 4.32]

implies that LEAF(WP(𝐺)) ⊆ Mod𝑝1
· · ·Mod𝑝𝑟 P. Thus, using Theorem 8.2 we obtain that CompressedWP(𝐺 ≀ Z)

belongs to ∀Mod𝑝1
· · ·Mod𝑝𝑟 P. On the other hand, [29, Theorem 2.2] states that coMod𝑚P ⊆ LEAF(WP(𝐺/𝑍 (𝐺)))

for𝑚 = |𝐺/𝑍 (𝐺) |; thus, it follows that CompressedWP(𝐺 ≀ Z) is hard for ∀coMod𝑚P. Moreover, by [26, Theorem 2.6],

coMod𝑚P = coMod𝑘P for 𝑘 =
∏

𝑝 |𝑚 𝑝 where the product runs over all prime divisors of𝑚. As the next examples

show, there are the extreme cases that CompressedWP(𝐺 ≀ Z) actually belongs to ∀coMod𝑚P and also that it is hard

for ∀Mod𝑝1
· · ·Mod𝑝𝑟 P (at least, we give an example for 𝑟 = 2):

• If 𝐺 is a finite, non-abelian 𝑝-group (i. e., 𝑝𝑖 = 𝑝 for all 𝑖), then

LEAF(WP(𝐺)) ⊆ Mod𝑝 · · ·Mod𝑝P = Mod𝑝P ⊆ LEAF(WP(𝐺))

by [10, Theorem 6.7] and likewise LEAF(WP(𝐺/𝑍 (𝐺))) = Mod𝑝P. Hence, in this case CompressedWP(𝐺 ≀ Z)
is complete for ∀Mod𝑝P. More generally, for a finite non-abelian nilpotent group 𝐺 (i. e., a direct product of

𝑝-groups) and𝑚 = |𝐺/𝑍 (𝐺) |, it follows that CompressedWP(𝐺 ≀ Z) is complete for ∀coMod𝑚P. This is because

by [26, Lemma 2.4] a language 𝐿 is in coMod𝑚P if and only if it can be written as an intersection

⋂
𝑝 |𝑚 𝐿𝑝 for

languages 𝐿𝑝 ∈ Mod𝑝P for 𝑝 |𝑚.

• Finally, consider the symmetric group on three elements 𝑆3. By [29, Example 2.5] we have LEAF(WP(𝑆3)) =
Mod3Mod2P (also written as Mod3⊕P). Since 𝑆3 has trivial center, it follows that CompressedWP(𝑆3 ≀ Z) is
complete for ∀Mod3⊕P.

8.1 Subsetsum problems

In the following, we will identify a bit string 𝛼 = 𝑎1𝑎2 · · ·𝑎𝑛 (𝑎1, . . . , 𝑎𝑛 ∈ {0, 1}) with the vector (𝑎1, 𝑎2, . . . , 𝑎𝑛). In
particular, for another vector 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛) ∈ N𝑛 we will write 𝛼 · 𝑠 = ∑𝑛

𝑖=1
𝑎𝑖 · 𝑠𝑖 for the scalar product. Moreover,

we write

∑
𝑠 for the sum 𝑠1 + 𝑠2 + · · · + 𝑠𝑛 .

A sequence (𝑠1, . . . , 𝑠𝑛) of natural numbers is super-decreasing if 𝑠𝑖 > 𝑠𝑖+1 + · · · + 𝑠𝑛 for all 𝑖 ∈ [1..𝑛]. For example,

(𝑠1, . . . , 𝑠𝑛) with 𝑠𝑖 = 2
𝑛−𝑖

is super-decreasing. An instance of the subsetsum problem is a tuple (𝑡, 𝑠1, . . . , 𝑠𝑘 ) of binary
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coded natural numbers. It is a positive instance if there are 𝑎1, . . . , 𝑎𝑘 ∈ {0, 1} such that 𝑡 = 𝑎1𝑠1 + · · · + 𝑎𝑘𝑠𝑘 . Subsetsum
is a classical NP-complete problem, see e.g. [19]. The super-decreasing subsetsum problem is the restriction of subsetsum

to instances (𝑡, 𝑠1, . . . , 𝑠𝑘 ), where (𝑠1, . . . , 𝑠𝑘 ) is super-decreasing. In [37] it was shown that super-decreasing subsetsum

is P-complete.
2
We need a slightly generalized version of the construction showing P-hardness that we discuss in

Section 8.2 below. Whereas in [37], the authors only have to deal with a nand-circuit with a single output gate and

a fixed bit-assignment for the input gates, we have to deal with nand-circuits with several output gates and have to

consider all possible bit-assignments to the input gates. The latter is needed to prove the lower bound in the second

point of Theorem 8.2.

8.2 From boolean circuits to super-decreasing subsetsum

For this section, we have to fix some more details on boolean circuits. Let us consider a boolean circuit 𝐶 with input

gates 𝑥1, . . . , 𝑥𝑚 and output gates 𝑦0, . . . , 𝑦𝑛−1.
3
We view 𝐶 as a directed acyclic graph with multi-edges (there can be

two edges between two nodes); the nodes are the gates of the circuit. The number of incoming edges of a gate is called

its fan-in and the number of outgoing edges is the fan-out. Every input gate 𝑥𝑖 has fan-in zero and every output gate 𝑦𝑖

has fan-out zero. Besides the input gates there are two more gates 𝑐0 and 𝑐1 of fan-in zero, where 𝑐𝑖 carries the constant

truth value 𝑖 ∈ {0, 1}. Besides 𝑥1, . . . , 𝑥𝑚, 𝑐0, 𝑐1 every other gate has fan-in two and computes the nand of its two input

gates. Moreover, we assume that every output gate 𝑦𝑖 is a nand-gate. For a bit string 𝛼 = 𝑏1 · · ·𝑏𝑚 (𝑏1, . . . , 𝑏𝑚 ∈ {0, 1})
and 0 ≤ 𝑖 ≤ 𝑛 − 1 we denote with 𝐶 (𝛼)𝑖 the value of the output gate 𝑦𝑖 when every input gate 𝑥 𝑗 (1 ≤ 𝑗 ≤ 𝑚) is set to

𝑏 𝑗 . Thus, 𝐶 defines a map {0, 1}𝑚 → {0, 1}𝑛 .
We assume now that 𝐶 is a boolean circuit as above with the following additional property that will be satisfied later

in the proof of Theorem 8.2 (see Step 1 in the proof): For all input bit strings 𝛼 ∈ {0, 1}𝑚 there is exactly one 𝑖 ∈ [0..𝑛−1]
such that 𝐶 (𝛼)𝑖 = 1. Using a refinement of the construction from [37] we compute in LOGSPACE 𝑞0, . . . , 𝑞𝑛−1 ∈ N and

two super-decreasing sequences 𝑟 = (𝑟1, . . . 𝑟𝑚) and 𝑠 = (𝑠1, . . . , 𝑠𝑘 ) for some 𝑘 (all numbers are represented in binary

notation) with the following properties:

• The 𝑟1, . . . , 𝑟𝑚 are pairwise distinct powers of 4.

• For all 0 ≤ 𝑖 ≤ 𝑛 − 1 and all 𝛼 ∈ {0, 1}𝑚 :𝐶 (𝛼)𝑖 = 1 if and only if there exists 𝛿 ∈ {0, 1}𝑘 such that 𝛿 · 𝑠 = 𝑞𝑖 +𝛼 · 𝑟 .

Let us first add for every input gate 𝑥𝑖 two new nand-gates 𝑥𝑖 and ¯̄𝑥𝑖 , where ¯̄𝑥𝑖 has the same outgoing edges as 𝑥𝑖 .

Moreover we remove the old outgoing edges of 𝑥𝑖 and replace them by the edges (𝑥𝑖 , 𝑥𝑖 ), (𝑐1, 𝑥𝑖 ) and two edges from 𝑥𝑖

to ¯̄𝑥𝑖 . This has the effect that every input gate 𝑥𝑖 has a unique outgoing edge. Clearly, the new circuit computes the same

boolean function (basically, we introduce two negation gates for every input gate). Let 𝑔1, . . . , 𝑔𝑝 be the nand-gates of

the circuit enumerated in reverse topological order, i.e., if there is an edge from gate 𝑔𝑖 to gate 𝑔 𝑗 then 𝑖 > 𝑗 . We denote

the two edges entering gate 𝑔𝑖 with 𝑒2𝑖+𝑛−2 and 𝑒2𝑖+𝑛−1. Moreover, we write 𝑒𝑖 (0 ≤ 𝑖 ≤ 𝑛 − 1) for an imaginary edge

that leaves the output gate 𝑦𝑖 and whose target gate is unspecified. Thus, the edges of the circuit are 𝑒0, . . . , 𝑒2𝑝+𝑛−1.

We now define the natural numbers 𝑞0, . . . , 𝑞𝑛−1, 𝑟1, . . . 𝑟𝑚, 𝑠1, . . . , 𝑠𝑘 with 𝑘 = 3𝑝:

• Let 𝐼 = { 𝑗 | 𝑒 𝑗 is an outgoing edge of the constant gate 𝑐1 or a nand-gate}. For 0 ≤ 𝑖 ≤ 𝑛 − 1 we define the

number 𝑞𝑖 as

𝑞𝑖 =
∑︁

𝑗 ∈𝐼\{𝑖 }
4
𝑗 . (9)

2
In fact, [37] deals with the super-increasing subsetsum problem. But this is only a nonessential detail. For our purpose, super-decreasing sequences are

more convenient.

3
It will be convenient for us to number the input gates from 1 and the output gates from 0.
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Recall that 𝑒𝑖 is the unique outgoing edge of the output gate 𝑦𝑖 .

• If 𝑒 𝑗 is the unique outgoing edge of the input gate 𝑥𝑖 then we set 𝑟𝑖 = 4
𝑗
. We can choose the reverse topological

sorting of the nand-gates in such a way that 𝑟1 > 𝑟2 > · · · > 𝑟𝑚 (we only have to ensure that the target gates

𝑥1, . . . , 𝑥𝑚 of the input gates appear in the order 𝑥𝑚, . . . , 𝑥1 in the reverse topological sorting of the nand-gates).

• To define the numbers 𝑠1, . . . , 𝑠𝑘 we first define for every nand-gate 𝑔𝑖 three numbers 𝑡3𝑖 , 𝑡3𝑖−1 and 𝑡3𝑖−2 as

follows, where 𝐼𝑖 = { 𝑗 | 𝑒 𝑗 is an outgoing edge of gate 𝑔𝑖 }:

𝑡3𝑖 = 4
2𝑖+𝑛−1 + 4

2𝑖+𝑛−2 +
∑︁
𝑗 ∈𝐼𝑖

4
𝑗

𝑡3𝑖−1 = 4
2𝑖+𝑛−1 − 4

2𝑖+𝑛−2 = 3 · 4
2𝑖+𝑛−2

𝑡3𝑖−2 = 4
2𝑖+𝑛−2

Then, the tuple (𝑠1, . . . , 𝑠𝑘 ) is (𝑡3𝑝 , 𝑡3𝑝−1, 𝑡3𝑝−2, . . . , 𝑡3, 𝑡2, 𝑡1), which is indeed super-decreasing (see also [37]). In

fact, we have 𝑠𝑖 − (𝑠𝑖+1 + · · · + 𝑠𝑘 ) ≥ 4
𝑛−1

for all 𝑖 ∈ [1..𝑘]. To see this, note that the sets 𝐼𝑖+1, . . . , 𝐼𝑘 are pairwise

disjoint. This implies that the 𝑛 low-order digits (corresponding to the edges 𝑒0, . . . , 𝑒𝑛−1) in the base-4 expansion

of 𝑠𝑖+1 + · · · + 𝑠𝑘 are zero or one.

In order to understand this construction, one should think of the edges of the circuit carrying truth values. Recall

that there are 2𝑝 + 𝑛 edges in the circuit (including the imaginary outgoing edges of the output gates 𝑦0, . . . , 𝑦𝑛−1). A

number in base-4 representation with 2𝑝 + 𝑛 digits that are either 0 or 1 represents a truth assignment to the 2𝑝 + 𝑛
edges, where a 1-digit represents the truth value 1 and a 0-digit represents the truth value 0. Consider an input string

𝛼 = 𝑏1 · · ·𝑏𝑚 ∈ {0, 1}𝑚 . Then the number

𝑁 (𝛼) :=
∑︁
𝑗 ∈𝐼

4
𝑗 + 𝑏1𝑟1 + · · · + 𝑏𝑚𝑟𝑚 =

∑︁
𝑗 ∈𝐼

4
𝑗 + 𝛼 · 𝑟

encodes the truth assignment for the circuit edges, where:

• all outgoing edges of the constant gate 𝑐1 carry the truth value 1,

• all outgoing edges of the constant gate 𝑐0 carry the truth value 0,

• the unique outgoing edge of an input gate 𝑥𝑖 carries the truth value 𝑏𝑖 ,

• all outgoing edges of nand-gates carry the truth value 1.

Claim 1. 𝐶 (𝛼)𝑖 = 1 if and only if there exists 𝛿 ∈ {0, 1}𝑘 such that 𝛿 · 𝑠 = 𝑁 (𝛼) − 4
𝑖
.

Note that 𝑁 (𝛼) − 4
𝑖 = 𝑞𝑖 + 𝛼 · 𝑟 , where 𝑞𝑖 is from (9). To prove Claim 1 we apply the canonical algorithm for

super-decreasing subsetsum with input (𝑁 (𝛼), 𝑠). This algorithm initializes a counter 𝐴 to 𝑁 (𝛼) and then goes over the

sequence 𝑠1, . . . , 𝑠𝑘 in that order. In the 𝑗-th step (1 ≤ 𝑗 ≤ 𝑘) we set 𝐴 to 𝐴 − 𝑠 𝑗 if 𝐴 ≥ 𝑠 𝑗 . If 𝐴 < 𝑠 𝑗 , we do not modify 𝐴.

After that we proceed with 𝑠 𝑗+1. After processing 𝑠𝑘 the algorithm terminates with a certain counter value 𝐴. Clearly,

this final value 𝐴 has the property that there is 𝛿 ∈ {0, 1}𝑘 such that 𝛿 · 𝑠 +𝐴 = 𝑁 (𝛼). In order to prove Claim 1, let us

first show the following statement.

Claim 2. Assume that 𝑖 ∈ [0..𝑛 − 1] is the unique index such that 𝐶 (𝛼)𝑖 = 1. Then the canonical algorithm with input

(𝑁 (𝛼), 𝑠) terminates with the counter value 𝐴 = 4
𝑖
.

Proof of Claim 2. To prove this, we show that running the canonical algorithm with input (𝑁 (𝛼), 𝑠) exactly
corresponds to evaluating the circuit 𝐶 with input 𝛼 . Thereby the nand-gates are evaluated in the topological order
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𝑔𝑝 , 𝑔𝑝−1, . . . , 𝑔1. Assume that𝑔 𝑗 is the gate that we want to evaluate next. In the canonical algorithmwith input (𝑁 (𝛼), 𝑠)
the evaluation of 𝑔 𝑗 is simulated by the three numbers 𝑡3𝑗 , 𝑡3𝑗−1, and 𝑡3𝑗−2. At the point where the algorithm checks

whether 𝑡3𝑗 can be subtracted from the current 𝐴, the base-4 digits at positions 2 𝑗 + 𝑛, . . . , 2𝑝 + 𝑛 − 1 in the counter

value 𝐴 have been already set to zero. If the digits at the next two high-order positions 2 𝑗 + 𝑛 − 1 and 2 𝑗 + 𝑛 − 2 are still

1 (i.e., the input edges 𝑒2𝑗+𝑛−2 and 𝑒2𝑗+𝑛−1 for gate 𝑔 𝑗 carry the truth value 1), then we can subtract 𝑡3𝑗 from 𝐴. Thereby

we subtract all powers 4
2𝑗+𝑛−1

, 4
2𝑗+𝑛−2

and 4
ℎ
, where 𝑒ℎ is an outgoing edge for gate 𝑔 𝑗 . Since gate 𝑔 𝑗 evaluates to zero

(both input edges carry 1), this subtraction correctly simulates the evaluation of gate 𝑔 𝑗 : all outgoing edges 𝑒ℎ of 𝑔 𝑗 (that

were initially set to 1) are set to 0. On the other hand, if one of the two digits at positions 2 𝑗 + 𝑛 − 1 and 2 𝑗 + 𝑛 − 2 in 𝐴

is 0 (which means that gate 𝑔 𝑗 evaluates to 1), then we cannot subtract 𝑡3𝑗 from 𝐴. If both digits at positions 2 𝑗 + 𝑛 − 1

and 2 𝑗 + 𝑛 − 2 in 𝐴 are 0, then also 𝑡3𝑗−1 and 𝑡3𝑗−2 cannot be subtracted. On the other hand, if exactly one of the two

digits at positions 2 𝑗 + 𝑛 − 1 and 2 𝑗 + 𝑛 − 2 is 1, then with 𝑡3𝑗−1 and 𝑡3𝑗−2 we can set these two digits to 0 (thereby

digits at positions < 2 𝑗 + 𝑛 − 2 are not modified). After processing the final weight 𝑠𝑘 = 𝑡1 all digits in 𝐴 are set to zero

except for the digit at the unique position 𝑖 that corresponds to the output edge of gate 𝑦𝑖 (the unique output gate that

evaluates to zero). Initially, in 𝑁 (𝛼) this digit was set to 1 and it remains 1. Hence, the final counter value is 4
𝑖
. □

Proof of Claim 1. We are now in the position to prove Claim 1. Let 𝑦 𝑗 ( 𝑗 ∈ [0..𝑛 − 1]) be the unique output gate
that evaluates to 1, i.e., all output gates 𝑦 𝑗 ′ with 𝑗

′ ≠ 𝑗 evaluate to zero. Then, by Claim 2, the canonical algorithm

terminates with the counter value 𝐴 = 4
𝑗
. Therefore there exists 𝛿 ∈ {0, 1}𝑘 such that 𝛿 · 𝑠 + 4

𝑗 = 𝑁 (𝛼). Hence, if 𝑖 = 𝑗

(i.e., 𝐶 (𝛼)𝑖 = 1) then 𝛿 · 𝑠 = 𝑁 (𝛼) − 4
𝑖 = 𝑞𝑖 + 𝛼 · 𝑟 .

Now assume that 𝐶 (𝛼)𝑖 ≠ 1, i.e., 𝑗 ≠ 𝑖 . We claim that there is no 𝛿 ′ ∈ {0, 1}𝑘 such that 𝛿 ′ · 𝑠 + 4
𝑖 = 𝑁 (𝛼). In order

to get a contradiction, assume that such a 𝛿 ′ ∈ {0, 1}𝑘 exists. We get 𝛿 · 𝑠 + 4
𝑗 = 𝛿 ′ · 𝑠 + 4

𝑖
, i.e., 𝛿 · 𝑠 − 𝛿 ′ · 𝑠 = 4

𝑖 − 4
𝑗
.

Clearly, 𝛿 ≠ 𝛿 ′. Since 𝑖, 𝑗 ∈ [0..𝑛 − 1] we have |𝛿 · 𝑠 − 𝛿 ′ · 𝑠 | < 4
𝑛−1

. But 𝑠𝑖 − (𝑠𝑖+1 + · · · + 𝑠𝑘 ) ≥ 4
𝑛−1

for all 𝑖 ∈ [1..𝑘]
implies that |𝛿 · 𝑠 − 𝛿 ′ · 𝑠 | ≥ 4

𝑛−1
– a contradiction. □

8.3 From super-decreasing subsetsum to straight-line programs

In [42] a super-decreasing sequence 𝑡 = (𝑡1, . . . , 𝑡𝑘 ) of natural numbers is encoded by the string 𝑆 (𝑡) ∈ {0, 1}∗ of length∑
𝑡 + 1 such that for all 0 ≤ 𝑝 ≤ ∑

𝑡 :

𝑆 (𝑡) [𝑝] =


1 if 𝑝 = 𝛼 · 𝑡 for some 𝛼 ∈ {0, 1}𝑘 ,

0 otherwise.
(10)

Note that in the first case, 𝛼 is unique. Since 𝑡 is a super-decreasing sequence, the number of 1’s in the string 𝑆 (𝑡) is
2
𝑘
. Also note that 𝑆 (𝑡) starts and ends with 1. In [42] it was shown that from a super-decreasing sequence 𝑡 of binary

encoded numbers one can construct in LOGSPACE an SLP for the word 𝑆 (𝑡).

8.4 Proof of Theorem 8.2

Let us fix a regular wreath product of the form 𝐺 ≀ Z for a finitely generated group 𝐺 . Such groups are also known

as generalized lamplighter groups (the lamplighter group arises for𝐺 = Z2). Throughout this section, we fix a set of

standard generators Σ for 𝐺 and let 𝜏 = 1 be the generator for Z. Then Σ ∪ {𝜏, 𝜏−1} is a standard generating set for the

wreath product 𝐺 ≀ Z. In 𝐺 ≀ Z the 𝐺-generator 𝑎 ∈ Σ represents the mapping 𝑓𝑎 ∈ 𝐺 (Z)
with 𝑓𝑎 (0) = 𝑎 and 𝑓𝑎 (𝑧) = 1

for 𝑧 ≠ 0. For a word𝑤 ∈ (Σ ∪ {𝜏, 𝜏−1})∗ we define [ (𝑤) := |𝑤 |𝜏 − |𝑤 |𝜏−1 . Thus, the element of 𝐺 ≀ Z represented by𝑤

is of the form 𝑓 𝜏[ (𝑤)
for some 𝑓 ∈ 𝐺 (Z)

. Recall the definition of the left action of Z on 𝐺 (Z)
from Section 3.1 (where
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we take 𝐻 = 𝑌 = Z). For better readability, we write 𝑐 ◦ 𝑓 for 𝑐𝑓 (𝑐 ∈ Z, 𝑓 ∈ 𝐺 (Z)
). Hence, we have (𝑐 ◦ 𝑓 ) (𝑧) = 𝑓 (𝑧 + 𝑐).

If one thinks of 𝑓 as a bi-infinite word over the alphabet 𝐺 , then 𝑐 ◦ 𝑓 is the same word but shifted by −𝑐 .
The following intuition might be helpful: Consider a word𝑤 ∈ (Σ ∪ {𝜏, 𝜏−1})∗. In𝐺 ≀ Z we can simplify𝑤 to a word

of the form 𝜏𝑧0𝑎1𝜏
𝑧1𝑎2 · · · 𝜏𝑧𝑘−1𝑎𝑘𝜏

𝑧𝑘
(with 𝑧 𝑗 ∈ Z, 𝑎 𝑗 ∈ Σ), which in 𝐺 ≀ Z can be rewritten as

𝜏𝑧0𝑎1𝜏
𝑧1𝑎2 · · · 𝜏𝑧𝑘−1𝑎𝑘𝜏

𝑧𝑘 =
( 𝑘∏
𝑗=1

𝜏𝑧0+···+𝑧 𝑗−1𝑎 𝑗𝜏
−(𝑧0+···+𝑧 𝑗−1) ) 𝜏𝑧0+···+𝑧𝑘 .

Hence, the word𝑤 represents the group element( 𝑘∏
𝑗=1

(𝑧0 + · · · + 𝑧 𝑗−1) ◦ 𝑓𝑎 𝑗

)
𝜏𝑧0+···+𝑧𝑘 .

This gives the following intuition for evaluating 𝜏𝑧0𝑎1𝜏
𝑧1𝑎2 · · · 𝜏𝑧𝑘−1𝑎𝑘𝜏

𝑧𝑘
: In the beginning, every Z-position carries

the𝐺-value 1. First, go to the Z-position −𝑧0 and multiply the𝐺-element at this position with 𝑎1 (on the right), then go

to the Z-position −𝑧0 − 𝑧1 and multiply the 𝐺-element at this position with 𝑎2, and so on.

Proof of Theorem 8.2. The easy part is to show that the compressedword problem for𝐺 ≀Z belongs to∀LEAF(WP(𝐺)).
In the following, we make use of the statements from Lemma 7.2. Let G be an SLP over the alphabet Σ ∪ {𝜏, 𝜏−1}
and let 𝑓 𝜏[ (val(G)) ∈ 𝐺 ≀ Z be the group element represented by val(G). By Lemma 7.2 we can compute [ (val(G)) in
polynomial time. If [ (val(G)) ≠ 0, then the Turing-machine rejects by printing a non-trivial generator of𝐺 (here we

need the assumption that 𝐺 is non-trivial). So, let us assume that [ (val(G)) = 0. We can also compute in polynomial

time two integers 𝑏, 𝑐 ∈ Z such that supp(𝑓 ) ⊆ [𝑏..𝑐]. We can take for instance 𝑏 = −|val(G)| and 𝑐 = |val(G)|. It
suffices to check whether for all 𝑥 ∈ [𝑏..𝑐] we have 𝑓 (𝑥) = 1. For this, the Turing-machine branches universally to

all binary coded integers 𝑥 ∈ [𝑏..𝑐] (this yields the ∀-part in ∀LEAF(WP(𝐺))). Consider a specific branch that leads to

the integer 𝑥 ∈ [𝑏..𝑐]. From 𝑥 and the input SLP G the Turing-machine then produces a leaf string over the standard

generating set Σ of 𝐺 such that this leaf string represents the group element 𝑓 (𝑥) ∈ 𝐺 . For this, the machine branches

to all positions 𝑝 ∈ [0..|val(G)| − 1] (if 𝑝 < 𝑞 < |val(G)| then the branch for 𝑝 is to the left of the branch for 𝑞). For

a specific position 𝑝 , the machine computes in polynomial time the symbol 𝑎 = val(G)[𝑝]. If 𝑎 is 𝜏 or 𝜏−1
then the

machine prints 1 ∈ Σ. On the other hand, if 𝑎 ∈ Σ then the machine computes in polynomial time 𝑑 = [ (val(G)[: 𝑝]).
This is possible by first computing an SLP for the prefix val(G)[: 𝑝]. If 𝑑 = −𝑥 then the machine prints the symbol

𝑎, otherwise the machine prints the trivial generator 1. It is easy to observe that the leaf string produced in this way

represents the group element 𝑓 (𝑥).
We now show the hardness statement from Theorem 8.2. By Lemma 4.3 it suffices to show that CompressedWP(𝐺 ≀Z)

is hard for ∀bLEAF(WP(𝐺/𝑍 (𝐺))) with respect to LOGSPACE-reductions. Let 𝑎0, . . . , 𝑎𝑛−1 be an arbitrary enumer-

ation of the standard generators in Σ. Fix a language 𝐿 ∈ ∀bLEAF(WP(𝐺/𝑍 (𝐺))). From the definition of the class

∀bLEAF(WP(𝐺/𝑍 (𝐺))) it follows that there exist two polynomials 𝑝1 and 𝑝2 and a balanced polynomial time NTM𝑀

running in time 𝑝1 + 𝑝2 that outputs a symbol from Σ after termination and such that the following holds: Consider an

input word 𝑧 and let𝑇 (𝑧) be the corresponding computation tree of𝑀 . Let𝑚1 = 𝑝1 ( |𝑧 |),𝑚2 = 𝑝2 ( |𝑧 |), and𝑚 =𝑚1 +𝑚2.

Note that the nodes of 𝑇 (𝑧) are the bit strings of length at most𝑚. For every leaf 𝛼 ∈ {0, 1}𝑚 let us denote with _(𝛼)
the symbol from Σ that𝑀 prints when reaching the leaf 𝛼 . Then 𝑧 ∈ 𝐿 if and only if for all 𝛽 ∈ {0, 1}𝑚1

the string

_𝛽 :=
∏

𝛾 ∈{0,1}𝑚2

_(𝛽𝛾) (11)
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represents a group element from the center 𝑍 (𝐺). Here (and in the following), the product in the right-hand side of (11)

goes over all bit strings of length𝑚2 in lexicographic order. Our construction consists of five steps:

Step 1. Note that given a bit string 𝛼 ∈ {0, 1}𝑚 , we can compute in polynomial time the symbol _(𝛼) ∈ Σ by following

the computation path specified by 𝛼 . Using the classical Cook-Levin construction (see e.g. [3]), we can compute from the

input 𝑧 and 𝑎 ∈ Σ in LOGSPACE a boolean circuit 𝐶𝑧,𝑎 with𝑚 input gates 𝑥1, . . . , 𝑥𝑚 and a single output gate 𝑦0 such

that for all 𝛼 ∈ {0, 1}𝑚 : 𝐶𝑧,𝑎 (𝛼)0 = 1 if and only if _(𝛼) = 𝑎. By taking the disjoint union of these circuits and merging

the input gates, we can build a single circuit𝐶𝑧 with𝑚 input gates 𝑥1, . . . , 𝑥𝑚 and 𝑛 = |Σ| output gates 𝑦0, . . . , 𝑦𝑛−1. For

every 𝛼 ∈ {0, 1}𝑚 and every 0 ≤ 𝑖 ≤ 𝑛 − 1 the following holds: 𝐶𝑧 (𝛼)𝑖 = 1 if and only if _(𝛼) = 𝑎𝑖 .

Step 2.Using the construction from Section 8.2 we can compute from the circuit𝐶𝑧 in LOGSPACE numbers𝑞0, . . . , 𝑞𝑛−1 ∈
N and two super-decreasing sequences 𝑟 = (𝑟1, . . . , 𝑟𝑚) and 𝑠 = (𝑠1, . . . , 𝑠𝑘 ) with the following properties:

• The 𝑟1, . . . , 𝑟𝑚 are pairwise distinct powers of 4.

• For all 0 ≤ 𝑖 ≤ 𝑛 − 1 and all 𝛼 ∈ {0, 1}𝑚 we have: _(𝛼) = 𝑎𝑖 if and only if 𝐶𝑧 (𝛼)𝑖 = 1 if and only if there is

𝛿 ∈ {0, 1}𝑘 such that 𝛿 · 𝑠 = 𝑞𝑖 + 𝛼 · 𝑟 .

Note that for all 𝛼 ∈ {0, 1}𝑚 there is a unique 𝑖 such that 𝐶𝑧 (𝛼)𝑖 = 1. Hence, for all 𝛼 ∈ {0, 1}𝑚 there is a unique 𝑖 such

that 𝑞𝑖 + 𝛼 · 𝑟 is of the form 𝛿 · 𝑠 for some 𝛿 ∈ {0, 1}𝑘 . For this unique 𝑖 we have _(𝛼) = 𝑎𝑖 .
We split the super-decreasing sequence 𝑟 = (𝑟1, . . . , 𝑟𝑚) into the two sequences 𝑟1 = (𝑟1, . . . , 𝑟𝑚1

) and 𝑟2 =

(𝑟𝑚1+1, . . . , 𝑟𝑚). For the following consideration, we need the following numbers:

ℓ = max

{ ∑
𝑟1 + max{𝑞0, . . . , 𝑞𝑛−1} + 1,

∑
𝑠 −∑

𝑟2 − min{𝑞0, . . . , 𝑞𝑛−1} + 1

}
(12)

𝜋 = ℓ +∑
𝑟2 (13)

The binary codings of these numbers can be computed in LOGSPACE (since iterated addition, max, and min can be

computed in LOGSPACE). The precise value of ℓ will be only relevant at the end of step 4.

Step 3. By the result from [42] (see Section 8.3) we can construct in LOGSPACE from the three super-decreasing

sequences 𝑟1, 𝑟2 and 𝑠 three SLPs G1, G2 and H over the alphabet {0, 1} such that val(G1) = 𝑆 (𝑟1), val(G2) = 𝑆 (𝑟2)
and val(H) = 𝑆 (𝑠) (see (10)). For all positions 𝑝 ≥ 0 (in the suitable range) we have:

val(G1) [𝑝] = 1 ⇐⇒ ∃𝛽 ∈ {0, 1}𝑚1
: 𝑝 = 𝛽 · 𝑟1

val(G2) [𝑝] = 1 ⇐⇒ ∃𝛾 ∈ {0, 1}𝑚2
: 𝑝 = 𝛾 · 𝑟2

val(H)[𝑝] = 1 ⇐⇒ ∃𝛿 ∈ {0, 1}𝑘 : 𝑝 = 𝛿 · 𝑠

Note that |val(G1) | =
∑
𝑟1 + 1, |val(G2) | =

∑
𝑟2 + 1, and |val(H)| = ∑

𝑠 + 1.

Step 4. We build in LOGSPACE for every 𝑖 ∈ [0..𝑛 − 1] an SLP H𝑖 from the SLP H by replacing in every right-hand

side of H every occurrence of 0 by 𝜏−1
and every occurrence of 1 by 𝑎𝑖𝜏

−1
. Let 𝑇𝑖 be the start variable of H𝑖 , let 𝑆1

be the start variable of G1, and let 𝑆2 be the start variable of G2. We can assume that the variable sets of the SLPs

G1,G2,H0, . . . ,H𝑛−1 are pairwise disjoint. We next combine these SLPs into a single SLP I. The variables of I are the

variables of the SLPs G1,G2,H0, . . . ,H𝑛−1 plus a fresh variable 𝑆 which is the start variable of I. The right-hand sides

for the variables are defined below. In the right-hand sides we write powers 𝜏𝑝 for integers 𝑝 whose binary codings can

be computed in LOGSPACE. Such powers can be produced by small subSLPs that can be constructed in LOGSPACE too.

• In all right-hand sides of G1 and G2 we replace all occurrences of the terminal symbol 0 by the Z-generator 𝜏 .
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• We replace every occurrence of the terminal symbol 1 in a right-hand side of G1 by 𝑆2𝜏
ℓ
, where ℓ is from (12).

• We replace every occurrence of the terminal symbol 1 in a right-hand side of G2 by 𝜎𝜏 , where

𝜎 = 𝜏𝑞0𝑇0𝜏
ℎ−𝑞0𝜏𝑞1𝑇1𝜏

ℎ−𝑞1 · · · 𝜏𝑞𝑛−1𝑇𝑛−1𝜏
ℎ−𝑞𝑛−1

(14)

and ℎ =
∑
𝑠 + 1 is the length of the word val(H) (which is −[ (valI (𝑇𝑖 )) for every 𝑖 ∈ [0..𝑛 − 1]). Note that

[ (valI (𝜎)) = 0.

• Finally, the right-hand side of the start variable 𝑆 is 𝑆1𝜏
−𝑑

where𝑑 :=
∑
𝑟1+1+2

𝑚1 ·𝜋 . (note that𝑑 = [ (valI (𝑆1))).

Before we explain this construction, let us first introduce some notations.

• Let 𝑢 := valI (𝑆2). We have [ (𝑢) = |val(G2) |. Hence, the group element represented by 𝑢 can be written as

𝑓𝑢𝜏
|val(G2) |

for a mapping 𝑓𝑢 ∈ 𝐺 (Z)
.

• Let 𝑣 := valI (𝜎) where 𝜎 is from (14). Note that [ (𝑣) = 0. Hence, the group element represented by 𝑣 is

a mapping 𝑓𝑣 ∈ 𝐺 (Z)
. Its support is a subset of the interval from position −max{𝑞0, . . . , 𝑞𝑛−1} to position∑

𝑠 − min{𝑞0, . . . , 𝑞𝑛−1}.
• For 𝛽 ∈ {0, 1}𝑚1

let bin(𝛽) be the number represented by 𝛽 in binary notation (thus, bin(0𝑚1 ) = 0, bin(0𝑚1−1
1) =

1, . . . , bin(1𝑚1 ) = 2
𝑚1 − 1). Moreover, let

𝑝𝛽 := −bin(𝛽) · 𝜋.

First, note that [ (val(I)) = 0. This is due to the factor 𝜏−𝑑 in the right-hand side of the start variable 𝑆 of I. Hence, the
group element represented by val(I) is a mapping 𝑓 ∈ 𝐺 (Z)

. The crucial claim is the following:

Claim 1. For every 𝛽 ∈ {0, 1}𝑚1
, 𝑓 (𝑝𝛽 ) is the group element represented by the leaf string _𝛽 from (11).

Proof of the claim. In the following, we compute in the restricted direct product 𝐺 (Z)
. Recall that the multiplication in

this group is defined by the pointwise multiplication of mappings.

Since we replaced in G1 every 1 in a right-hand side by 𝑆2𝜏
ℓ
, which produces 𝑢𝜏 ℓ in I (which evaluates to 𝑓𝑢𝜏

𝜋+1
)

the mapping 𝑓 is a product (in the restricted direct product 𝐺 (Z)
) of shifted copies of 𝑓𝑢 . More precisely, for every

𝛽 ′ ∈ {0, 1}𝑚1
we get the shifted copy (

𝛽 ′ · 𝑟1 + bin(𝛽 ′) · 𝜋
)
◦ 𝑓𝑢 (15)

of 𝑓𝑢 . The shift distance 𝛽
′ ·𝑟1+bin(𝛽 ′) ·𝜋 can be explained as follows: The 1 in val(G1) that corresponds to 𝛽 ′ ∈ {0, 1}𝑚1

occurs at position 𝛽 ′ ·𝑟1 (the first position is 0) and to the left of this position we find bin(𝛽 ′) many 1’s and 𝛽 ′ ·𝑟1−bin(𝛽 ′)
many 0’s in val(G1). Moreover, every 0 in val(G1) was replaced by 𝜏 (shift by 1) and every 1 in val(G1) was replaced
by 𝑢𝜏 ℓ (shift by ℓ + |val(G2) | = 𝜋 + 1). Hence, the total shift distance is indeed (15). Also note that if 𝛽 ′ ∈ {0, 1}𝑚1

is

lexicographically smaller than 𝛽 ′′ ∈ {0, 1}𝑚1
then 𝛽 ′ · 𝑟1 < 𝛽 ′′ · 𝑟1. This implies that

𝑓 =
∏

𝛽′∈{0,1}𝑚1

(
𝛽 ′ · 𝑟1 + bin(𝛽 ′) · 𝜋

)
◦ 𝑓𝑢 =

∏
𝛽′∈{0,1}𝑚1

(
𝛽 ′ · 𝑟1 − 𝑝𝛽′

)
◦ 𝑓𝑢 .

Let us now compute the mapping 𝑓𝑢 . Recall that we replaced in G2 every occurrence of 1 by 𝜎𝜏 , where 𝜎 is from

(14) and derives to 𝑣 . The 1’s in val(G2) occur at positions of the form 𝛾 · 𝑟2 for 𝛾 ∈ {0, 1}𝑚2
and if 𝛾 ∈ {0, 1}𝑚2

is

lexicographically smaller than 𝛾 ′ ∈ {0, 1}𝑚2
then 𝛾 · 𝑟2 < 𝛾 ′ · 𝑟2. We therefore get

𝑓𝑢 =
∏

𝛾 ∈{0,1}𝑚2

(𝛾 · 𝑟2) ◦ 𝑓𝑣 .
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We obtain

𝑓 =
∏

𝛽′∈{0,1}𝑚1

(
𝛽 ′ · 𝑟1 − 𝑝𝛽′

)
◦ 𝑓𝑢

=
∏

𝛽′∈{0,1}𝑚1

(
𝛽 ′ · 𝑟1 − 𝑝𝛽′

)
◦

∏
𝛾 ∈{0,1}𝑚2

(𝛾 · 𝑟2 ◦ 𝑓𝑣)

=
∏

𝛽′∈{0,1}𝑚1

∏
𝛾 ∈{0,1}𝑚2

(
𝛽 ′ · 𝑟1 + 𝛾 · 𝑟2 − 𝑝𝛽′

)
◦ 𝑓𝑣

and hence

𝑓 (𝑝𝛽 ) =
∏

𝛽′∈{0,1}𝑚1

∏
𝛾 ∈{0,1}𝑚2

𝑓𝑣 (𝑝𝛽 − 𝑝𝛽′ + 𝛽 ′ · 𝑟1 + 𝛾 · 𝑟2).

We claim that for all 𝛽 ≠ 𝛽 ′ and all 𝛾 ∈ {0, 1}𝑚2
we have

𝑓𝑣 (𝑝𝛽 − 𝑝𝛽′ + 𝛽 ′ · 𝑟1 + 𝛾 · 𝑟2) = 1. (16)

Let us postpone the proof of this for a moment. From (16) we get

𝑓 (𝑝𝛽 ) =
∏

𝛾 ∈{0,1}𝑚2

𝑓𝑣 (𝛽 · 𝑟1 + 𝛾 · 𝑟2).

Consider a specific 𝛾 ∈ {0, 1}𝑚2
and let 𝛼 = 𝛽𝛾 and 𝑝 = 𝛽 · 𝑟1 + 𝛾 · 𝑟2 = 𝛼 · 𝑟 . From the definition of 𝑣 = valI (𝜎) it

follows that for all 𝑥 ∈ Z, 𝑓𝑣 (𝑥) is a product of those group generators 𝑎𝑖 such that 𝑥 = −𝑞𝑖 + 𝛿 · 𝑠 for some 𝛿 ∈ {0, 1}𝑘 .
For the position 𝑝 this means that 𝑞𝑖 + 𝛼 · 𝑟 = 𝛿 · 𝑠 . By our previous remarks, there is a unique such 𝑖 ∈ [0..𝑛 − 1] and
for this 𝑖 we have _(𝛼) = 𝑎𝑖 . Hence, we obtain 𝑓𝑣 (𝑝) = _(𝛼) = _(𝛽𝛾) and thus

𝑓 (𝑝𝛽 ) =
∏

𝛾 ∈{0,1}𝑚2

_(𝛽𝛾) = _𝛽 .

It remains to show (16). To get this identity, we need the precise value of ℓ from (12) (so far, the value of ℓ was not

relevant). Assume now that 𝛽 ≠ 𝛽 ′, which implies

|𝑝𝛽 − 𝑝𝛽′ | ≥ 𝜋 = ℓ +
∑︁

𝑟2 .

Hence, we either have

𝑝𝛽 − 𝑝𝛽′ + 𝛽 ′ · 𝑟1 + 𝛾 · 𝑟2 ≥ ℓ +
∑︁

𝑟2 + 𝛽 ′ · 𝑟1 + 𝛾 · 𝑟2

≥ ℓ +
∑︁

𝑟2

>
∑︁

𝑠 − min{𝑞0, . . . , 𝑞𝑛−1}

or

𝑝𝛽 − 𝑝𝛽′ + 𝛽 ′ · 𝑟1 + 𝛾 · 𝑟2 ≤ −ℓ −
∑︁

𝑟2 + 𝛽 ′ · 𝑟1 + 𝛾 · 𝑟2

≤ −ℓ +
∑︁

𝑟1

< −max{𝑞0, . . . , 𝑞𝑛−1},

where the strict inequalities follow from our choice of ℓ . Recall that the support of the mapping 𝑓𝑣 is contained in

[−max{𝑞0, . . . , 𝑞𝑛−1}..
∑
𝑠 − min{𝑞0, . . . , 𝑞𝑛−1}]. This shows (16) and hence the claim.
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Step 5. By the above claim, we have 𝑓 (𝑝𝛽 ) ∈ 𝑍 (𝐺) for all 𝛽 ∈ {0, 1}𝑚1
if and only if _𝛽 ∈ 𝑍 (𝐺) for all 𝛽 ∈ {0, 1}𝑚1

,

which is equivalent to 𝑧 ∈ 𝐿. The only remaining problem is that the word val(I) produces some “garbage” group

elements 𝑓 (𝑥) on positions 𝑥 that are not of the form 𝑝𝛽 . Note that for every 𝑔 ∈ 𝐺 \ 𝑍 (𝐺), there is a generator 𝑎𝑖 ∈ Σ

such that the commutator [𝑔, 𝑎𝑖 ] is non-trivial. We now produce from I an SLP I−1
such that val(I−1) represents the

inverse element of 𝑓 ∈ 𝐺 (Z)
, which is the mapping 𝑔 with 𝑔(𝑥) = 𝑓 (𝑥)−1

for all 𝑥 ∈ Z. To construct I−1
, we have to

reverse every right-hand side of I and replace every occurrence of a symbol 𝑎0, . . . , 𝑎𝑛−1, 𝜏, 𝜏
−1

by its inverse.

It is easy to compute in LOGSPACE for every 𝑖 ∈ [0..𝑛 − 1] an SLP for the word

𝑤𝑖 :=
(
𝑎𝑖𝜏

𝜋 )2𝑚1

𝜏−2
𝑚

1 ·𝜋 .

Then the group element represented by 𝑤𝑖 is the mapping 𝑓𝑖 ∈ 𝐺 (Z)
whose support is the set of positions 𝑝𝛽 for

𝛽 ∈ {0, 1}𝑚1
and 𝑓𝑖 (𝑝𝛽 ) = 𝑎𝑖 for all 𝛽 ∈ {0, 1}𝑚1

. We can also compute in LOGSPACE an SLP for the word𝑤−1

𝑖
. We then

built in LOGSPACE SLPs J0, . . . ,J𝑛−1 such that val(J𝑖 ) = val(I−1)𝑤−1

𝑖
val(I)𝑤𝑖 . Hence, the word val(J𝑖 ) represents

the group element 𝑔𝑖 ∈ 𝐺 (Z)
, where 𝑔𝑖 (𝑥) = 1 for all 𝑥 ∈ Z \ {𝑝𝛽 | 𝛽 ∈ {0, 1}𝑚1 } and 𝑔𝑖 (𝑝𝛽 ) = 𝑓 (𝑝𝛽 )−1𝑎−1

𝑖
𝑓 (𝑝𝛽 )𝑎𝑖 =

[𝑓 (𝑝𝛽 ), 𝑎𝑖 ].
Finally, we construct in LOGSPACE an SLP J such that

val(J) = val(J0) 𝜏 val(J1) 𝜏 val(J2) · · · 𝜏 val(J𝑛−1) 𝜏−𝑛+1 .

We can assume that 𝑛 ≤ ℓ +∑
𝑟2 = 𝜋 (𝑛 is a constant and we can always make ℓ bigger). Then val(J) evaluates to the

group element𝑔 ∈ 𝐺 (Z)
with𝑔(𝑥) = 1 for𝑥 ∈ Z\{𝑝𝛽−𝑖 | 𝛽 ∈ {0, 1}𝑚1 , 0 ≤ 𝑖 ≤ 𝑛−1} and𝑔(𝑝𝛽−𝑖) = 𝑔𝑖 (𝑝𝛽 ) = [𝑓 (𝑝𝛽 ), 𝑎𝑖 ]

for 0 ≤ 𝑖 ≤ 𝑛 − 1. Hence, if 𝑓 (𝑝𝛽 ) ∈ 𝑍 (𝐺) for all 𝛽 ∈ {0, 1}𝑚1
then val(J) = 1 in 𝐺 ≀ Z. On the other hand, if there

is a 𝛽 ∈ {0, 1}𝑚1
such that 𝑓 (𝑝𝛽 ) ∈ 𝐺 \ 𝑍 (𝐺) then there is an 𝑎𝑖 such that [𝑓 (𝑝𝛽 ), 𝑎𝑖 ] ≠ 1. Hence 𝑔(𝑝𝛽 − 𝑖) ≠ 1 and

val(J) ≠ 1 in 𝐺 ≀ Z. This proves the theorem. □

The following remark will be needed in the next section.

Remark 8.4. Consider the SLP val(J) computed in the previous proof from the machine input 𝑧. We showed that

𝑧 ∈ 𝐿 if and only if val(J) = 1 in 𝐺 ≀ Z. Let 𝑠 = |val(J)|; it is a number that grows exponentially with |𝑧 |. The binary
expansion of 𝑠 can be computed from 𝑧 in LOGSPACE using simple arithmetics. Let 𝑡 be any positive integer with

𝑡 ≥ 2𝑠 + 1. Then val(J) = 1 in𝐺 ≀ Z if and only if val(J) = 1 in𝐺 ≀ (Z/𝑡) where in the latter equality 𝜏 is taken for the

generator of Z/𝑡 . To see this, note that during the evaluation of val(J) in 𝐺 ≀ Z only the 𝐺-elements at positions in the

interval [−𝑠 ..𝑠] (whose size is at most 𝑡 ) can be multiplied with a generator of 𝐺 . Intuitively, val(J) evaluates in 𝐺 ≀ Z
in the same way as in 𝐺 ≀ (Z/𝑡).

9 PSPACE-COMPLETE COMPRESSEDWORD PROBLEMS

In this section, we will use Theorem 8.2 (and Remark 8.4) to show PSPACE-completeness of the compressed word

problem for several groups. For upper upper bounds, we will make use of the following simple lemma:

Lemma 9.1. If WP(𝐺) belongs to polyL, then CompressedWP(𝐺 ≀ Z) belongs to PSPACE.

Proof. We use a result of Waack [61] according to which the word problem for a wreath product𝐺1 ≀𝐺2 is uniformly

NC1
-reducible (and hence LOGSPACE-reducible) to the word problems for𝐺1 and𝐺2. SinceWP(𝐺) belongs to polyL and

WP(Z) belongs to LOGSPACE, it follows that WP(𝐺 ≀Z) belongs to polyL (polyL is closed under LOGSPACE-reductions).
Hence, by Lemma 7.4 the compressed word problem for 𝐺 ≀ Z belongs to PSPACE. □
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The following lemma generalizes the inclusion PSPACE ⊆ LEAF(WP(𝐺)) for𝐺 finite non-solvable (where in fact

equality holds) from [30]. It can be proved directly using the same idea based on commutators as Theorem 6.3. Here we

follow a different approach and derive it by a padding argument from Theorem 6.3.

Lemma 9.2. If the finitely generated group 𝐺 is uniformly SENS, then PSPACE ⊆ LEAF(WP(𝐺/𝑍 (𝐺))).

Proof. Let 𝐿 ⊆ Γ∗ belong to PSPACE. Recall that PSPACE = APTIME. Hence, there is an ATM for 𝐿 with running

time bounded by a polynomial 𝑝 (𝑛). We can assume that 𝑝 (𝑛) ≥ 𝑛 for all 𝑛. Now, consider the language

Pad
2
𝑝 (𝑛) (𝐿) =

{
𝑣$

2
𝑝 ( |𝑤 |)−|𝑣 |

��� 𝑣 ∈ 𝐿} ,
where $ is some fresh letter. Then Pad

2
𝑝 (𝑛) (𝐿) is in ALOGTIME: Let𝑤 be the input word and let 𝑛 = |𝑤 | be the input

length. First, we check whether𝑤 ∈ Γ∗$
∗
(the latter regular language even belongs to uniform AC0

). If not, we reject,

otherwise we can write𝑤 = 𝑣$
𝑘
for some 𝑘 ∈ N and 𝑣 ∈ Γ∗. Let𝑚 = 𝑛 − 𝑘 = |𝑣 |. We next have to verify that 𝑛 = 2

𝑝 (𝑚)
.

Using binary search, we compute in DLOGTIME the binary representation of the input length 𝑛. If 𝑛 is not a power of

two (which is easy to check from the binary representation of 𝑛), then we reject. Otherwise, let 𝑙 = log
2
𝑛. The unary

representations of 𝑙 can be obtained from the binary representation of 𝑛. It remains to check 𝑙 = 𝑝 (𝑚). Using 1
𝑙
we can

check whether |𝑣 | =𝑚 ≤ 𝑙 . If not, we reject. Otherwise, we can produce 1
𝑚
. Since polynomials are time constructible

we can simply run a clock for 𝑝 (𝑚) steps, and stop if the number of steps exceeds 𝑙 . Finally, we check whether 𝑣 ∈ 𝐿
(by assumption this can be done in ATIME(𝑝 ( |𝑣 |)), which is contained in ALOGTIME because of the increased input

length). Thus, Pad
2
𝑝 (𝑛) (𝐿) is in ALOGTIME.

Since we aim for applying Theorem 6.3, we have to encode every symbol 𝑐 ∈ Γ ∪ {$} by a bit string 𝛾 (𝑐) of length
2
`
for some fixed constant `. Hence, we consider the language 𝛾 (Pad

2
𝑝 (𝑛) (𝐿)), which belongs to ALOGTIME as well.

Observe that by Lemma 5.6, also 𝐺/𝑍 (𝐺) is uniformly SENS. Thus, we can apply Theorem 6.3, which states that there

is a uniform family (𝑃𝑛)𝑛∈N of (𝐺/𝑍 (𝐺), Σ)-programs of polynomial length recognizing 𝛾 (Pad
2
𝑝 (𝑛) (𝐿)). Be aware,

however, that “polynomial” here means polynomial in the input length for 𝛾 (Pad
2
𝑝 (𝑛) (𝐿)). Let𝑄𝑛 = 𝑃

2
𝑝 (𝑛)+` , which has

length 2
𝑑 (𝑛)

for some function 𝑑 (𝑛) ∈ O(𝑝 (𝑛)). By the uniformity of (𝑃𝑛)𝑛∈N we can compute 1
𝑑 (𝑛)

from 1
2
𝑝 (𝑛)+`

in

DTIME(O(log(2𝑝 (𝑛)+` ))) = DTIME(O(𝑝 (𝑛))). Here we do not have to construct the unary representation of 2
𝑝 (𝑛)+`

:

recall that we have a random access Turing machine for the computation. One can easily check whether the content of

the address tape (a binary coded number) is at most 2
𝑝 (𝑛)+`

.

Now, we construct an adequate NTM𝑀 with 𝐿 = LEAF(𝑀,WP(𝐺/𝑍 (𝐺))): on input 𝑧 ∈ Γ∗ of length 𝑛 the machine

𝑀 produces a full binary tree of depth 𝑑 (𝑛). In the 𝑖-th leaf (𝑖 ∈ [0..2𝑑 (𝑛) − 1]) it computes the 𝑖-th instruction of

𝑄𝑛 . By the uniformity of (𝑃𝑛)𝑛∈N this can be done in DTIME(O(𝑝 (𝑛))), so 𝑀 respects a polynomial time bound.

Let ⟨ 𝑗, 𝑎, 𝑏⟩ be the computed instruction. Here 𝑗 ∈ [1..2𝑝 (𝑛)+` ] is a position in 𝛾 (𝑧$
2
𝑝 (𝑛)−𝑛). Depending on the input

bit at position 𝑗 in 𝛾 (𝑧$
2
𝑝 (𝑛)−𝑛) (which can be easily computed from 𝑧 and 𝑗 in polynomial time), the machine then

outputs either 𝑎 or 𝑏. We then have leaf (𝑀,𝑧) = 𝑄𝑛 [𝛾 (𝑧$
2
𝑝 (𝑛)−𝑛)]. Thus, 𝑧 ∈ 𝐿 iff 𝛾 (𝑧$

2
𝑝 (𝑛)−𝑛) ∈ 𝛾 (Pad

2
𝑝 (𝑛) (𝐿)) iff

𝑄𝑛 [𝛾 (𝑧$
2
𝑝 (𝑛)−𝑛)] ∈ WP(𝐺/𝑍 (𝐺)) iff leaf (𝑀,𝑧) ∈ WP(𝐺/𝑍 (𝐺)). □

From Theorem 8.2 and Lemma 9.2 we get:

Corollary 9.3. If 𝐺 is uniformly SENS, then CompressedWP(𝐺 ≀ Z) is PSPACE-hard.

Since finite non-solvable groups and finitely generated free group of rank at least two are uniformly SENS and their

word problems can be solved in LOGSPACE (see [43] for the free group case), we obtain the following from Lemma 9.1

and Corollary 9.3:
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Corollary 9.4. If 𝐺 is a finite non-solvable group or a finitely generated free group of rank at least two, then

CompressedWP(𝐺 ≀ Z) is PSPACE-complete.

We now consider groups 𝐺 with a self-embedding property: 𝐺 ≀𝐻 ≤ 𝐺 for a non-trival group 𝐻 . For the case that 𝐻

is a torsion group, we need the following lemma.

Lemma 9.5. Let 𝐺 be a finitely generated group with the standard generating set Σ such that 𝐺 ≀ (Z/𝑝) ≤ 𝐺 for some

𝑝 ≥ 2. Let 𝜏𝑛 be a generator for the cyclic group Z/𝑝𝑛 for 𝑛 ≥ 1. Then 𝐺 ≀ (Z/𝑝𝑛) ≤ 𝐺 for every 𝑛 ≥ 1, and given 𝑛 in

unary encoding and 𝑎 ∈ Σ ∪ {𝜏𝑛, 𝜏−1

𝑛 } one can compute in LOGSPACE an SLP G𝑛,𝑎 over the terminal alphabet Σ such that

the mapping 𝑎 ↦→ val(G𝑛,𝑎) (𝑎 ∈ Σ ∪ {𝜏𝑛, 𝜏−1

𝑛 }) induces an embedding of 𝐺 ≀ (Z/𝑝𝑛) into 𝐺 .

Proof. We fix an embedding 𝜑1 : 𝐺 ≀ (Z/𝑝) → 𝐺 . We prove the lemma by induction on 𝑛. The case 𝑛 = 1 is clear.

Consider 𝑛 ≥ 2 and assume that we have the embedding 𝜑𝑛−1 : 𝐺 ≀ (Z/𝑝𝑛−1) → 𝐺 . We show that

𝐺 ≀ (Z/𝑝𝑛) = 𝐺 ≀ ⟨𝜏𝑛⟩ ≤ (𝐺 ≀ ⟨𝜏𝑛−1⟩) ≀ ⟨𝜏1⟩ = (𝐺 ≀ (Z/𝑝𝑛−1)) ≀ (Z/𝑝)

via an embedding𝜓𝑛 . For this we define𝜓𝑛 (𝑔) = 𝑔 ∈ 𝐺 ≤ 𝐺 ≀ (Z/𝑝𝑛−1) for 𝑔 ∈ 𝐺 and𝜓𝑛 (𝜏𝑛) = 𝜏𝑛−1𝜏1. It is easy to see

that this defines indeed an embedding. The element 𝜏𝑛−1𝜏1 generates a copy of Z/𝑝𝑛 by cycling through 𝑝 copies of

Z/𝑝𝑛−1
and incrementing mod 𝑝𝑛−1

the current Z/𝑝𝑛−1
-value.

We extend the embedding 𝜑𝑛−1 : 𝐺 ≀ (Z/𝑝𝑛−1) → 𝐺 to an embedding

𝜑𝑛−1 : (𝐺 ≀ (Z/𝑝𝑛−1)) ≀ (Z/𝑝) → 𝐺 ≀ (Z/𝑝)

by letting 𝜑𝑛−1 operate as the identity mapping on the right factor Z/𝑝 . Finally, we can define 𝜑𝑛 : 𝐺 ≀ (Z/𝑝𝑛) → 𝐺 by

𝜑𝑛 = 𝜓𝑛 ◦ 𝜑𝑛−1 ◦ 𝜑1, where composition is executed from left to right. We get

𝜑𝑛 (𝜏𝑛) = 𝜑1 (𝜑𝑛−1 (𝜓𝑛 (𝜏𝑛))) = 𝜑1 (𝜑𝑛−1 (𝜏𝑛−1𝜏1)) = 𝜑1 (𝜑𝑛−1 (𝜏𝑛−1))𝜑1 (𝜏1) .

and 𝜑𝑛 (𝑔) = 𝜑1 (𝜑𝑛−1 (𝜓𝑛 (𝑔))) = 𝜑1 (𝜑𝑛−1 (𝑔)). By induction on 𝑛 we get

𝜑𝑛 (𝜏𝑛) = 𝜑𝑛1 (𝜏1)𝜑𝑛−1

1
(𝜏1) · · ·𝜑2

1
(𝜏1)𝜑1 (𝜏1).

and 𝜑𝑛 (𝑔) = 𝜑𝑛
1
(𝑔) for 𝑔 ∈ 𝐺 . Lemma 7.3 implies that given 𝑛 in unary encoding we can compute in LOGSPACE SLPs

for 𝜑𝑛 (𝜏𝑛) and all 𝜑𝑛 (𝑔) (𝑔 ∈ 𝐺). □

Using Lemma 9.5 we can show:

Theorem 9.6. Let𝐺 be a finitely generated group such that𝐺 ≀𝐻 ≤ 𝐺 for some non-trival group𝐻 . ThenCompressedWP(𝐺)
is PSPACE-hard.

Proof. Assume that 𝐺 ≀ 𝐻 ≤ 𝐺 for some 𝐻 ≠ 1. We can assume that 𝐻 is a cyclic group. By Theorem 5.14, 𝐺 is

uniformly SENS. For the case that 𝐻 = Z we can directly use Theorem 9.3.

Let us now assume that 𝐻 = Z/𝑝 for some 𝑝 ≥ 2. Since 𝐺 is uniformly SENS, Lemma 9.2 yields PSPACE ⊆
LEAF(WP(𝐺/𝑍 (𝐺))). It therefore suffices to show thatCompressedWP(𝐺) is hard for the complexity class∀LEAF(WP(𝐺/𝑍 (𝐺))).

Consider a language 𝐿 ∈ ∀LEAF(WP(𝐺/𝑍 (𝐺))) and an input word 𝑧 of length 𝑛. Let J be the SLP that we computed

in the proof of Theorem 8.2 in LOGSPACE from 𝑧. We showed that 𝑧 ∈ 𝐿 if and only if val(J) = 1 in 𝐺 ≀ Z. Let
𝑠 = |val(J)|; it is a number in 2

𝑛O(1)
. Hence, we can choose a fixed polynomial 𝑞 such that 𝑝𝑞 (𝑛) ≥ 2𝑠 + 1 for all input

lengths 𝑛. Let𝑚 = 𝑞(𝑛). By Remark 8.4 we have 𝑧 ∈ 𝐿 if and only if val(J) = 1 in 𝐺 ≀ (Z/𝑝𝑚).
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From 1
𝑚 = 1

𝑞 (𝑛)
(which can be constructed in LOGSPACE) we can compute by Lemma 9.5 for every 𝑎 ∈ Σ∪{𝜏𝑚, 𝜏−1

𝑚 }
an SLP G𝑚,𝑎 over the terminal alphabet Σ such that the mapping 𝑎 ↦→ val(G𝑚,𝑎) (𝑎 ∈ Σ ∪ {𝜏𝑚, 𝜏−1

𝑚 }) induces an
embedding of the wreath product 𝐺 ≀ (Z/𝑝𝑚) into 𝐺 . Note that log𝑚 ∈ O(log𝑛). Hence, the space needed for the

construction of the G𝑚,𝑎 is also logarithmic in the input length 𝑛. We can assume that the variable sets of the SLPs G𝑚,𝑎

(𝑎 ∈ Σ∪ {𝜏𝑚, 𝜏−1

𝑚 }) and J are pairwise disjoint. Let 𝑆𝑚,𝑎 be the start variable of G𝑚,𝑎 . We construct an SLP G by taking

the union of the SLPs G𝑚,𝑎 (𝑎 ∈ Σ ∪ {𝜏𝑚, 𝜏−1

𝑚 }) and J and replacing in every right-hand side of J every occurrence of

a terminal symbol 𝑎 by 𝑆𝑚,𝑎 . We have val(G) = 1 in 𝐺 if and only if val(J) = 1 in 𝐺 ≀ (Z/𝑝𝑚) if and only if 𝑧 ∈ 𝐿. □

For Thompson’s group 𝐹 we have 𝐹 ≀ Z ≤ 𝐹 (Lemma 3.1). Moreover, Lehnert and Schweitzer have shown that 𝐹 is

co-context-free, i.e., the complement of the word problem of 𝐹 (with respect to any finite generating set) is a context-free

language [40]. This implies that the word problem for 𝐹 belongs to the complexity class LogCFL (the closure of the

context-free languages under LOGSPACE-reductions). It is known that LogCFL ⊆ DSPACE(log
2 𝑛) [49]. Therefore,

Lemma 7.4 and Theorem 9.6 yield:

Corollary 9.7. The compressed word problem for Thompson’s group 𝐹 is PSPACE-complete.

In rest of the section we prove that the compressed word problem for some weakly branched groups (including the

Grigorchuk group and the Gupta-Sidki groups) is PSPACE-complete as well. We restrict ourselves to weakly branched

groups 𝐺 whose branching subgroup 𝐾 is not torsion-free.

Lemma 9.8. Let𝐺 be a weakly branched group whose branching subgroup 𝐾 contains elements of finite order. Then 𝐾

contains 𝐾 ≀ (Z/𝑝) for some 𝑝 ≥ 2.

Proof. Let 𝑘 ∈ 𝐾 be an element of finite order. Up to replacing 𝑘 by a power of itself, we may assume 𝑘 has prime

order 𝑝 . In particular, there exists a vertex 𝑣 ∈ 𝑋 ∗
whose orbit under 𝑘 has size 𝑝 . Then ⟨𝑣 ∗ 𝐾,𝑘⟩ � 𝐾 ≀ (Z/𝑝) is the

desired subgroup. □

The following result applies in particular to the Grigorchuk group and the Gupta-Sidki groups, showing both their

compressed word problems to be PSPACE-complete.

Corollary 9.9. Let𝐺 be a weakly branched group whose branching subgroup is finitely generated and contains elements

of finite order.

• CompressedWP(𝐺) is PSPACE-hard.
• If 𝐺 is also contracting, then CompressedWP(𝐺) is PSPACE-complete.

Proof. By Lemma 9.8 the branching subgroup 𝐾 of𝐺 satisfies the hypotheses of Theorem 9.6, so the compressed

word problem for 𝐾 (and hence 𝐺) is PSPACE-hard.

If 𝐺 is also contracting, then the word problem of 𝐺 is in LOGSPACE by Proposition 3.5, so Lemma 7.4 implies that

CompressedWP(𝐺) belongs to PSPACE. □

Corollaries 9.4, 9.7, and 9.9 give new (and natural) examples for groups where the compressed word problem is

provably more difficult than the word problem (since polyL is a proper subset of PSPACE). The first example for such a

group was provided in [62]: it is an automaton group where the word problem is PSPACE-complete and the compressed

word problem is EXPSPACE-complete. Let us also remark, that the Grigorchuk group is an example of a group where

the compressed word problem is even more difficult than the power word problem. For the power word problem [48]
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the input consists of a word𝑤
𝑧1

1
𝑤
𝑧2

2
· · ·𝑤𝑧𝑛

𝑛 , where the exponents 𝑧𝑖 are given in binary representation and the𝑤𝑖 are

explicitly given words over the group generators. In terms of complexity, the power word problem lies between the

word problem and the compressed word problem. It is shown in [48] that the power word problem for the Grigorchuk

group belongs to LOGSPACE, whereas by Corollary 9.9 the compressed word problem is PSPACE-complete.

10 CONCLUSION AND OPEN PROBLEMS

We have added an algorithmic constraint (uniformly SENS) to the algebraic notion of being a non-solvable group which

implies that the word problem is NC1
-hard (resp. ALOGTIME-hard). Using this, we produced several new examples

of non-solvable groups with an ALOGTIME-hard word problem. However, the question remains open whether all

non-solvable groups have ALOGTIME-hard word problem, even if they are not SENS. For every contracting self-similar

group the word problem belongs LOGSPACE. Here, the question remains whether there exists a contracting self-

similar group with a LOGSPACE-complete word problem. In particular, is the word problem for the Grigorchuk group

LOGSPACE-complete? (we proved that it is ALOGTIME-hard). Also the precise complexity of the word problem for

Thompson’s group 𝐹 is open. It is ALOGTIME-hard and belongs to LOGCFL; the latter follows from [40]. In fact, from

the proof in [40] one can deduce that the word problem for 𝐹 belongs to LOGDCFL (the closure of the deterministic

context-free languages with respect to LOGSPACE-reductions).

Finally, we showed that the compressed word problem is PSPACE-hard for every weakly branched group whose

branching subgroup is finitely generated and contains elements of finite order. It remains open whether this result

holds for all weakly branched groups.
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