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Abstract. We review results for various kinds of membership problems
(subgroup membership, submonoid membership, rational subset mem-
bership, knapsack problem) in infinite groups.
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1 Algorithmic membership problems in groups

Short historic outline. The investigation of membership problems in algo-
rithmic group theory can be traced back to a paper of Markov from 1947 [47].
Markov proved that it is undecidable whether a given matrix A from the group
SL4(Z) of 4-dimensional integer matrices of determinant 1 can be written as a
product (of arbitrary length) of other given matrices A1, . . . , Ak ∈ SL4(Z). In
the terminology that we introduce below, Markov showed that the submonoid
membership problem for the matrix group SL4(Z) is undecidable. Markov’s work
initiated extensive research on various algorithmic problems in low-dimensional
matrix (semi)groups; see [5,16,37,51] for more recent work. Moreover, he intro-
duced membership problems to group theory.

In general, a membership problem for a group G asks whether a given element
g ∈ G belongs to a given subset S ⊆ G. In order to get a well-defined decision
problem, one has to restrict the input set S to a class of subsets having finitary
representations. In Markov’s case S is the submonoid generated by given matri-
ces A1, . . . , Ak ∈ SL4(Z). From a group theoretic perspective, it is also natural
to consider the subgroup generated by the given matrices A1, . . . , Ak ∈ SL4(Z).
This leads to the subgroup membership problem for SL4(Z), which is still undecid-
able by a result of Mihăılova [48]. Actually, Mihăılova proved that the subgroup
membership problem is undecidable for the direct product of two free groups of
rank 2, which is a subgroup of SL4(Z). Following the work of Mihăılova, the sub-
group membership problem has been studied in many different classes of groups;
some of the results will be mentioned in the main part of this survey.

Whereas the subgroup membership problem is a restriction of the submonoid
membership problem, one also finds a generalization of the submonoid member-
ship problem in the literature. The class of rational subsets of a group G is the
smallest class that can be obtained from finite subsets of G using three set op-
erations: union, product (i.e., S · T = {gh : g ∈ S, h ∈ T} for subsets S, T ⊆ G)
and Kleene star 〈S〉∗, where 〈S〉∗ is the submonoid generated by S (often it is
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denoted by S∗). Alternatively, one can define rational subsets of G using finite
automata whose transitions are labelled with elements of G. Clearly, a rational
subset of a finitely generated group G has a finitary representation (by a regular
expression or an automaton) which makes the rational subset membership prob-
lem well-defined. The rational subset membership problem can be traced back
to a paper of Benois from 1969 [7], where she proved decidability for free groups.
Gilman [23] independently rediscovered Benois’ approach in 1984 and extended
it to groups with a monadic confluent presentation. Grunschlag showed in 1999
that decidability of the rational subset membership problem is preserved by finite
extensions and proved decidability for finitely generated abelian groups based
on classical work of Eilenberg and Schützenberger. Kambites, Silva, and Stein-
berg took up the work of Grunschlag and showed in 2007 that rational subsets
membership is decidable for the fundamental group of a graph of groups with
finite edge groups and vertex groups with decidable rational subset membership
problems [29]. This paper marks the starting point for a deeper investigation of
the rational subset membership problem in many different classes of groups; see
the main part of this survey for results obtained after 2007. In 2014, Myasnikov,
Nikolaev and Ushakov introduced with the knapsack problem another special
case of the rational subset membership problem [49]. It generalizes the classical
knapsack problem over the cyclic group Z to a non-commutative setting.

Group theoretic setting. Before we introduce the above mentioned problems
formally, we first set up the group theoretical context. Consider a group G. For
a subset Σ ⊆ G we denote with 〈Σ〉 the subgroup generated by Σ. It is the
smallest subgroup (with respect to inclusion) of G that contains Σ. We will also
consider the submonoid 〈Σ〉∗ ⊆ G and subsemigroup 〈Σ〉+ ⊆ G generated by
Σ. Note that 〈Σ〉∗ (〈Σ〉+) is the set of all finite products a1a2 · · · an ∈ G with
a1, . . . , an ∈ Σ and n ≥ 0 (n ≥ 1). A group G is finitely generated (f.g. for short)
if there is a finite subset Σ ⊆ G such that G = 〈Σ〉. In this situation, we say that
Σ is a finite generating set of G. W.l.o.g. one can assume that for every a ∈ Σ,
the inverse a−1 also belongs to Σ. For convenience, we will always assume this.
It implies that 〈Σ〉 = 〈Σ〉∗ = G, i.e., there is a surjective monoid homomorphism
π : Σ∗ → G with π(a) = a for all a ∈ Σ (Σ∗ is the free monoid generated by Σ)
that we call the evaluation homomorphism. We also say that the word w ∈ Σ∗
represents the group element π(w). For g ∈ G we also write |g| for the minimal
length of a word in π−1(g). Here, we assume a fixed π : Σ∗ → G. We only deal
with f.g. groups in this survey.

Formal definition of the membership problems. We now define the com-
putational problems that will be considered in this survey. For this we fix a
f.g. group G together with an evaluation homomorphism π : Σ∗ → G with Σ fi-
nite. Formally, the algorithmic problems that we introduce below depend on the
choice of π. On the other hand, for the decidability and computational complex-
ity of each of the following problems, the concrete choice of the set of generators
only plays a minor role. If we take another generating set, the resulting problem
is equivalent to the original problem with respect to logspace reductions.
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Subgroup membership problem for G, SGM(G) for short:
– Input: words w,w1, . . . , wn ∈ Σ∗
– Question: Does π(w) belong to the subgroup 〈π(w1), . . . , π(wn)〉?

The subgroup membership problem is also known as the generalized word prob-
lem or occurrence problem. It naturally generalizes to submonoids:

Submonoid membership problem for G, SMM(G) for short:
– Input: words w,w1, . . . , wn ∈ Σ∗
– Question: Does π(w) belong to the submonoid 〈π(w1), . . . , π(wn)〉∗?

One might also consider the subsemigroup membership problem by replacing
the submonoid 〈π(w1), . . . , π(wn)〉∗ by the subsemigroup 〈π(w1), . . . , π(wn)〉+.
But there is no real difference between the submonoid and the subsemigroup
membership problem: For all g ∈ G and S ⊆ G we have g ∈ 〈S〉+ iff gh−1 ∈ 〈S〉∗
for some h ∈ S. Vice versa, g ∈ 〈S〉∗ iff g ∈ 〈S〉+ or g ∈ 〈1〉+.

The submonoid membership problem can be further generalized to the ra-
tional subset membership problem. For a nondeterministic finite automaton A
over an alphabet Σ we write L(A) ⊆ Σ∗ for the language accepted by A.

Rational subset membership problem for G, RatM(G) for short:
– Input: word w ∈ Σ∗ and a nondeterministic finite automaton A over

the alphabet Σ
– Question: Does π(w) belong to π(L(A))?

The subsets π(L(A)) ⊆ G with A a nondeterministic finite automaton are ex-
actly the rational subsets of G defined above. Since for a rational subset S ⊆ G
and an element g ∈ G the set g−1S is rational too, one can restrict to the
case w = ε (i.e., π(w) = 1) in the rational subset membership problem. The
same restriction imposed on the subsemigroup membership problem defines the
so-called identity problem:

Identity problem for G, Id(G) for short:
– Input: words w,w1, . . . , wn ∈ Σ∗
– Question: Does 1 belong to the subsemigroup 〈π(w1), . . . , π(wn)〉+?

The identity problem was first studied by Choffrut and Karhumäki [14] for ma-
trix groups. Bell and Potapov proved that the identity problem is undecidable
for SL4(Z) [6], whereas the problem is NP-complete for GL2(Z) [5].

Another special case of the rational subset membership problem that has
received a lot of attention in recent years is the knapsack problem:
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Knapsack problem for G, KS(G) for short:
– Input: words w,w1, . . . , wn ∈ Σ∗
– Question: Does π(w) belong to 〈π(w1)〉∗〈π(w2)〉∗ · · · 〈π(wn)〉∗?

In other words, KS(G) is the membership problem for products of cyclic sub-
monoids. A natural variant is the membership problem for products of cyclic
subgroups. It can be reduced to KS(G), since 〈g〉 = 〈g〉∗〈g−1〉∗.

The most general problem that we consider is context-free membership:

Context-free membership problem for G, CFM(G) for short:
– Input: word w ∈ Σ∗ and a context-free grammar G over the alphabet Σ
– Question: Does π(w) belong to π(L(G))?

In Sections 2–10 we will give an overview on decidability and complexity results
for the above mentioned problems in different classes of groups. We assume that
the reader has some basic knowledge in group theory, computability, complexity
theory and formal language theory. Occasionally, we use group presentations to
describe groups. For a finite alphabet Γ and set of relators R ⊆ (Γ ∪ Γ−1)∗ we
write 〈Γ | R〉 for the corresponding group; it is the quotient of the free group
F (Γ ) by the normal closure of R. For better readability we also write relators
as equations: an equation u = v corresponds to the relator uv−1.

There are two related surveys on membership problems in group theory:
[17,35]. The paper [35] focuses on rational subset membership. The present sur-
vey can be seen as an updated version of [35]. The more recent work [17] of
Dong focuses on algorithmic problems for subsemigroups of groups including
the subsemigroup membership problem and the identity problem. References on
the complexity of word problems can be found in [38].

2 Virtually abelian groups

A group is virtually abelian if it has an abelian subgroup of finite index. In
these groups, most algorithmic problems are decidable, and this holds also for
membership problems:

Theorem 1. CFM(G) is decidable for every f.g. virtually abelian group G.

Proof (sketch). For the case that G is f.g. abelian, one can use Parikh’s theorem
to reduce CFM(G) to RatM(G). Since G is abelian, RatM(G) is decidable [25]. It
therefore suffices to show that if G is a finite-index subgroup of H and CFM(G)
is decidable, then also CFM(H) is decidable. One can show this with the same
arguments used for rational subset membership in [35]. The crucial facts used in
[35] are: (i) the word problem (viewed as the set of all words that represent the
group identity) of H can be obtained by a rational transduction from the word
problem for G and (ii) the class of rational languages is closed under rational
transductions. But (ii) also holds for context-free languages [9, Cor. 4.2]. ut
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3 Free groups and groups containing free monoids

To the knowledge of the author, the earliest result on the rational subset mem-
bership problem is due to Benois:

Theorem 2 ([7]). RatM(F ) is decidable for every f.g. free group F and can be
solved in polynomial time.

The context-free membership problem is undecidable for free groups of rank at
least two. In fact, the following more general result holds (note that the free
group of rank 2 contains a copy of the free monoid {a, b}∗):

Theorem 3. If a f.g. group G contains a copy of a free monoid {a, b}∗ then
CFM(G) is undecidable.

Proof. Assume that the free monoid {a, b}∗ is a submonoid of G. In particular,
we assume that a, b ∈ G. We reduce Post’s correspondence problem (PCP) to
CFM(G). Let Π = {(ui, vi) : 1 ≤ i ≤ k} be an instance of PCP with ui, vi ∈
{a, b}∗. Consider the context-free grammar G with the productions S → uiv

−1
i

and S → uiSv
−1
i for 1 ≤ i ≤ k. We have 1 ∈ π(L(G)) iff Π has a solution. ut

Rosenblatt proved that a f.g. solvable group is either virtually nilpotent or con-
tains a copy of {a, b}∗ [56]. Hence, the context-free membership problem for a
f.g. solvable group that is not virtually nilpotent is undecidable.

4 Hyperbolic groups

Hyperbolic groups are f.g. groups whose Cayley graph satisfies a certain condition
that is motivated from hyperbolic geometry (geodesic triangles are δ-thin for
a constant δ > 0). They are one of the most important classes of groups in
geometric group theory and have some nice algorithmic properties; for instance
the word and conjugacy problem can be solved in linear time. In contrast, the
subgroup membership problem is much harder by the following result of Rips:

Theorem 4 ([53]). There is a hyperbolic group G with SGM(G) undecidable.

Positive results are known for the knapsack problem in hyperbolic groups. The
complexity class LogCFL consists of all languages that are logspace-reducible to
a context-free language; it is a subset of P ∩ DSPACE(log2 n).

Theorem 5 ([36,49]). For every hyperbolic group G, KS(G) is decidable and
belongs to the complexity class LogCFL.

It is shown in [49] for every hyperbolic group G there is a polynomial p(x) such
that if g ∈ 〈g1〉∗〈g2〉∗ · · · 〈gn〉∗ for g, g1, . . . , gn ∈ G then there exist exponents
e1, . . . , en ∈ N such that g = ge11 g

e2
2 · · · genn and ei ≤ p(|g|+ |g1|+ · · ·+ |gn|) for

all i. This allows to reduce the knapsack problem for G to the acyclic rational
subset membership problem for G, where the input automaton must be acyclic.



6 M. Lohrey

Fig. 1. From left to right: the graphs P3, P4, C4 and C5.

The latter problem is shown to be in LogCFL in [36] using a result from [12] saying
that context-sensitive languages where all productions are length increasing (so-
called growing-context sensitive languages) can be accepted by nondeterministic
one-way Turing machines working in polynomial time and logarithmic space and
equipped with an additional pushdown store (the space used on the pushdown
store does not count to the logarithmic space bound). These machines define
LogCFL even without the one-way restriction. The word problem for a hyperbolic
is known to be growing context-sensitive [38]. It is also shown in [36] that the
knapsack problem for the free group F2 of rank two is already LogCFL-complete.

Decidability of the identity problem for hyperbolic groups seems to be open.

5 Graph groups

Let (Γ, I) be a finite graph, where Γ is the set of nodes and I ⊆ Γ × Γ is the
symmetric and irreflexive edge relation. In the following we just speak of a graph.
Figure 1 shows some graphs that will appear below. The graph group G(Γ, I) is
the finitely presented group 〈Γ | ab = ba for all (a, b) ∈ I〉. Graph groups are
also known as right-angled Artin groups. They are linear; therefore their word
problems can be solved in logspace. For the subgroup membership problem the
situation is quite complicated. Note that F2×F2 (the direct product of two free
groups of rank 2) is isomorphic to G(C4). Mihăılova proved the following:

Theorem 6 ([48]). SGM(G(C4)) = SGM(F2 × F2) is undecidable.

A positive decidability result is known for chordal graphs, i.e., graphs that do
not contain a cycle of length at least four as an induced subgraph.

Theorem 7 ([30]). SGM(G(Γ, I)) is decidable if the graph (Γ, I) is chordal.

In [30], Theorem 7 is stated as a corollary of a more general result saying that
the subgroup membership problem is decidable for the fundamental group of a
graph of groups where all vertex and edge groups are polycyclic-by-finite. An
alternative proof of this result was given in [40].

A characterization of those graph groups having a decidable subgroup mem-
bership problem is not known. In particular, it is open, whether G(C5) has a
decidable subgroup membership problem. For the rational subset membership
problem and the submonoid membership problem, an exact characterization of
the decidable cases is known. Graphs that neither contain P4 nor C4 as an in-
duced subgraph are also known as transitive forests.

Theorem 8 ([39]). Let (Γ, I) be a graph. The following are equivalent:
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– (Γ, I) is a transitive forest.
– SMM(G(Γ, I)) is decidable.
– RatM(G(Γ, I)) is decidable.

For the undecidability part of Theorem 8, it suffices to show that SMM(G(P4))
and SMM(G(C4)) are undecidable. The latter follows from Theorem 6. Undecid-
ability of SMM(G(P4)) is shown in [39] by using a result on trace monoids from
[1]. Trace monoids can be viewed as the monoid counterparts of graph groups.
Given a finite graph (Γ, I) as above, the corresponding trace monoid M(Γ, I)
is the quotient of the free monoid Σ∗ by the congruence generated by all pairs
(ab, ba) with (a, b) ∈ I. Rational subsets of M(Γ, I) are defined as for groups.
The disjointness problem for rational subsets of M(Γ, I) asks whether K ∩L 6= ∅
for two given rational subsets K,L ⊆ M(Γ, I). It is shown in [1] that the dis-
jointness problem for rational subsets of M(Γ, I) is decidable if and only if (Γ, I)
is a transitive forest. Finally, note that K ∩ L 6= ∅ for K,L ⊆ M(Γ, I) if and
only if 1 ∈ KL−1, where KL−1 is viewed as a rational subset of the graph group
G(Γ, I). This shows in particular that RatPM(G(P4)) is undecidable. Finally,
RatPM(G(P4)) is reduced to SMM(G(P4)) in [39].

The decidability part in Theorem 8 was further refined by Haase and Zetzsche
who determined the complexity of RatM(G(Γ, I)) for transitive forests:

Theorem 9 ([27]). Let (Γ, I) be a transitive forest. Then RatM(G(Γ, I)) is
– NL-complete if (Γ, I) is a clique,
– P-complete if (Γ, I) is a disjoint union of at least two cliques, and
– NP-complete if (Γ, I) contains an induced P3, i.e., (Γ, I) is not transitive.

The uniform version of the rational subset membership problem for graph groups,
where the transitive forest (Γ, I) is part of the input is NEXPTIME-complete.

For the NEXPTIME upper bound in the uniform case, where the transitive forest
(Γ, I) is part of the input, Haase and Zetzsche show that the rational subset
membership problem is equivalent to the satisfiability problem for existential
Presburger arithmetic extended by the star operator. The star operator applied
to a set S ⊆ Nk yields the submonoid of the additive monoid (Nk,+) generated
by S. It is shown in [27] that the satisfiability problem for existential Presburger
arithmetic with the star operator is NEXPTIME-complete. In addition, if the
nesting depth of the star operator in the input formula is bounded by a fixed
constant then the satisfiability problem becomes NP-complete (and hence has
the same complexity as the satisfiability problem for existential Presburger arith-
metic without the star operator). This yields the NP upper bound in Theorem 9.
For the NP lower bound, the subset sum problem is reduced to RatM(F2 × Z).

A characterization similar to Theorem 9 is also known for the knapsack prob-
lem. The complexity class TC0 is a very small class within LogCFL. It is captured
by the problem of counting the number of 1’s in a bit string.

Theorem 10 ([45]). KS(G(Γ, I)) is decidable for every graph (Γ, I) and is
– TC0-complete if (Γ, I) is a clique,
– LogCFL-complete if (Γ, I) is a transitive forest but not a clique, and
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– NP-complete if (Γ, I) is not a transitive forest.

For the NP upper bound the line of arguments in [45] goes as follows: Consider
a graph group G = G(Γ, I). It is shown in [45] that if g ∈ 〈g1〉∗〈g2〉∗ · · · 〈gn〉∗
for g, g1, . . . , gn ∈ G then there exist e1, . . . , en ∈ N such that g = ge11 g

e2
2 · · · genn

and every ei is exponentially bounded in |g|+ |g1|+ · · ·+ |gn|. One can therefore
nondeterministically guess in polynomial time the binary encodings of exponents
e1, . . . , en. It then remains to verify whether g = ge11 g

e2
2 · · · genn holds. This is an

instance of the so-called compressed word problem for the graph group G, which
can be solved in polynomial time [34]. The LogCFL upper bound in Theorem 10
for the case that (Γ, I) is a transitive forest, follows the same line of arguments
that was sketched for hyperbolic groups in Section 4.

Let us also mention that the uniform knapsack problem for graph groups,
where the graph is part of the input, is NP-complete by a recent result form [44].

6 Nilpotent groups and polycyclic groups

Polycyclic groups are solvable groups where every subgroup is finitely generated.
Mal’cev proved in [46] the following result (see [2] for an alternative proof):

Theorem 11 ([46]). SGM(G) is decidable for every polycyclic group G.

To the knowledge of the author, the complexity of the subgroup membership
problem for polycyclic groups is open. For the smaller class of f.g. nilpotent
groups, the complexity is very low:

Theorem 12 ([50]). SGM(G) belongs to TC0 for every f.g. nilpotent group G.

Recently, the identity problem for nilpotent groups attracted a lot of attention.
Dong [19] showed that the identity problem is decidable for all nilpotent groups
of class at most 10. Shafrir then solved the general case:

Theorem 13 ([57]). Id(G) belongs to P for every f.g. nilpotent group G.

The main ingredient in [57] is the following result, where G′ = [G,G] is the
commutator subgroup of G: If G is a f.g. nilpotent group and M is a submonoid
of G such that MG′ is a finite index subgroup of G then M is also a finite index
subgroup of G. Moreover, if MG′ = G then M = G. For the case that M is
a subgroup G this was known before. Shafrir combines this result with linear
programming techniques (Farkas’ lemma) to prove Theorem 13. With similar
techniques, one can show Theorem 13 also using [10, Proposition 2.5], whose
proof will appear in a forthcoming paper of Bodart, Ciobanu, and Metcalfe.

Somehow surprisingly, the knapsack problem and the submonoid membership
problem are in general undecidable already for nilpotent groups of class 2. The
following two results can be shown using reductions from Hilbert’s 10th problem.

Theorem 14 ([54]). There is a f.g. class-2 nilpotent group G with SMM(G)
undecidable.
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Theorem 15 ([32]). There is a f.g. class-2 nilpotent group G with KS(G) un-
decidable.

For nilpotent groups of small Hirsch length further decidability were recently
shown by Shafrir. The Hirsch length h(G) of a nilpotent group G is the sum of
the ranks of all the successive abelian factor groups in the lower central series.

Theorem 16 ([58]). KS(G) is decidable for every f.g. nilpotent group G with
h([G,G]) = 1, which means that [G,G] ∼= Z×A for a finite abelian group A.

The proof of Theorem 16 is based on a short reduction of KS(G) to the problem
of whether a system consisting of (i) a single quadratic Diophantine equation plus
(ii) an arbitrary number of linear equations has an integer solution. Decidability
of this special case of Hilbert’s 10th problem is shown in [20,24].

Theorem 17 ([58]). SMM(G) is decidable for every f.g. nilpotent group G with
h([G,G]) ≤ 2.

Shafrir uses a result of Bodart [10] that allows to reduce membership in a
submonoid M ⊆ G (for G a f.g. nilpotent group) to membership in products
〈S1〉∗〈S2〉∗ · · · 〈Sn〉∗, where all Si are finite and are contained in a subgroup
H ≤ G with h([H,H]) < h([G,G]). Here, H depends onM . Then Shafrir shows,
using a combinatorial lemma on integer sequences with bounded gaps, that in
a f.g. nilpotent group H with h([H,H]) = 1, every f.g. submonoid is effectively
a product of cyclic submonoids. Hence, the product 〈S1〉∗〈S2〉∗ · · · 〈Sn〉∗ can be
replaced by a product of cyclic submonoids, which allows to apply Theorem 16.

Theorems 16 and 17 generalize previous results for Heisenberg groups Hn(Z)
from [32] (for knapsack) and [15] (for submonoid membership). The Heisenberg
group Hn(Z) consists of all n-dimensional upper triangular integer matrices such
that all diagonal entries are 1 and all non-diagonal entries that are not in the
top-most row or the right-most column are 0. Note that [Hn(Z), Hn(Z)] ∼= Z;
therefore Theorems 16 and 17 apply. For n = 3, even rational subset membership
is decidable by the following result of Bodart.

Theorem 18 ([10]). RatM(H3(Z)) is decidable.

Bodart proved this result by reducing RatM(H3(Z)) to KS(H3(Z)). For this he
shows that every rational subset of H3(Z) is effectively the image of a bounded
regular language L. A language is called bounded if it is contained in a set
w∗1w

∗
2 · · ·w∗k for words w1, . . . , wk. One finally obtains a finite number of knapsack

instances from a classical result of formal language theory saying that a regular
language is bounded iff it is a finite union of languages v0w∗1v1w∗2 · · · vk−1w∗kvk.

It is open, whether Theorem 18 generalizes to all Heisenberg groups Hn(Z).
It is also open whether CFM(H3(Z)) is decidable. We have already observed
that every f.g. solvable group that is not virtually nilpotent has an undecidable
context-free membership problem (Section 3). It is known that every f.g. virtually
nilpotent group that is not virtually abelian contains a copy of H3(Z) [28, proof
of Theorem 12]. We obtain the following conditional characterization: assuming
that CFM(H3(Z)) is undecidable, a f.g. solvable group G is virtually abelian if
and only if CFM(G) is decidable.
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7 Metabelian groups

A group G is metabelian if its commutator subgroup [G,G] is abelian.

Theorem 19 ([3,55]). SGM(G) is decidable for every f.g. metabelian group G.

Both papers [3,55] actually show a more general result: if G is f.g. abelian-by-
nilpotent then SGM(G) is decidable. The complexity of the subgroup member-
ship problem for metabelian groups seems to be open. For the identity problem,
Dong showed the following result. The proof is very involved and combines tech-
niques from convex geometry, graph theory, algebraic geometry, and number
theory:

Theorem 20 ([18]). Id(G) is decidable for every f.g. metabelian group G.

Theorems 19 and 20 are all general positive results for membership problems in
f.g. metabelian groups that the author is aware of. On the side of undecidability,
the following is known.

Theorem 21 ([42,43]). There are f.g. metabelian groups G with SMM(G) un-
decidable. Examples are the wreath product Z o Z and the free metabelian group
M2 generated by two elements.

Undecidability of SMM(M2) is shown in [43] by a reduction from a tiling problem
for the Euclidean plane, whereas undecidability of SMM(Z o Z) is shown in [43]
by a reduction from the halting problem for 2-counter machines.

Also the knapsack problem is in general undecidable for f.g. metabelian
groups by Theorem 15, because nilpotent groups of class two are metabelian.
On the other hand, free metabelian groups have a decidable knapsack problem;
this is a special case of Theorem 26 below. Also the knapsack problem for Z oZ is
decidable. This follows from a more general result: KS(G) is decidable for every
co-context-free group G [32]. A f.g. group G with the evaluation homomorphism
π : Σ∗ → G is co-context-free if the co-word problem {w ∈ Σ∗ : π(w) 6= 1} is
context-free [28]. The wreath product Z o Z is co-context-free [28, Theorem 10].
Another interesting example of a co-context-free group is Thompson’s group F .

8 Wreath products

We mentioned above that SMM(Z o Z) is undecidable [43]. In the same paper,
the following positive result was shown:

Theorem 22 ([43]). If G is a finite group and H is a f.g. virtually free group
then RatM(G oH) is decidable.

The proof of this result in [43] uses techniques from the theory of well-quasi
orders. Due to this, the algorithm in [43] is not primitive recursive.

It seems to be difficult to extend Theorem 22 beyond the case where H is
virtually free. For Z2 = Z×Z the following undecidability result is shown in [42]
using a tiling problem.
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Theorem 23 ([42]). If G 6= 1 is a f.g. group then RatM(G oZ2) is undecidable.

In contrast to Theorem 23, Shafrir showed the following result:

Theorem 24 ([52]). If G is finite and abelian then SMM(G o Z2) is decidable.

Shafrir’s proof can be found in the Bachelor thesis [52], which is based on an
unpublished draft of Shafrir. He shows that for any wreath product W = G oZ2

with G finite, SMM(W ) can be reduced to SGM(W ). If, in addition, G is abelian
then W is metabelian and SGM(W ) is decidable by Theorem 19.

Together, Theorems 23 and 24 yield examples of groups G where RatM(G)
is undecidable but SMM(G) is decidable. The existence of such groups solved an
open problem from [41], where it is shown that if G is a f.g. group with more than
one end then there is a computable reduction from RatM(G) to SMM(G). Bodart
[10] recently gave another example of a group G, where RatM(G) is undecidable
but SMM(G) is decidable. His example is a f.g. nilpotent group G of class 2.

A corollary of these results is that decidability of the submonoid membership
problem is not preserved by free products (in contrast to subgroup membership
and rational subset membership): If it would be, then SMM(G ∗Z) would be de-
cidable, where G is such that RatM(G) is undecidable and SMM(G) is decidable.
Since G ∗Z has infinitely many ends, RatM(G ∗Z) and hence RatM(G) would be
decidable by [41], which is a contradiction.

A characterization of the class of wreath products G o H with a decidable
knapsack problem can be found in [8]. The characterization is a bit technical
and uses knapsack variants for G and H; we refer the reader to [8].

9 Solvable groups

Metabelian groups are exactly the solvable groups of derived length 2. There is no
hope to get decidability results for arbitrary solvable groups of derived length 3:
Kharlampovich constructed a finitely presented solvable group of derived length
3 with an undecidable word problem [31]. For the subgroup membership problem,
undecidability is already encountered for free solvable groups. Let Sc,r be the
free solvable group of derived length c generated by r elements.

Theorem 25 ([59]). SGM(S3,2) is undecidable.

The knapsack problem for free solvable groups turns out to be easier:

Theorem 26 ([21]). For every c, r ≥ 2, KS(Sc,r) is decidable and NP-complete.

The proof of Theorem 26 exploits the Magnus embedding theorem that allows to
embed a free solvable group into an iterated wreath product Zm o(Zm o(Zm · · · )).
For such a wreath product one can show that if g ∈ 〈g1〉∗〈g2〉∗ · · · 〈gn〉∗ then g =
ge11 g

e2
2 · · · genn , where every ei ∈ N is exponentially bounded in |g|+|g1|+· · ·+|gn|.
Solvable matrix groups are another important class of solvable groups with

a more amenable algorithmic theory. Note that by Tits alternative a f.g. matrix
group is either virtually solvable or contains a copy of the free group of rank 2.
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Theorem 27 ([33]). SGM(G) is decidable for every f.g. virtually solvable ma-
trix group over the field of algebraic numbers.

Theorem 28 ([11]). Id(G) is decidable for every f.g. virtually solvable matrix
group over the field of algebraic numbers.

Theorem 28 generalizes the decidability statement in Theorem 13. The proof of
Theorem 28 extends some of the key results from [10,18,57].

10 Baumslag-Solitar groups

For p, q ≥ 1, the Baumslag-Solitar group BSp,q = 〈a, t | t−1apt = aq〉 is a one-
relator group that was introduced by Baumslag and Solitar in [4], where they
showed that BS2,3 is non-Hopfian (i.e., BS2,3 is isomorphic to a proper quotient
of BS2,3). The word problem for every Baumslag-Solitar group BSp,q can be
solved in logarithmic space. The following result is a corollary of a more general
result from [30] that has already mentioned after Theorem 7.

Theorem 29 ([30]). SGM(BSp,q) is decidable for all for p, q ≥ 1.

The groups BS1,q is also metabelian, so Id(BS1,q) is decidable by Theorem 20.
In addition, the following two positive results hold:

Theorem 30 ([13]). RatM(BS1,q) for q ≥ 2 is PSPACE-complete.

Theorem 31 ([22]). KS(BS1,q) for q ≥ 2 is NP-complete.

In their proof of Theorem 30 the authors use a particular word representation
of elements of BS1,q, which they call the pointed expansion. It is well known
that BS1,q is isomorphic to the semidirect product Z[1/q] o Z, where Z[1/q] is
the additive group of all rationals of the form zqi where z, i ∈ Z and Z acts
on Z[1/q] by j · zqi = zqi+j for i, j, z ∈ Z. Hence, one can represent an ele-
ment g ∈ BS1,q ∼= Z[1/q]oZ by a pair (±akak+1 · · · a0•a−1a−2 · · · a−`, i), where
±akak+1 · · · a0•a−1a2 · · · a` is the q-ary representation of the Z[1/q]-part (hence,
ak, . . . , a−` ∈ [0, q−1]) and i ∈ [−`, k] is the Z-part. Uniqueness of this represen-
tation can be obtained by choosing the interval [−`, k] minimal. The pointed ex-
pansion of G is then obtained by taking the word ±akak+1 · · · a0•a−1a−2 · · · a−`
and marking ai with a special marker. The main result of [22] states that for
a rational subset S ⊆ G the set pe(S) of all pointed expansions of elements
from S is effectively a regular language. Moreover, from a given automaton for
S one can construct in polynomial space a certain succinct description of an
automaton for pe(S). This suffices in order to get the PSPACE upper bound
in Theorem 30. The PSPACE lower bound is shown by a reduction from the
intersection nonemptiness problem for finite automata.

For the proof of Theorem 31, KS(BS1,q) is reduced in [22] to the existential
fragment of Büchi arithmetic. Büchi arithmetic is the first-order theory of the
structure (Z,+,≥, 0, Vq), where Vq is the function that maps the the integer n
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to the largest power of q that divides n. Here, q ≥ 2 is a fixed integer. The
existential fragment of Büchi arithmetic was shown to be in NP in [26].

Let us finally remark that since BS1,q contains a copy of the free submonoid
{a, b}∗ (BS1,q is solvable but not virtually nilpotent), the context-free subset
membership problem for BS1,q is undecidable.

11 Open problems

We conclude with a list of open problems. Some of them were already mentioned
in the main part of the paper.
1. Is CFM(H3(Z)) decidable?
2. Is there any non-virtually-abelian group G such that CFM(G) is decidable?
3. Is RatM(Hn(Z)) decidable for all n?
4. Is Id(G) decidable for every hyperbolic group G?
5. For which graph groups G is SGM(G) decidable?
6. Is RatM(BSp,q) decidable for all p, q? What about SMM(BSp,q)?
7. Is SGM(SL3(Z)) decidable? What about Id(SL3(Z)) and KS(SL3(Z))?
8. Is there a group G such that SMM(G) is decidable and KS(G) is undecidable?
9. Is SMM (RatM) decidable for fundamental groups of closed orientable two-

dimensional manifolds of genus at least two?
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