
Membership problems in finite groups

Markus Lohreya, Andreas Rosowskia, Georg Zetzscheb

aUniversity of Siegen, Siegen, Germany
bMax Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract

We show that the subset sum problem, the knapsack problem and the ratio-
nal subset membership problem for permutation groups are NP-complete.
Concerning the knapsack problem we obtain NP-completeness for every fixed
n ≥ 3, where n is the number of permutations in the knapsack equation. In
other words: membership in products of three cyclic permutation groups
is NP-complete. This sharpens a result of Luks [34], which states NP-
completeness of the membership problem for products of three abelian per-
mutation groups. We also consider the context-free membership problem
in permutation groups and prove that it is PSPACE-complete but NP-
complete for a restricted class of context-free grammars where acyclic deriva-
tion trees must have constant Horton-Strahler number. Our upper bounds
hold for black box groups. The results for context-free membership problems
in permutation groups yield new complexity bounds for various intersection
non-emptiness problems for DFAs and a single context-free grammar. This
paper is an extended version of the conference paper [31].

Keywords: algorithmic group theory, finite groups, membership problems,
automata theory

1. Introduction

Membership problems in groups. The general problem that we
study in this paper is the following: Fix a class C of formal languages. We
assume that members of C have a finite description; typical choices are the

Email addresses: lohrey@eti.uni-siegen.de (Markus Lohrey),
rosowski@eti.uni-siegen.de (Andreas Rosowski), georg@mpi-sws.org (Georg
Zetzsche)

Preprint submitted to Journal of Algebra January 12, 2025

class of regular or context-free languages, or a singleton class C = {L}. We
are given a language L ∈ C with L ⊆ Σ∗, a group G together with a mor-
phism h : Σ∗ → G from the free monoid Σ∗ to the group G, and a word
w ∈ Σ∗. The question that we want to answer is whether w ∈ h−1(h(L)),
i.e., whether the group element h(w) belongs to h(L). One can study this
problem under several settings, and each of these settings has a different mo-
tivation. First of all, one can consider the case, where G is a fixed finitely
generated group that is finitely generated by Σ, and the input consists of L.
One could call this problem the C-membership problem for the group G. The
best studied case is the rational subset membership problem, where C is the
class of regular languages. It generalizes the subgroup membership problem
for G, a classical decision problem in group theory. Other special cases of the
rational subset membership problem that have been studied in the past are
the submonoid membership problem, the knapsack problem and the subset
problem, see e.g. [29, 35]. It is a simple observation that for the rational
subset membership problem one can assume that the word w (that is tested
for membership in h−1(h(L)) can be assumed to be the empty word, see [24,
Theorem 3.1].

In this paper, we study another setting of the above generic problem,
where G is a finite group that is part of the input (and L still comes from
a languages class C). For the rest of the introduction we restrict to the
case, where G is a finite symmetric group Sm (the set of all permutations
on {1, . . . ,m}) that is represented in the input by the integer m in unary
representation, i.e., by the word $m.1 Our applications only make use of
this case, but we remark that our upper complexity bounds can be proven
in the more general black box setting [6] (in particular, one could replace
symmetric groups by matrix groups over a finite field and still obtain the
same complexity bounds). Note that |Sm| = m!, hence the order of the
group is exponential in the input length.

Membership problems for permutation groups. One of the best
studied membership problems for permutation groups is the subgroup mem-
bership problem: the input is a unary encoded number m and a list of per-
mutations a, a1, . . . , an ∈ Sm, and it is asked whether a belongs to the sub-

1We could also consider the case where G is a subgroup of Sm that is given by a list of
generators (i.e., G is a permutation group), but this makes no difference for our problems.

2

group of Sm generated by a1, . . . , an. The well-known Schreier-Sims algorithm
solves this problem in polynomial time [37], and the problem is known to be
in NC (the class of all problems that can be solved in polylogarithmic time
with polynomially many processors) [5].

Several generalizations of the subgroup membership problem have been
studied. Luks defined the k-membership problem (k ≥ 1) as follows: The
input is a unary encoded number m, a permutation a ∈ Sm and a list of
k permutation groups G1, G2, . . . , Gk ≤ Sm (every Gi is given by a list of
generators). The question is whether a belongs to the product G1 ·G2 · · ·Gk.
It is a famous open problem whether 2-membership can be solved in polyno-
mial time. This problem is equivalent to several other important algorithmic
problems in permutation groups: computing the intersection of permutation
groups, computing set stabilizers or centralizers, checking equality of double
cosets, see [34] for details. On the other hand, Luks has shown in [34] that
m-membership is NP-complete for every k ≥ 3. In fact, he proved NP-
hardness of membership in a product G · H · G, where G and H are both
abelian permutation groups.

Note that the k-membership problem is a special case of the rational
subset membership for symmetric groups. Let us define this problem again
for the setting of symmetric groups (here, 1 denotes the identity permutation
and we identify a word over the alphabet Sm with the permutation to which
it evaluates):

Problem 1.1 (rational subset membership problem for symmetric groups).

Input: a unary encoded number m ∈ N and a nondeterministic finite au-
tomaton (NFA) A over the alphabet Sm.
Question: Does 1 ∈ L(A) hold?

This problem was shown to be NP-complete in [26] (the result has been
independently shown in the conference version [31] of this paper).

An obvious generalization of the rational subset membership problem for
symmetric groups is the context-free subset membership problem for sym-
metric groups; it is obtained by replacing the NFA A in Problem 1.1 by a
context-free grammar G.

Two restrictions of the rational subset membership problem that have
been intensively studied for infinite groups in recent years are the knapsack
problem and subset sum problem, see e.g. [4, 7, 8, 16, 17, 27, 30, 32, 35].

3

For symmetric groups, these problems are defined as follows (note that the
number n+ 1 of permutations is part of the input):

Problem 1.2 (subset sum problem for symmetric groups).
Input: a unary encoded number m ∈ N and permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ {0, 1} such that a = ai11 · · · ainn ?

The subset sum problem is the membership problem for the cubes from
[6].

Problem 1.3 (knapsack problem for symmetric groups).
Input: a unary encoded number m ∈ N and permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ N such that a = ai11 · · · ainn ?

We will also consider the following restrictions of these problems.

Problem 1.4 (abelian subset sum problem for symmetric groups).
Input: a unary encoded number m ∈ N and pairwise commuting permuta-
tions a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ {0, 1} such that a = ai11 · · · ainn ?

The following problem is the special case of Luks’ k-membership problem
for cyclic groups. Note that k is a fixed constant here.

Problem 1.5 (k-knapsack problem for symmetric groups).
Input: a unary encoded number m ∈ N and k+1 permutations a, a1, . . . , ak ∈
Sm.
Question: Are there i1, . . . , ik ∈ N such that a = ai11 · · · a

ik
k ?

Main results. Our main result for the rational subset membership
problem in symmetric groups is:

Theorem 1.6. The problems 1.1–1.4 as well as Problem 1.5 for k ≥ 3 are
all NP-complete.

In contrast, we will show that the 2-knapsack problem can be solved in
polynomial time (Theorem 5.8). The NP upper bound for the rational subset
membership problem will be shown for black-box groups.

We also prove NP-completeness of the membership problem in products
〈g〉〈h1, h2, h3〉〈g〉, for given permutations g, h1, h2, h3 where h1, h2, h3 pairwise
commute; see Theorem 5.9. This sharpens Luks’ NP-completeness result
for products GHG (with G and H abelian permutation groups) in another
direction (G can be chosen to be cyclic).

4

Remark 1.7. The abelian variant of the knapsack problem, i.e., Problem 1.3
with the additional restriction that the permutations s1, . . . , sn pairwise com-
mute is of course the abelian subgroup membership problem and hence be-
longs to NC.

Remark 1.8. Analogously to the k-knapsack problem one might consider
the k-subset sum problem, where the number n in Problem 1.2 is fixed to
k and not part of the input. This problem can be solved in time 2k ·mO(1)
(check all 2k assignments for exponents i1, . . . , ik) and hence in polynomial
time for every fixed k.

Finally, for the context-free subset membership problem for symmetric
groups we show:

Theorem 1.9. The context-free membership problem for symmetric groups
is PSPACE-complete.

If we restrict the class of context-free grammars in Theorem 1.9 we can
improve the complexity to NP. For this we need the concept of the Horton-
Strahler number. The Horton-Strahler number hs(t) of a full binary tree2

t (introduced by Horton and Strahler in the context of hydrology [21, 38];
see [14] for a good survey emphasizing the importance of Horton-Strahler
numbers in computer science) is recursively defined as follows: If t consists
of a single node then hs(t) = 0. Otherwise, assume that t1 and t2 are the
subtrees rooted in the two children of the node. If hs(t1) = hs(t2) then
hs(t) = 1 + hs(t1), and if hs(t1) 6= hs(t2) then hs(t) = max{hs(t1), hs(t2)}.

Consider now a context-free grammar G in Chomsky normal form, i.e.,
all productions of G have the form A → a or A → BC for nonterminals
A,B and a terminal symbol a. A derivation tree of G is called acyclic if
no nonterminal appears twice on a path from the root to a leaf. When we
refer to the Horton-Strahler number of a derivation tree T of G we mean
the Horton-Strahler number of the tree obtained by removing from T the
terminal-labelled leaves so that the tree becomes a full binary tree. The
same convention is used for the height of a derviation tree. Note that the
height of an acyclic derivation tree is bounded by the number of nonterminals
of G minus 1. For k ≥ 1 let CFG(k) be the set of all context-free grammars

2A full binary tree t is a tree where every node is either a leaf or has exactly two
children.

5

in Chomsky normal form such that every acyclic derivation tree has Horton-
Strahler number at most k.

Theorem 1.10. For every k ≥ 1, the context-free membership problem for
symmetric groups restricted to context-free grammars from CFG(k) is NP-
complete.

Note that this result generalizes the statement for the rational subset
membership problem in Theorem 1.6 since every regular grammar (when
brought into Chomsky normal form) belongs to CFG(1). Also linear context-
free grammars belong to CFG(1). We remark that Theorem 1.10 is a promise
problem in the sense that coNP is the best upper complexity bound for
testing whether a given context-free grammar belongs to CFG(k) that we
are aware of; see the appendix.

The upper bounds in Theorems 1.6, 1.9, and 1.10 will be actually shown
for black box groups.

Application to intersection non-emptiness problems. We can ap-
ply Theorems 1.9 and 1.10 to intersection non-emptiness problems. The in-
tersection non-emptiness problem for deterministic finite automata (DFAs)
is the following problem:

Problem 1.11 (intersection non-emptiness problem for DFAs).
Input: DFAs A1,A2, . . . ,An
Question: Is

⋂
1≤i≤n L(Ai) non-empty?

Kozen [28] has shown that this problem is PSPACE-complete. When
restricted to group DFAs (see Section 2) the intersection non-emptiness prob-
lem was shown to be NP-complete by Blondin et al. [10]. Based on Cook’s
characterization of EXPTIME by polynomially space bounded AuxPDAs
[11], Swernofsky and Wehar [39] showed that the intersection non-emptiness
problem is EXPTIME-complete3 for a list of general DFAs and a sin-
gle context-free grammar; see also [19, p. 275] and see [13] for a related
EXPTIME-complete problem. Using Theorems 1.9 and 1.10 we can easily
show the following new results:

3The intersection non-emptiness problem becomes undecidable if one allows more than
one context-free grammar.

6

no CFG one CFG(k) one CFG

DFAs PSPACE-c. [28] EXPTIME-c.
for k large enough

EXPTIME-c. [39]

group DFAs NP-c. [10] NP-c. for all k ≥ 1 PSPACE-c.

Table 1: Complexity of various intersection non-emptiness problems

Theorem 1.12. The following problem is NP-complete for every k ≥ 1:

Input: A list of group DFAs A1,A2, . . . ,An and a context-free grammar G ∈
CFG(k).
Question: Is L(G) ∩

⋂
1≤i≤n L(Ai) non-empty?

Theorem 1.13. The following problem is PSPACE-complete:

Input: A list of group DFAs A1,A2, . . . ,An and a context-free grammar G.
Question: Is L(G) ∩

⋂
1≤i≤n L(Ai) non-empty?

Table 1 gives an overview on the complexity of intersection non-emptiness
problems. For the intersection non-emptiness problem for arbitrary DFAs
and one grammar from CFG(k) one has to notice that in the EXPTIME-
hardness proof from [39] one can choose a fixed context-free grammar. More-
over, every fixed context-free grammar belongs to CFG(k) for some k ≥ 1.

Related work. Computational problems for permutation groups have
a long history (see e.g. the text book [36]), and have applications, e.g. for
graph isomorphism testing [3, 33]. A problem that is similar to subset sum
is the minimum generator sequence problem (MGS) [15]: The input consists
of unary encoded numbers m, ` and a list of permutations a, a1, . . . , an ∈
Sm. The question is, whether a can be written as a product b1b2 · · · bk with
k ≤ ` and b1, . . . , bk ∈ {a1, . . . , an}. The problem MGS was shown to be
NP-complete in [15]. For the case, where the number ` is given in binary
representation, the problem is PSPACE-complete [23]. This yields in fact
the PSPACE-hardness in Theorem 1.9.

Intersection nonemptiness problems for finite automata have been stud-
ied intensively in recent years, see e.g. [2, 12]. The papers [9, 22] prove
PSPACE-hardness of the intersection nonemptiness problem for inverse au-
tomata (DFAs, where the transition monoid is an inverse monoid).

7

Horton-Strahler numbers have been used in the study of context-free lan-
guages before, see [14] for further information and references.

2. Preliminaries

Groups. Let G be a finite group and let G∗ be the free monoid of
all finite words over the alphabet G. There is a canonical morphism φG :
G∗ → G that is the identity mapping on G ⊆ G∗. Throughout this paper we
suppress applications of φG and identify words over the alphabet G with the
corresponding group elements. For a subset S ⊆ G we denote with 〈S〉 the
subgroup generated by S. The following folklore lemma is a straightforward
consequence of Lagrange’s theorem (if A and B are subgroups of G with
A < B, then |B| ≥ 2 · |A|).

Lemma 2.1. Let G be a finite group and S ⊆ G a generating set for G.
Then, there exists a subset S ′ ⊆ S such that 〈S ′〉 = G and |S ′| ≤ log2 |G|.

Assume that G = 〈S〉. A straight-line program over the generating set S
is a sequence of definitions S = (xi := ri)1≤i≤n where the xi are variables and
every right-hand side ri is either from S or of the form xjxk with 1 ≤ j, k < i.
Every variable xi evaluates to a group element gi ∈ G in the obvious way: if
ri ∈ S then gi = ri and if ri = xjxk then gi = gjgk. We say that S produces
gn. The size of S is n. The following result is known as the reachability
theorem from [6, Theorem 3.1].

Theorem 2.2 (reachability theorem). Let G be a finite group, S ⊆ G a
generating set for G, and g ∈ G. Then there exists a straight-line program
over S of size at most (1 + log2 |G|)2 that produces the element g.

For a set Q let SQ be the symmetric group on Q, i.e., the set of all
permutations on Q with composition of permutations as the group operation.
If Q = {1, . . . ,m} we also write Sm for SQ. Let a ∈ SQ be a permutation
and let q ∈ Q. We also write qa for a(q). We multiply permutations from
left to right, i.e., for a, b ∈ SQ, ab is the permutation with qab = (qa)b for all
q ∈ Q. A permutation group is a subgroup of some SQ.

Quite often, the permutation groups we consider are actually direct prod-
ucts

∏
1≤i≤d Smi

for small numbers mi. Clearly, we have
∏

1≤i≤d Smi
≤ Sm for

m =
∑

1≤i≤dmi and an embedding of
∏

1≤i≤d Smi
into Sm can be computed

in polynomial time.

8

Horton-Strahler number. We defined the Horton-Strahler number
hs(t) of a full binary tree t in the introduction. The following simple fact
will be needed. The height of a binary tree is the maximal number of edges
on a path from the root to a leaf.

Lemma 2.3. Let t be a full binary tree of height d ≥ 0 and let s = hs(t).
Then, t has at most (d + 1)s many leaves and therefore at most 2 · (d + 1)s

many nodes.

Proof. We prove the statement by induction on the height d. If d = 0 then t
consists of a single leaf and we have s = 0. So, the statement of the lemma
holds. Otherwise take a path v1, v2, . . . , vk in t, where v1 is the root, vk is
a leaf, and for every 2 ≤ i ≤ k, if ti is the subtree rooted in vi and t′i is
the subtree rooted in the sibling node of vi, then hs(ti) ≥ hs(t′i). Note that
k − 1 ≤ d. Let t1 = t. Then we must have hs(t′i+1) < hs(ti) ≤ s for every
1 ≤ i ≤ k− 1. Moreover, every t′i has height at most d− 1. Using induction,
we can bound the number of leaves in t by

1 +
k∑
i=2

ds−1 ≤ 1 + d · ds−1 ≤ 1 + ds ≤ (d+ 1)s.

This shows the lemma.

Computational complexity. We assume that the reader has some
basic knowledge in complexity theory; see [1] for more details. The following
complexity classes are used in the following:

• NP: the class of all problems that can be accepted by a nondetermin-
istic Turing machine in polynomial time.

• PSPACE: the class of all problems that can be accepted by a nonde-
terministic Turing machine whose work space is polynomially bounded
by the input length. By Savitch’s theorem this is the same as the class
of all problems that can be accepted by a deterministic Turing machine
whose work space is polynomially bounded by the input length.

Formal languages. We assume that the reader is familiar with basic
definitions from automata theory; see e.g. [20] for a classical reference. Our

9

definitions of deterministic finite automata (DFA), nondeterministic finite
automata (NFA), and context-free grammars are the standard ones.

Consider a DFA A = (Q,Σ, q0, δ, F), where Q is the finite set of states, Σ
is the set of terminal symbols, q0 ∈ Q is the initial state, δ : Q×Σ→ Q is the
transition mapping and F ⊆ Q is the set of final states. The transformation
monoid of A is the submonoid of QQ (the set of all mappings on Q and
composition of functions as the monoid operation) generated by all mappings
q 7→ δ(q, a) for a ∈ Σ. A group DFA is a DFA whose transformation monoid
is a group.

Consider now a context-free grammar G = (N,Σ, P, S) (N is the set of
nonterminals, Σ is the set of terminal symbols, S ∈ N is the start nonter-
minal and P is the set of productions). We always assume Chomsky normal
form, i.e., all productions have the form A→ BC or A→ a for A,B,C ∈ N
and a ∈ Σ. We can also assume that G is reduced, i.e., every nonterminal
A appears in a derivation that starts with S and ends with a word w ∈ Σ∗

(otherwise A would be useless and therefore can be eliminated). When we
speak of a derivation tree T of G we assume that every leaf is labelled with
a terminal symbol, whereas the root can be labelled with an arbitrary non-
terminal A ∈ N . In other words, derivation trees correspond to derivations
that start with a nonterminal A and end with a word w ∈ Σ∗. In a par-
tial derivation tree, we also allow leafs labelled with nonterminals. When
we refer to the Horton-Strahler number of a (partial) derivation tree T , we
take the Horton-Strahler number of the tree obtained from T by removing
all terminal-labelled leaves. Due to the Chomsky normal form, the resulting
tree is a full binary tree. The same convention is used for the height of a
(partial) derivation tree.

3. Black box groups

More details on black box groups can be found in [6, 36]. Roughly speak-
ing, in the black box setting group elements are encoded by bit strings of a
certain length b and there exist oracles for multiplying two group elements,
computing the inverse of a group element, checking whether a given group
element is the identity, and checking whether a given bit string of length b is
a valid encoding of a group element.4 As usual, each execution of an oracle

4The latter operation is not allowed in [6].

10

operation counts one time unit, but the parameter b enters the input length
additively.

Formally, a black box is a tuple

B = (b, c, valid, inv, prod, id, G, f),

such that G is a finite group (the group in the box), b, c ∈ N, and the following
properties hold:

• f : {0, 1}b → G] {∗} is a mapping with

G ⊆ f({0, 1}b)

(f−1(g) 6= ∅ is the set names of the group element g).

• valid : {0, 1}b → {yes, no} is a mapping such that

∀x ∈ {0, 1}b : f(x) ∈ G ⇐⇒ valid(x) = yes.

• inv : {0, 1}b → {0, 1}b is a mapping such that for all x ∈ f−1(G):

f(inv(x)) = f(x)−1.

• prod : {0, 1}b × {0, 1}b → {0, 1}b is a mapping such that for all x, y ∈
f−1(G):

f(prod(x, y)) = f(x)f(y).

• id : {0, 1}b × {0, 1}c → {yes, no} is a mapping such that for all x ∈
f−1(G):

f(x) = 1 ⇐⇒ ∃y ∈ {0, 1}c : id(x, y) = yes

(such a y is called a witness for f(x) = 1).

We call b the code length of the black box.
A black box Turing machine is a deterministic or nondeterministic oracle

Turing machine M that has four special oracle query states qvalid, qinv, qprod,
qid, together with a special oracle tape, on which a binary string is written.
The input for M consists of two unary encoded numbers b and c and some
additional problem specific input. In order to determine the behavior of M
on the four special states qvalid, qinv, qprod, qid, M must be coupled with a
black box B = (b, c, valid, inv, prod, id, G, f) (where b and c must match the
first part of the input of M). Then M behaves as follows:

11

• After entering qvalid the oracle tape is overwritten by valid(x) where
x ∈ {0, 1}b is the bit string consisting of the first b bits on the oracle
tape.

• After entering qinv the oracle tape is overwritten by inv(x) where x ∈
{0, 1}b is the bit string consisting of the first b bits on the oracle tape.

• After entering qprod the oracle tape is overwritten by prod(x, y) where
x, y ∈ {0, 1}b and xy is the bit string consisting of the first 2b bits on
the oracle tape.

• After entering qid the oracle tape is overwritten by id(x, y) where x ∈
{0, 1}b, y ∈ {0, 1}c and xy is the bit string consisting of the first b + c
bits on the oracle tape.

As usual with oracle Turing machines, each of these four operations happens
instantaneously and counts time O(1) for the total running time. We denote
the machine with the above behaviour by MB. Note that the black box

B = (b, c, valid, inv, prod, id, G, f)

is not part of the input of M, only the unary encoded numbers b and c are
part of the input.

Assume that P is an algorithmic problem for finite groups. The input
for P is a finite group G and some additional data X (e.g. a context-free
grammar with terminal alphabet G in the next section). We do not specify
exactly, how G is represented. The additional input X may contain elements
of G. We will say that P belongs to NP for black box groups if there is a
nondeterministic black box Turing machine M, whose input is of the form
b, c,X with unary encoded numbers b and c, such that for every black box
B = (b, c, valid, inv, prod, id, G, f) the following holds: MB accepts the input
b, c,X (where X denotes the additional input for P and group elements in
X are represented by bit strings from f−1(G)) if and only if (G,X) belongs
to P . The running time of MB is polynomial in b + c + |X|. Note that
since G may have order 2b, the order of G may be exponential in the input
length. We will use the analogous definition for other complexity classes, in
particular for PSPACE.

For the rest of the paper we prefer a slightly more casual handling of
black box groups. We always identify bits strings from x ∈ f−1(G) with
the corresponding group elements. So, we will never talk about bit strings

12

x ∈ f−1(G), but instead directly deal with elements of G. The reader should
notice that we cannot directly verify whether a given element g ∈ G is the
identity. This is only possible in a nondeterministic way by guessing a witness
y ∈ {0, 1}c. The same applies to the verification of an identity g = h, which
is equivalent to gh−1 = 1. This allows to cover also quotient groups by the
black box setting; see [6].

We need the following well-known fact from [6]:

Lemma 3.1. The subgroup membership problem for black box groups (given
group elements g, g1, . . . , gn, does g ∈ 〈g1, . . . , gn〉 hold?) belongs to NP.

This is a consequence of the reachability theorem: Let b be the code
length of the black box. Hence there are at most 2b group elements. By
the reachability theorem (Theorem 2.2) it suffices to guess a straight-line
program over {g1, . . . , gn} of size at most (1 + log2 2b)2 = (b + 1)2, evaluate
it using the oracle for prod (let g′ be the result of the evaluation) and check
whether g′g−1 = 1. The later can be done nondeterministically using the
oracle for id.

4. Context-free membership in black box groups

The goal of this section is to prove the following two results. Recall the
definition of the class CFG(k) from the introduction.

Theorem 4.1. The context-free subset membership problem for black box
groups is in PSPACE.

Theorem 4.2. For every k ≥ 1, the context-free membership problem for
black box groups restricted to context-free grammars from CFG(k) is in NP.

Before we prove these results, let us derive some corollaries. Theorem 1.10
is a direct corollary of Theorem 4.2. Restricted to regular grammars (which
are in CFG(1) after bringing them to Chomsky normal form) we get:

Corollary 4.3. The rational subset membership problem for black box groups
is in NP. In particular, the rational subset membership problem for symmet-
ric groups is in NP.

Also Theorem 1.9 can be easily obtained now: The upper bound follows
directly from Theorem 4.1. The lower bound can be obtained from a result

13

of Jerrum [23]. In the introduction we mentioned that Jerrum proved the
PSPACE-completeness of the MGS problem for the case where the number
` is give in binary notation. Given permutations a1, . . . , an ∈ Sm and a bi-
nary encoded number ` one can easily construct a context-free grammar for
{1, a1, . . . , an}` ⊆ Sm. Hence, the MGS problem with ` given in binary nota-
tion reduces to the context-free membership problem for symmetric groups,
showing that the latter is PSPACE-hard.

In the rest of the section we prove Theorems 4.1 and 4.2. We fix a finite
group G that is only accessed via a black box.

The spanning tree technique. We start with subgroups of G that
are defined by finite nondeterministic automata (later, we will apply the
following construction to a different group that is also given via a black box).
Assume that A = (Q,G, {q0}, δ, {q0}) is a finite nondeterministic automaton
with terminal alphabet G. Note that q0 is the unique initial and the unique
final state. This ensures that the language L(A) defined by A (which, by our
convention, is identified with a subset of the group G) is a subgroup of G:
the set L(A) is clearly a submonoid and every submonoid of a finite group is
a subgroup. We now show a classical technique for finding a generating set
for L(A).

In a first step we remove from A all states p ∈ Q such that there is no
path from q0 to p as well as all states p such that there is no path from p to
q0. Let A1 be the resulting NFA. We have L(A) = L(A1).

In the second step we add for every transition (p, g, q) the inverse transi-
tion (q, g−1, p) (unless it already exists). Let A2 be the resulting NFA. We
claim that L(A1) = L(A2). Note that by the first step, there must be a path
from q to p in A1. Let h ∈ G be the group element produced by this path.
Take a k > 0 such that (gh)k = 1 in G. Hence, g−1 = h(gh)k−1. More-
over, there is a path in A1 from q to p which produces the group element
h(gh)−1 = g−1. This shows that L(A1) = L(A2).

In the third step we compute the generating set for L(A2) = L(A) us-
ing the spanning tree technique (see [25] for an application in the context
of free groups). Consider the automaton A2 as an undirected multi-graph
G. The nodes of G are the states of A2. Moreover, every undirected pair
{(p, g, q), (q, g−1, p)} of transitions in the NFA A2 is an undirected edge in
G connecting the nodes p and q. Note that there can be several edges be-
tween two nodes (as well as loops); hence G is indeed a multi-graph. We

14

then compute a spanning tree T of G. For every state of p of A2 we fix a
directed simple path πp in T from q0 to p; its length is bounded by the
number of states of A2 minus 1. We can view this path πp as a path
in A2. Let gp be the group element produced by the path πp. For ev-
ery undirected edge e = {(p, g, q), (q, g−1, p)} in G \ T let ge := gpgg

−1
q

(we could also take gqg
−1g−1p). A standard argument shows that the set

{ge | e is an edge in G \ T } indeed generates L(A).
The above construction can be carried out in polynomial time for black

box groups. This is straightforward. The only detail that we want to em-
phasize is that in the black box setting we have to allow multiple copies of
undirected edges {(p, g, q), (q, g−1, p)}. The reason is that we may have sev-
eral names (bit strings) denoting the same group element and we can only
verify nondeterministically whether two bit strings represent the same group
element. But this is not a problem; it just implies that we may output copies
of the same generator.

The operations ∆ and Γ. Let G = (N,G, P, S) be a context-free
grammar in Chomsky normal form that is part of the input, whose terminal
alphabet is the finite group G. When we speak of the input size in the
following, we refer to |G| + b + c, where b and c are the two unary encoded
numbers from the black box for G and the size |G| is defined as the number of
productions of the grammar. Recall from the introduction that a derivation
tree is acyclic if in every path from the root to a leaf every nonterminal
appears at most once. The height of an acyclic derivation tree is bounded
by |N | − 1.

Also recall that φG : G∗ → G is the canonical morphism from Section 2.
With L(A) we denote the set of all words w ∈ G∗ that are derived from the
nonterminal A ∈ N and, as usual, we identify L(A) with φG(L(A)) ⊆ G.
Let Ĝ be the dual group of G: it has the same underlying set as G and if
g · h denotes the product in G then the multiplication ◦ in Ĝ is defined by
g ◦ h = h · g. The direct product G × Ĝ will be important for the following
construction. Note that it is straightforward to define a black box for G× Ĝ
from a black box for G. For every nonterminal A ∈ N we define the subgroup
GA ≤ G× Ĝ by

GA = {(φG(u), φG(v)) | u, v ∈ G∗, A⇒∗G uAv}. (1)

Note that GA is indeed a group. To see this, it suffices to argue that HA ⊆
GA ≤ G × Ĝ is a monoid (every submonoid a finite group is a subgroup).

15

The latter follows from the fact that two derivations A⇒∗G u1Av1 and A⇒∗G
u2Av2 can be composed to the derivation A⇒∗G u1u2Av2v1 and inGA ≤ G×Ĝ
we have (φG(u1), φG(v1))(φG(u2), φG(v2)) = (φG(u1)φG(u2), φG(v2)φG(v1)).

We now define two important operations ∆ and Γ. The operation ∆ maps
a tuple s = (HA)A∈N of subgroups HA ≤ G× Ĝ to a tuple ∆(s) = (LA)A∈N
of subsets LA ⊆ G (not necessarily subgroups), whereas Γ maps a tuple
t = (LA)A∈N of subsets LA ⊆ G to a tuple Γ(t) = (HA)A∈N of subgroups
HA ≤ G× Ĝ.

We start with ∆. Let s = (HA)A∈N be a tuple of subgroups HA ≤ G× Ĝ.
The tuple ∆(s) = (LA)A∈N of subsets LA ⊆ G is obtained as follows: Let
T be an acyclic derivation tree with root r labelled by A ∈ N . We assign
inductively a set Lv ⊆ G to every inner node v: Let B the label of v. If v has
only one child it must be a leaf since our grammar is in Chomsky normal form.
Let g ∈ G be the label of this leaf. Then we set Lv = {h1gh2 | (h1, h2) ∈ HB}.
If v has two children v1, v2 (where v1 is the left child and v2 the right child),
then the sets Lv1 ⊆ G and Lv2 ⊆ G are already determined and we set

Lv = {h1g1g2h2 | (h1, h2) ∈ HB, g1 ∈ Lv1 , g2 ∈ Lv2}.

We set L(T) = Lr and finally define LA as the union of all sets L(T) where
T is an acyclic derivation tree whose root is labelled with A.

The second operation Γ is defined as follows: Let t = (LA)A∈N be a
tuple of subsets LA ⊆ G. Then we define the tuple Γ(t) = (HA)A∈N with
HA ≤ G × Ĝ as follows: Fix a nonterminal A ∈ N . Consider a sequence
p = (Ai → Ai,0Ai,1)1≤i≤m of productions (Ai → Ai,0Ai,1) ∈ P and a sequence
d = (di)1≤i≤m of directions di ∈ {0, 1} such that Ai+1 = Ai,di for all 1 ≤ i ≤
m, A1 = A = Am,dm . Basically, p and d define a path from A back to A. For
every 1 ≤ i ≤ m we define the sets

Mi =

{
LAi,0

× {1} if di = 1

{1} × LAi,1
if di = 0

We view Mi as a subset of G× Ĝ and define

M(p, d) =
∏

1≤i≤m

Mi,

where
∏

refers to the product in G× Ĝ. If p and d are the empty sequences
(m = 0) then M(p, d) = {(1, 1)}. Finally we define HA as the union of all

16

M(p, d), where p = (Ai → Ai,0Ai,1)1≤i≤m and d = (di)1≤i≤m are as above

(including the empty sequences). This set HA is a subgroup of G × Ĝ (for
the same reason that GA in (1) is a subgroup of G× Ĝ).

One should see ∆ and Γ as saturation operations that when applied al-
ternatingly finally yield the sets L(A) ⊆ G and the subgroups GA ≤ G× Ĝ.
This intuition is captured by the following two lemmas.

Lemma 4.4. ∆((GA)A∈N) = (L(A))A∈N .

Proof. To see this, let ∆((GA)A∈N) = (LA)A∈N . The inclusion LA ⊆ L(A) is
clear: the definition of ∆ and GA directly yields a derivation tree with root
labelled by A for every element in LA. For the inclusion L(A) ⊆ LA take an
arbitrary derivation tree T for an element w ∈ L(A) with root labelled by
A. We can get an acyclic derivation tree from T by contracting paths from
a B-labelled node down to another B-labelled node in T for an arbitrary
B ∈ N . If we choose these paths maximal, then they will not overlap, which
means that we can contract all chosen paths in parallel and thereby obtain an
acyclic derivation tree. Each path produces a pair from GB for some B ∈ N .
This shows that w ∈ LA and proves the lemma.

Let s0 = (HA)A∈N with HA = {(1, 1)} for all A ∈ N be the tuple of trivial
subgroups of G × Ĝ. For two tuples s1 = (HA,1)A∈N and s2 = (HA,2)A∈N of

subgroups of G × Ĝ we write s1 ≤ s2 if HA,1 ≤ HA,2 for every A ∈ N . By
induction over i ≥ 0 we show that (Γ∆)i(s0) ≤ (Γ∆)i+1(s0) for all i: For
i = 0 this is clear and the induction step holds since Γ as well as ∆ are
monotone with respect to componentwise inclusion. Hence, we can define
limi→∞(Γ∆)i(s0).

Lemma 4.5. (GA)A∈N = lim
i→∞

(Γ∆)i(s0) = (Γ∆)j(s0) for j = 2|N |·blog2 |G|c.

Proof. From the definition of Γ and ∆ we directly get (Γ∆)i(s0) ≤ (GA)A∈N
for every i ≥ 0. Let us next show that (GA)A∈N ≤ limi→∞(Γ∆)i(s0). Let
limi→∞(Γ∆)i(s0) = (HA)A∈N and (g, h) ∈ GA. Hence, there exists a deriva-
tion A ⇒∗G uAv such that g = φG(u) and h = φG(v). We prove (g, h) ∈ HA

by induction on the length of this derivation. Let T be the partial deriva-
tion tree corresponding to the derivation A ⇒∗G uAv. From the derivation
A ⇒∗G uAv we obtain a sequence p = (Ai → Ai,0Ai,1)1≤i≤m of productions
(Ai → Ai,0Ai,1) ∈ P and a sequence d = (di)1≤i≤m of directions di ∈ {0, 1}
such that Ai+1 = Ai,di for all 1 ≤ i ≤ m, A1 = A = Am,dm . Assume that

17

Ai,1−di derives to wi ∈ G∗ in the derivation A⇒∗G uAv for all 1 ≤ i ≤ m and
define

(ui, vi) =

{
(wi, 1) if di = 1

(1, wi) if di = 0.

Then we obtain
(g, h) =

∏
1≤i≤m

(φG(ui), φG(vi))

where the product is computed in the group G× Ĝ. Let Ti be the subtree of
T that corresponds to the derivation Ai,1−di ⇒∗G wi. We now apply the same
argument that we used for the proof of Lemma 4.4 to each of the trees Ti, i.e.,
we contract maximal subpaths from a B-labelled node down to a B-labelled
node (for B ∈ N arbitrary). Each of these subpaths corresponds to a deriva-
tion B ⇒∗G u′Bv′ that is of course shorter than the derivation A⇒∗G uAv. By
induction, we get (φG(u′), φG(v′)) ∈ GB. Moreover, from the construction,
it follows that (i) φG(wi) belongs to the Ai,1−di-component of ∆((HB)B∈N)
and (ii) (g, h) belongs to the A-component of Γ(∆((HB)B∈N)), which is HA.
The construction is shown in Figure 1. All the paths between identical non-
terminals in the subtrees below A′1,1, . . . , A

′
6,0 are contracted and replaced by

their “effects”, which by induction are already in the corresponding groups
GX (X ∈ {B,C, . . . , G}). After these contractions the subtrees are acyclic.
This concludes the proof of the first equality in the lemma.

Since all GA are finite groups there is a smallest number j ≥ 0 such that

(Γ∆)j(s0) = (Γ∆)j+1(s0).

We then have (Γ∆)j(s0) = limi→∞(Γ∆)i(s0). It remains to show that j ≤
2|N | · log2 |G|. In each component of the |N |-tuples (Γ∆)i(s0) (0 ≤ i ≤ j)
we have a chain of subgroups of G × Ĝ. By Lagrange’s theorem, any chain
{(1, 1)} = H0 < H1 < · · · < Hk−1 < Hk ≤ G × Ĝ satisfies k ≤ 2 · log2 |G|.
This shows that j ≤ 2|N | · log2 |G|

One could use Lemma 4.4 and Lemma 4.5 to compute the sets L(A) and
the groups GA by applying the operations ∆ and Γ alternatingly, starting
with the tuple of trivial subgroups of G× Ĝ. This is clearly not a PSPACE
machine, simply because the L(A) and GA can be of size exponential in the
input length and therefore cannot be stored in polynomial space. On the
other hand, all we have to do is to check whether 1 belongs to L(S) (for the
start nonterminal S) and for this we can use nondeterminism.

18

A

A2 A′1,1

A3A′2,0

A4A′3,0

A5 A′4,1

A6 A′5,1

AA′6,0

w1

w2

w3

w4

w5

w6

B

B

C

C

D

D

E

E

F

F

G

G

Figure 1: The situation in the proof of (GA)A∈N ≤ limi→∞(Γ∆)i(s0).

In the following, we will speak of NP machines with oracles. Here, we
mean nondeterministic polynomial-time Turing machines M with oracles,
where the oracles are arbitrary languages L1, . . . , Lm (that are fixed in the
beginning). In the standard setting, the machineM has for every 1 ≤ i ≤ m
a special instruction that allows to test in a single step whether the word w
that is currently written on a distinguished oracle tape belongs to the set Li.
In the following, we make the additional restriction that the oracle languages
Li can only be queried positively: If w ∈ Li then the instruction succeeds and
returns the answer “yes” (and the computation of M continues). If w /∈ Li
then the instruction does not succeed and the computation of M stops in a
rejecting state. As for ordinary nondeterministic machines (without oracles),
the machine M accepts its input word if and only if there is at least one

19

computation ending in the accepting state. This implies that if all Li belong
to NP (resp. PSPACE), then the language accepted by M also belongs
to NP (resp. PSPACE). Likewise, we will use the notion of a PSPACE
machine with oracles.

Lemma 4.6. For a tuple (LA)A∈N of subsets LA ⊆ G there is an NP ma-
chine with the oracle sets LA (A ∈ N) such that the machine tests member-
ship in a specified entry of the tuple Γ((LA)A∈N).

Proof. Let Γ((LA)A∈N) = (HA)A∈N . For every nonterminal A ∈ N we define
the NFA

AA = (N, (G× Ĝ), {A}, δ, {A}),

whose input alphabet is the finite group G × Ĝ. The NFAs AA only differ
in the initial and final state. The transition relation δ contains all triples
(B, (g, h), C) ∈ N × (G × Ĝ) × N such that for some D ∈ N either (B →
CD) ∈ P , g = 1, and h ∈ LD or (B → DC) ∈ P , h = 1, and g ∈ LD.
Then we have L(AA) = HA. As in the spanning tree approach we add
for every transition (B, (g, h), C) in the NFA AA also the inverse transition
(C, (g−1, h−1), B). In the following, AA refers to this NFA. The number of
transitions of the NFA AA can be exponential in the input size, so we cannot
afford to construct AA explicitly. But this is not necessary, since we only
aim to come up with a nondeterministic polynomial time machine.

Recall the spanning tree technique, which yields a generating set for the
subgroup L(AA) = HA. This generating set will be in general of exponential
size. On the other hand, Lemma 2.1 guarantees that the generating set
produced by the spanning tree approach contains a subset of size at most
log2 |G × Ĝ| = 2 · log2 |G| that still generates L(AA). Note that 2 · log2 |G|
is linearly bounded in the input size. We can therefore nondeterministically
produce a set of at most 2 · log2 |G| loops in the NFA AA (starting and ending
in A) of length at most 2|N | − 1. Note that AA has |N | states and that the
loops produced by the spanning tree approach have length at most 2|N | − 1.
We do not even have to produce a spanning tree before: every generator
produced by the spanning tree approach is a loop in AA (starting and ending
in A) of length at most 2|N | − 1 and every such loop certainly yields an
element of HA. For every transition that appears on one of the guessed loops
we guess a transition label (either a pair (1, h) or a pair (g, 1)) and verify,
using the oracle for membership to LB, that we guessed a transition in the
NFA AA. Then we multiply the guessed pairs along the loop (starting and

20

ending in A) in the group G×Ĝ. Let us denote with SA ⊆ G×Ĝ the resulting
subset of G× Ĝ (of course, it depends on the nondeterministic choices). For
every nondeterministic choice we have SA ⊆ HA and there exists at least one
nondeterministic choice for which 〈SA〉 = HA. By Lemma 3.1 we can finally
check in NP whether a given pair (g, h) belongs to 〈SA〉.

Lemma 4.7. Assume that the input grammar G is restricted to the class
CFG(k) for some fixed k. For a tuple (HA)A∈N of subgroups HA ≤ G × Ĝ
there is an NP machine with the oracle sets HA (A ∈ N) such that the
machine tests membership in a specified entry of the tuple ∆((HA)A∈N).

Proof. By assumption, the Horton-Strahler number of every acyclic deriva-
tion tree of G is bounded by the constant k. Since the height of an acyclic
derivation tree is bounded by |N | the total number of nodes in the tree is
bounded by 2(|N | + 1)k by Lemma 2.3. Let ∆((HA)A∈N) = (LA)A∈N . Fix
an A ∈ N and a group element g ∈ G. We want to verify whether g ∈ LA.
For this we guess an acyclic derivation tree T with root A. This can be
done by a nondeterministic polynomial time machine. Moreover we guess
for every inner node v of T that is labelled with the nonterminal B a pair
(hv,1, hv,2) ∈ G × Ĝ and verify using the oracle for membership to HA that
(hv,1, hv,2) ∈ HA. If the verification is successful, we evaluate every inner
node v to a group element gv ∈ G. If v has a single child, it must be la-
belled with a group element h ∈ G (due to a production B → h) and we
set gv = hv,1hhv,2. If v has two children v1 (the left child) and v2 (the right
child) then we set gv = hv,1gv1gv2hv,2. At the end, we check whether g = gr,
where r is the root of the tree T .

Lemma 4.8. For a tuple (HA)A∈N of subgroups HA ≤ G × Ĝ there is a
PSPACE machine with the oracle sets HA (A ∈ N) such that the machine
tests membership in a specified entry of the tuple ∆((HA)A∈N).

Proof. The proof is similar to Lemma 4.7. However, without the restriction
that the input grammar belongs to CFG(k) for a fixed constant k, an acyclic
derivation tree of the grammar G may be of size exponential in the input
length. But we will see that we never have to store the whole tree but only
a polynomial sized part of the tree. To check g ∈ LA we do the following:
We guess a production for A and a pair (h1, h2) ∈ G × Ĝ and verify using
our oracle that (h1, h2) ∈ HA. If the guessed production for A is of the form
A → h for a group element h ∈ G then we only have to check h1hh2 = g

21

and we are done. If the production is of the form A→ BC for nonterminals
B,C ∈ N then we guess additional group elements g1, g2 ∈ G and check that
g = h1g1g2h2. If this holds, we continue with two recursive calls for g1 ∈ LB
and g2 ∈ LC . We have to make sure that this eventually terminates. In order
to ensure termination for every computation path we store the nonterminals
that we already have seen. By this the recursion depth is bounded by |N |.
This also ensures that we traverse an acyclic derivation tree. We obtain
a nondeterministic polynomial space machine since the recursion depth is
bounded by |N | and the space used for the first recursive call can be reused
for the second one.

Lemma 4.9. For a tuple (HA)A∈N of subgroups HA ≤ G×Ĝ there is an NP
machine M with the oracle sets HA (A ∈ N) such that M has the following
properties:

• On every accepting computation path, M outputs a tuple (SA)A∈N of
subsets SA ⊆ HA.

• There is at least one accepting computation path on which M outputs
a tuple (SA)A∈N such that every SA generates HA.

Proof. By Lemma 2.1 we know that every subgroup HA ≤ G×Ĝ is generated
by a set of at most log2 |G × Ĝ| = 2 · log2 |G| generators. The machine M
simply guesses for every A ∈ N a subset RA ⊆ G×Ĝ of size at most 2·log2 |G|.
Then it verifies, using the oracles, for every A ∈ N and every (g, h) ∈ RA,
whether (g, h) ∈ HA holds. If all these verification steps succeed,M outputs
the set RA for every A ∈ N .

If membership for HA is in PSPACE for every A ∈ N , then we could
actually compute deterministically in polynomial space a generating set for
every HA by iterating over all elements of G× Ĝ. But we will not need this
stronger fact.

We are now in the position to prove Theorems 4.1 and 4.2.

Proofs of Theorems 4.1 and 4.2. We start with the proof of Theorem 4.2.
By Lemma 4.4 and Lemma 4.7 it suffices to show that membership for the
subgroups GA is in NP. For this, we construct a nondeterministic polynomial
time machine that computes on every computation path a subset SA ⊆ GA

for every A ∈ N such that on at least one computation path it computes a

22

generating set for groups GA for all A ∈ N . Then we can decide membership
for the 〈SA〉 in NP by Lemma 3.1.

The set SA is computed by initializing SA = {(1, 1)} for every A ∈ N and
then doing 2|N | · log2 |G| iterations of the following procedure: Assume that
we have already produced the subsets (SA)A∈N . Membership in 〈SA〉 can be
decided in NP by Lemma 3.1. Hence, by Lemmas 4.6 and 4.7 one can decide
membership in every entry of the tuple Γ(∆((〈SA〉)A∈N)) in NP. Finally, by
Lemma 4.9 we can produce nondeterministically in polynomial time a subset
S ′A ⊆ G× Ĝ for every A ∈ N such that for every computation path we have
(〈S ′A〉)A∈N ≤ Γ(∆((〈SA〉)A∈N)) and for at least one computation path the
machine produces subsets S ′A with (〈S ′A〉)A∈N = Γ(∆((〈SA〉)A∈N)). With the
sets S ′A we go into the next iteration. By Lemma 4.5 there will be at least one
computation path on which after 2|N | · log2 |G| iterations we get generating
sets for all the groups GA. This concludes the proof of Theorem 4.2.

The proof of Theorem 4.1 is identical except that Lemma 4.8 instead of
Lemma 4.7 is used.

5. Restrictions of rational subset membership in symmetric groups

In this section, we want to contrast the general upper bounds from the
previous sections with lower bounds for symmetric groups and restricted
versions of the rational subset membership problem. We start with the subset
sum problem.

5.1. Subset sum in permutation groups

The following result refers to the abelian group Zm3 , for which we use the
additive notation.

Theorem 5.1. The following problem is NP-hard:
Input: unary encoded number m and a list of group elements g, g1, . . . , gn ∈
Zm3 .
Question: Are there i1, . . . , in ∈ {0, 1} such that g =

∑
1≤k≤n ik · gk?

Proof. We prove the theorem by a reduction from the problem exact 3-hitting
set problem (X3HS):

Problem 5.2 (X3HS).
Input: a finite set A and a set B ⊆ 2A of subsets of A, all of size 3.
Question: Is there a subset A′ ⊆ A such that |A′ ∩ C| = 1 for all C ∈ B?

23

X3HS is the same problem as positive 1-in-3-SAT, which is NP-complete
[18, Problem LO4].

Let A be a finite set and B ⊆ 2A be a set of subsets of A, all of size 3.
W.l.o.g. assume that A = {1, . . . , n} and let B = {C1, C2, . . . , Cd}. We work
in the group Zd3. For every 1 ≤ i ≤ n let

Xi = (ai,1, ai,2, . . . , ai,d) ∈ Zd3,

where

ai,j =

{
0 if i /∈ Cj
1 if i ∈ Cj.

Then there exists A′ ⊆ A such that |A′ ∩ Cj| = 1 for every 1 ≤ j ≤ d if and
only if the following equation has a solution y1, . . . , yn ∈ {0, 1}:

n∑
i=1

yi ·Xi = (1, 1, . . . , 1).

This proves the theorem.

Clearly Zd3 ≤ S3d. We obtain the following corollary:

Corollary 5.3. The abelian subset sum problem for symmetric groups is
NP-hard.

Let us remark that the subset sum problem for Zd2 (with d part of the
input) is equivalent to the subgroup membership problem for Zd2 (since every
element of Zd2 has order two) and therefore can be solved in polynomial time.

5.2. Knapsack in permutation groups

We now come to the knapsack problem in permutation groups. NP-
hardness of the general version of knapsack can be easily deduced from a
result of Luks:

Theorem 5.4 ([34]). The knapsack problem for symmetric groups is NP-
hard.

Proof. Recall from the introduction that Luks [34] proved NP-completeness
of 3-membership for the special case of membership in a product GHG where
G and H are abelian subgroups of Sm.

24

Let us now assume that G,H ≤ Sm are abelian. Let g1, g2, . . . , gk be
the given generators of G and let h1, h2, . . . , hl be the given generators of H.
Then s ∈ GHG is equivalent to the solvability of the equation

s = gx11 g
x2
2 · · · g

xk
k h

y1
1 h

y2
2 · · ·h

yl
l g

z1
1 g

z2
2 · · · g

zk
k

This is an instance of the knapsack problem, which is therefore NP-hard.

We next want to prove that already 3-knapsack is NP-hard. In other
words: the k-membership problem is NP-hard for every k ≥ 3 even if the
groups are cyclic. We prove this by a reduction from X3HS; see Problem 5.2.
For this, we need two lemmas.

Let a < b be integers. For the rest of the paper we write [a, b] for the cycle
permutation (a, a+ 1, . . . , b) mapping i to i+ 1 for a ≤ i < b and mapping b
to a. In this subsection, only cycles of the form [1, a] appear, and we use the
shorthand notation [a] for [1, a].

Lemma 5.5. Let p, q ∈ N such that q is odd and p > q > 0 holds. Then the
products [p][q] and [q][p] are cycles of length p.

Proof. Let p and q be as in the lemma. It is easy to verify that

[q][p] = (1, 3, 5, . . . , q − 2, q, 2, 4, 6, . . . , q − 1, q + 1, q + 2, q + 3, . . . , p),

which is a cycle of length p. Because of [p][q] = [q]−1([q][p])[q], also [p][q] is a
cycle of length p.

Lemma 5.6. Let p, q ∈ N be primes such that 2 < q < p holds. Then

[p]−x2 [q]x1([p][q])x2 = [q] = [q]x1 [p]−x2([p][q])x2 (2)

if and only if (x1 ≡ 1 mod q and x2 ≡ 0 mod p) or (x1 ≡ 0 mod q and
x2 ≡ 1 mod p).

Proof. Let p and q be as in the lemma. By Lemma 5.5, [p][q] is a cycle of
length p. Therefore, (x1 ≡ 1 mod q and x2 ≡ 0 mod p) or (x1 ≡ 0 mod q and
x2 ≡ 1 mod p) ensures that (2) holds.

For the other direction, assume that x1 and x2 are such that (2) holds.
We obtain

[p]−x2 [q]x1 = [q]x1 [p]−x2 . (3)

25

First of all we show that x1 6≡ 0 mod q implies x2 ≡ 0 mod p. Assume that
x1 6≡ 0 mod q and x2 6≡ 0 mod p. We will deduce a contradiction. We first
multiply both sides of (3) by [p]x2 and obtain

[q]x1 = [p]x2 [q]x1 [p]−x2 .

Since q is prime and x1 6≡ 0 mod q we can raise both sides to the power of
x−11 mod q and get

[q] = [p]x2 [q][p]−x2 ,

from which we obtain
[q][p]x2 [q]−1 = [p]x2

by multiplying with [p]x2 [q]−1. Since x2 6≡ 0 mod p and p is prime, we can
raise both sides to the power of x−12 mod p which finally gives us

[q][p][q]−1 = [p].

By evaluating of both sides at position p (recall that p > q) we get the
contradiction

p[q][p][q]
−1

= p[p][q]
−1

= 1[q]−1

= q 6= 1 = p[p],

which shows that x1 6≡ 0 mod q implies x2 ≡ 0 mod p. Obviously x1 ≡
0 mod q, x2 ≡ 0 mod p is not a solution of (2). This shows that x1 6≡ 0 mod q
if and only if x2 ≡ 0 mod p. It remains to exclude the cases x1 ≡ γ1 mod q
for 2 ≤ γ1 ≤ q − 1 and x2 ≡ γ2 mod p for 2 ≤ γ2 ≤ p− 1. The equation

[p]−0[q]x1([p][q])0 = [q] = [q]x1 [p]−0([p][q])0

can only be true if x1 ≡ 1 mod q. Hence it remains to show that the equation

[p]−x2 [q]0([p][q])x2 = [q] = [q]0[p]−x2([p][q])x2

can only be true if x2 ≡ 1 mod p. First we multiply with ([p][q])−x2 and get

[p]−x2 = [q]([p][q])−x2 .

We obtain

[p]−x2 = [q][q]−1[p]−1([p][q])−x2+1 = [p]−1([p][q])−(x2−1).

26

We multiply with [p] and invert both sides:

[p]x2−1 = ([p][q])x2−1

Assume that this equation holds for some x2 6≡ 1 mod p. By Lemma 5.5
[p][q] is a cycle of length p. Hence we can raise both sides to the power
of (x2 − 1)−1 mod p and obtain [p] = [p][q], which is a contradiction since
[q] 6= 1. This concludes the proof of the lemma.

Lemma 5.6 makes a reduction of X3HS (Problem 5.2) to 3-knapsack pos-
sible. More precisely, the two cases in Lemma 5.6 allow us to simulate for
each a ∈ A the boolean choice, whether a belongs to A′ ⊆ A are not.

Theorem 5.7. The problem 3-knapsack for symmetric groups is NP-hard.

Proof. We provide a log-space reduction from the NP-complete problem
X3HS (Problem 5.2) to 3-knapsack. Let A be a finite set and B ⊆ 2A

such that every C ∈ B has size 3. W.l.o.g. let A = {1, . . . , n} and let
B = {C1, C2, . . . , Cd} where Ci = {α(i, 1), α(i, 2), α(i, 3)} for a mapping
α : {1, . . . , d} × {1, 2, 3} → {1, . . . , n}.

Let p1, . . . , pn, r1, . . . , rn, q1, . . . , qd be the first 2m + d odd primes such
that pj > rj > 2 and pj > qi > 2 for 1 ≤ i ≤ d and 1 ≤ j ≤ n hold. Moreover
let P = max1≤j≤n pj. Intuitively, the primes pj and rj (1 ≤ j ≤ n) belong to
j ∈ {1, . . . , n} and the prime qi (1 ≤ i ≤ d) belongs to the set Ci.

We will work in the group

G =
n∏
j=1

Vj ×
d∏
i=1

Ci,

where Vj ≤ S4pj+rj and Ci ≤ Sqi+3P . More precisely we have

Vj = Spj × Spj × Zpj × Zpj × Zrj and Ci = Zqi × SP × SP × SP .

In the following, we denote the identity element of a symmetric group Sm
with id in order to not confuse it with the generator of a cyclic group Zm.

We now define four group elements g, g1, g2, g3 ∈ G. We write g =
(v1, . . . , vn, c1, . . . cd) and gk = (vk,1, . . . , vk,n, ck,1, . . . , ck,d) with vj, vk,j ∈ Vj
and ci, ck,i ∈ Ci. These elements are defined as follows:

vj = ([rj], [rj], 0, 0, 0)

27

v1,j = ([rj], [pj]
−1, 1, 1, 1)

v2,j = ([pj]
−1, [rj], −1, 0, −1)

v3,j = ([pj][rj], [pj][rj], 0, −1, 0)

ci = (1, id, id, id)

c1,i = (1, [qi]
−1, [pα(i,2)]

−1, [qi][pα(i,3)])

c2,i = (1, [qi][pα(i,1)], [qi]
−1, [pα(i,3)]

−1)

c3,i = (1, [pα(i,1)]
−1, [qi][pα(i,2)], [qi]

−1)

We claim that there is a subset A′ ⊆ {1, . . . , n} such that |A′ ∩ Ci| = 1 for
every 1 ≤ i ≤ d if and only if there are z1, z2, z3 ∈ Z with

g = gz11 g
z2
2 g

z3
3

in the group G. Due to the direct product decomposition of G and the
above definition of g, g1, g2, g3, the statement g = gz11 g

z2
2 g

z3
3 is equivalent to

the conjunctions of the following statements (read the above definitions of
the vj, vk,j, ci, ck,i columnwise) for all 1 ≤ j ≤ n and 1 ≤ i ≤ d:

(a) [rj] = [rj]
z1 [pj]

−z2([pj][rj])
z3

(b) [rj] = [pj]
−z1 [rj]

z2([pj][rj])
z3

(c) z1 ≡ z2 mod pj

(d) z1 ≡ z3 mod pj

(e) z1 ≡ z2 mod rj

(f) 1 ≡ z1 + z2 + z3 mod qi

(g) id = [qi]
−z1([qi][pα(i,1)])

z2 [pα(i,1)]
−z3

(h) id = [pα(i,2)]
−z1 [qi]

−z2([qi][pα(i,2)])
z3

(i) id = ([qi][pα(i,3)])
z1 [pα(i,3)]

−z2 [qi]
−z3

Recall that by Lemma 5.5, [pj][rj] and [qi][pj] are cycles of length pj. Due to
the congruences in (c), (d), and (e), the conjunction of (a)–(i) is equivalent
to the conjunction of the following equations:

28

(j) z1 ≡ z2 ≡ z3 mod pj

(k) z1 ≡ z2 mod rj

(l) [pj]
−z1 [rj]

z2([pj][rj])
z1 = [rj] = [rj]

z2 [pj]
−z1([pj][rj])

z1

(m) 1 ≡ z1 + z2 + z3 mod qi

(n) id = [qi]
−z1([qi][pα(i,1)])

z1 [pα(i,1)]
−z1

(o) id = [pα(i,2)]
−z1 [qi]

−z2([qi][pα(i,2)])
z1

(p) id = ([qi][pα(i,3)])
z1 [pα(i,3)]

−z1 [qi]
−z3

By Lemma 5.6, the conjunction of (j)–(p) is equivalent to the conjunction of
the following statements:

(q) (z1 ≡ z2 ≡ z3 ≡ 0 mod pj and z1 ≡ z2 ≡ 1 mod rj) or
(z1 ≡ z2 ≡ z3 ≡ 1 mod pj and z1 ≡ z2 ≡ 0 mod rj)

(r) 1 ≡ z1 + z2 + z3 mod qi

(s) id = [qi]
−z1([qi][pα(i,1)])

z1 [pα(i,1)]
−z1

(t) id = [pα(i,2)]
−z1 [qi]

−z2([qi][pα(i,2)])
z1

(u) id = ([qi][pα(i,3)])
z1 [pα(i,3)]

−z1 [qi]
−z3

Let us now assume that A′ ⊆ {1, . . . , n} is such that |A′ ∩ Ci| = 1 for every
1 ≤ i ≤ d. Let σ : {1, . . . , n} → {0, 1} such that σ(j) = 1 iff j ∈ A′. Thus,
α(i, 1) + α(i, 2) + α(i, 3) = 1 for all 1 ≤ i ≤ d. By the Chinese remainder
theorem, we can set z1, z2, z3 ∈ Z such that

• z1 ≡ z2 ≡ z3 ≡ σ(j) mod pj and z1 ≡ z2 ≡ 1− σ(j) mod rj for 1 ≤ j ≤
n,

• zk ≡ σ(α(i, k)) mod qi for 1 ≤ i ≤ d and 1 ≤ k ≤ 3.

Then (q) and (r) hold. For (s), one has to consider two cases: if σ(α(i, 1)) = 0,
then z1 ≡ 0 mod qi and z1 ≡ 0 mod pα(i,1). Hence, the right-hand side of (s)
evaluates to

[qi]
−0([qi][pα(i,1)])

0[pα(i,1)]
−0 = id.

29

On the other hand, if σ(α(i, 1)) = 1, then z1 ≡ 1 mod qi and z1 ≡ 1 mod
pα(i,1) and the right-hand side of (s) evaluates again to

[qi]
−1[qi][pα(i,1)][pα(i,1)]

−1 = id.

In the same way, one can show that also (t) and (u) hold.
For the other direction, assume that z1, z2, z3 ∈ Z are such that (q)–(u)

hold. We define A′ ⊆ {1, . . . , n} such that for every 1 ≤ j ≤ n:

• j /∈ A′ if z1 ≡ z2 ≡ z3 ≡ 0 mod pj and z1 ≡ z2 ≡ 1 mod rj, and

• j ∈ A′ if z1 ≡ z2 ≡ z3 ≡ 1 mod pj and z1 ≡ z2 ≡ 0 mod rj.

Consider a set Ci = {α(i, 1), α(i, 2), α(i, 3)}. From the equations (s), (t), and
(u) we get for every 1 ≤ i ≤ d and 1 ≤ k ≤ 3:

• if z1 ≡ 0 mod pα(i,k) then zk ≡ 0 mod qi

• if z1 ≡ 1 mod pα(i,k) then zk ≡ 1 mod qi

Together with 1 ≡ z1 + z2 + z3 mod qi and qi ≥ 3, this implies that there
must be exactly one k ∈ {1, 2, 3} such that z1 ≡ 1 mod pα(i,k). Hence, for
every 1 ≤ i ≤ d there is exactly one k ∈ {1, 2, 3} such that α(i, k) ∈ A′, i.e.,
|{α(i, 1), α(i, 2), α(i, 3)} ∩ A′| = 1.

Theorem 1.6 is an immediate consequence of Corollaries 4.3 and 5.3 and
Theorem 5.7.

Theorem 5.7 leads to the question what the exact complexity of the 2-
knapsack problem for symmetric groups is. Recall that the complexity of
Luks’ 2-membership problem is a famous open problem in the algorithmic
theory of permutation groups. The restriction of the 2-membership problem
to cyclic groups is easier:

Theorem 5.8. The 2-knapsack problem for symmetric groups belongs to P.

Proof. Let a, a1, a2 ∈ Sm be permutations and let A,A1, A2 be the corre-
sponding permutation matrices. Recall the definition of the Kronecker prod-
uct of two m-dimensional square matrices A and B: A⊗B = (ai,j ·B)1≤i,j≤m,
so it is an m2-dimensional square matrix with the m2 blocks ai,j · B for
1 ≤ i, j ≤ m. By [7, Theorem 4], the equation ax11 a

x2
2 = a is equivalent to

(AT2 ⊗ Im)x2(Im ⊗ A1)
x1vec(Im) = vec(A), (4)

30

where vec(A) = (A1,1, . . . , An,1, A1,2, . . . , An,2, . . . , A1,n, . . . , An,n)T is the m2-
dimensional column vector obtained from A by stacking all columns of A on
top of each other and Im is the m-dimensional identity matrix. The matrices
AT2 ⊗ Im and Im ⊗A1 commute; see [7]. By [4, Theorem 1.4] one can finally
check in deterministic polynomial time whether (4) has a solution.

5.3. Another NP-complete special case of 3-membership

We have already mentioned that Luks [34] proved NP-completeness of
the membership problem in products GHG where G and H are abelian per-
mutation groups that are given by generators. In the previous section we
proved NP-completeness of 3-knapsack for symmetric groups, i.e., member-
ship in products 〈g1〉〈g2〉〈g3〉 for three given permutations g1, g2, g3 (Theo-
rem 5.7). Since our proof yields an instance with g1 6= g3, we do not reprove
Luks’ result. Vice versa, Luks’ result does not cover Theorem 5.7 since the
permutation groups G and H in Luks’ construction are not cyclic.

This leads to the question whether membership in products 〈g〉〈h〉〈g〉
for given permutations g and h is still NP-complete. We do not solve this
problem, but we can show the following:

Theorem 5.9. The following problem is NP-complete:
Input: m ≥ 1 and permutations f, g, h1, h2, h3 ∈ Sm such that h1, h2, h3
pairwise commute.
Question: Does f ∈ 〈g〉〈h1, h2, h3〉〈g〉 hold?

Before we show Theorem 5.9, we first prove two lemmas. Recall that [a, b]
denotes the cycle (a, a+ 1, . . . , b).

Lemma 5.10. For all primes q < p and all 0 ≤ e ≤ p− q − 1 the equation

(1, . . . , q − 1, p) = [1, p]x[e+ 1, e+ q][1, p]−x (5)

holds if and only if x ≡ e+ 1 mod p.

Proof. First suppose x ≡ e + 1 mod p. Recall the general formula for the
conjugation of the cycle (a1, a2, . . . , ak) by a permutation g:

g−1(a1, a2, . . . , ak)g = (ag1, a
g
2, . . . , a

g
k).

In our situation this yields

[1, p]x[e+ 1, e+ q][1, p]−x = ((e+ 1)[1,p]
−x

, (e+ 2)[1,p]
−x

, . . . , (e+ q)[1,p]
−x

).

31

Since x ≡ e+ 1 mod p we obtain for all i ∈ {1, . . . , q}:

(e+ i)[1,p]
−x

= (e+ i)[1,p]
−(e+1)

=

{
p if i = 1

i− 1 if 2 ≤ i ≤ q.

Hence, we obtain

[1, p]x[e+ 1, e+ q][1, p]−x = (p, 1, . . . , q − 1) = (1, . . . , q − 1, p).

Vice versa suppose that (5.10) holds. As shown above we have

(1, . . . , q − 1, p) = [1, p]e+1[e+ 1, e+ q][1, p]−(e+1).

Now suppose there is another solution of (5.10) with x 6≡ e+ 1 mod p, i.e.,

(1, . . . , q − 1, p) = [1, p]x[e+ 1, e+ q][1, p]−x.

We obtain the equation

[1, p]e+1[e+ 1, e+ q][1, p]−(e+1) = [1, p]x[e+ 1, e+ q][1, p]−x,

which is equivalent to

[e+ 1, e+ q][1, p]x−(e+1)[e+ 1, e+ q]−1 = [1, p]x−(e+1).

Since x 6≡ e + 1 mod p we can raise both sides to the power of (x − (e +
1))−1 mod p and obtain

[e+ 1, e+ q][1, p][e+ 1, e+ q]−1 = [1, p]

We finally obtain by

(e+ q)[e+1,e+q][1,p][e+1,e+q]−1

= (e+ 1)[1,p][e+1,e+q]−1

= (e+ 2)[e+1,e+q]−1

= e+ 1

6= e+ q + 1 = (e+ q)[1,p]

a contradiction.

32

Lemma 5.11. For all k ≥ 1 and all primes q, p satisfying q ≥ 2 and p > kq
we have: the equation

(1, . . . , q − 1, p) = [1, p]x0
k∏
i=1

[(i− 1)q + 1, iq]xi [1, p]−x0 (6)

holds if and only if for some i ∈ {1, . . . , k} we have

x0 ≡ (i− 1)q + 1 mod p, (7)

xi ≡ 1 mod q and (8)

xj ≡ 0 mod q for all j ∈ {1, . . . , k} \ {i}. (9)

Proof. First, suppose i ∈ {1, . . . , k} is such that (7)–(9) hold. Then we have

[1, p]x0 [(i− 1)q + 1, iq]xi [1, p]−x0 = [1, p]x0 [(i− 1)q + 1, iq][1, p]−x0

= (1, . . . , q − 1, p)

by Lemma 5.10.
Vice versa suppose that (6) hold. Note that this implies that we cannot

have xi ≡ 0 mod q for all i ∈ {1, . . . , k}. Let j ∈ {1, . . . , k} be the number
of variables xi (1 ≤ i ≤ k) such that xi 6≡ 0 mod q. This implies that the
right-hand side of (6) consists of j pairwise disjoint cycles of length q plus
some fixpoints. Since (1, . . . , q − 1, p) is a single cycle of length q, we must
have j = 1. Let i ∈ {1, . . . , k} be the unique element with xi 6≡ 0 mod q.
Then (6) simplifies to

(1, . . . , q − 1, p) = [1, p]x0 [(i− 1)q + 1, iq]xi [1, p]−x0 . (10)

Clearly x0 ≡ 0 mod p is not possible in (10). Let y0 and yi be such that
1 ≤ y0 < p, 1 ≤ yi < q, y0 ≡ x0 mod p and yi ≡ xi mod q. If y0 /∈
{(i− 1)q + 1, . . . , iq}, we get by

p[1,p]
x0 [(i−1)q+1,iq]xi [1,p]−x0 = y

[(i−1)q+1,iq]xi [1,p]−x0

0 = y
[1,p]−x0

0 = p 6= 1 = p(1,...,q−1,p)

a contradiction to (10). Thus we have (i− 1)q + 1 ≤ y0 ≤ iq. We get

1 = p(1,...,q−1,p) = p[1,p]
x0 [(i−1)q+1,iq]xi [1,p]−x0

= y
[(i−1)q+1,iq]xi [1,p]−x0

0

33

=

{
(y0 + yi)

[1,p]−x0 if y0 + yi ≤ iq

(y0 + yi − q)[1,p]
−x0 otherwise

=

{
yi if y0 + yi ≤ iq

p+ yi − q otherwise.

The case 1 = p+yi−q leads to a contradiction since p+yi−q ≥ p+1−q ≥ 2.
Hence we obtain yi = 1, i.e., xi ≡ 1 mod q. This simplifies (10) further to

(1, . . . , q − 1, p) = [1, p]x0 [(i− 1)q + 1, iq][1, p]−x0 .

Since 0 ≤ (i− 1)q ≤ (k− 1)q ≤ p− q− 1, Lemma 5.10 yields x0 ≡ (i− 1)q+
1 mod p.

In the proof of Theorem 5.9 below we use Lemma 5.11 only for the case
k = 3. It will allow us to simulate in the problem X3HS (Problem 5.2) the
selection of a unique element from each C ∈ B (recall that all the set in B
have size 3.

We use the following notation in the proof below: For a finite set U =
{s1, s2, . . . , sm} ⊆ N with s1 < s2 < · · · < sm and 1 ≤ k ≤ m we write
U(k) = sk.

Proof of Theorem 5.9. We give a log-space reduction from X3HS. Let A be
a finite set and B ⊆ 2A be a set of subsets of A all of size 3. W.l.o.g. assume
that A = {1, . . . , n} and let B = {C1, . . . , Cd}. For j ∈ {1, . . . , n} we denote
by Dj ⊆ {1 . . . , d} the set of all numbers i such that j ∈ Ci. Let q1 < · · · < qd
be the first d primes. Let p1 < · · · < pd be the next d primes with p1 > 3qd
and let r1 < · · · < rn be the next n primes with r1 > pd. Intuitively we
associate Ci ∈ B with the prime qi and j ∈ {1, . . . , n} with the prime rj. We
will work with the group

G =
d∏
i=1

(Spi × Zpi)×
n∏
j=1

(S|Dj |
rj
× Zrj),

which naturally embedds into Sm for m = 2
∑d

i=1 pi +
∑n

j=1(|Dj|+ 1) · rj.
We define the input group elements f, g, h1, h2, h3 ∈ G as follows, where

i ranges over {1 . . . , d}, j ranges over {1 . . . , n}, k ranges over {1, . . . , |Dj|},
and ` ranges over {1, 2, 3}:

f = (f1, . . . , fd, f
′
1, . . . , f

′
n) with

34

fi = ((1, . . . , qi − 1, pi), 0)

f ′j = (fj,1, . . . , fj,|Dj |, 0)

fj,k = (1, . . . , qDj(k) − 1, rj)

g = (g1, . . . , gd, g
′
1, . . . , g

′
n) with

gi = ([1, pi], 1)

g′j = ([1, rj], . . . , [1, rj]︸ ︷︷ ︸
|Dj | many

, 1)

h` = (h`,1, . . . , h`,d, h
′
`,1, . . . , h

′
`,n)

h`,i = ([(`− 1)qi + 1, `qi], 0)

h′`,j = (α`,j,1, . . . , α`,j,|Dj |, 0)

α`,j,k =

{
[1, qDj(k)] if j = CDj(k)(`)

[qd + 1, qd + qDj(k)] otherwise.

Note that j = CDj(k)(`) means that j is the `th element (in natural order)
in the kth set among all sets Ci containing j, where the sets Ci containing j
are ordered with respect to their position in the list C1, C2, . . . , Cd. Observe
that the elements h1, h2, h3 pairwise commute.

Now we will show that f ∈ 〈g〉〈h1, h2, h3〉〈g〉 if and only if there is a
subset A′ ⊆ {1, . . . , n} such that |A′ ∩ Ci| = 1 for all i ∈ {1, . . . , d}.

First suppose that f ∈ 〈g〉〈h1, h2, h3〉〈g〉. Since h1, h2, h3 pairwise com-
mute, we obtain integers x0, x

′
0, x1, x2, x3 with

f = gx0hx11 h
x2
2 h

x3
3 g

x′0 .

Note that the projections onto the direct factors Zpi and Zrj of G ensure that

x′0 + x0 ≡ 0 mod
d∏
i=1

pi

n∏
j=1

rj.

Since the order of g is
∏d

i=1 pi
∏n

j=1 rj, we can w.l.o.g. assume that x′0 = −x0.
We therefore obtain

f = gx0hx11 h
x2
2 h

x3
3 g
−x0 . (11)

We define the subset A′ ⊆ {1, . . . , n} by

A′ = {j | 1 ≤ j ≤ n, x0 ≡ 1 mod rj}.

35

We claim that for every i ∈ {1, . . . , d} we have |Ci ∩ A′| = 1. Consider a
specific i ∈ {1, . . . , d}. The projection onto the direct factor Spi of G gives
us

(1, . . . , qi − 1, pi) = [1, pi]
x0 [1, qi]

x1 [qi + 1, 2qi]
x2 [2qi + 1, 3qi]

x3 [1, pi]
−x0 . (12)

By Lemma 5.11 this equation ensures that there is exactly one a ∈ {1, 2, 3}
such that xa ≡ 1 mod qi and xb ≡ 0 mod qi for all b ∈ {1, 2, 3} \ {a}.

Consider a j ∈ Ci. Then i ∈ Dj and there is a k ∈ {1, . . . , |Dj|} such

that i = Dj(k). Projecting (11) onto the kth direct factor Srj in S
|Dj |
rj yields

(1, . . . , qi − 1, rj) = (1, . . . , qDj(k) − 1, rj)

= [1, rj]
x0αx11,j,kα

x2
2,j,kα

x3
3,j,k[1, rj]

−x0 . (13)

Since xa ≡ 1 mod qi, xb ≡ 0 mod qi for all b ∈ {1, 2, 3} \ {a}, and ev-
ery α`,j,k is a cycle of length qDj(k) = qi, the expression (13) simplifies to
[1, rj]

x0αa,j,k[1, rj]
−x0 . Hence, we obtain

(1, . . . , qi − 1, rj) = [1, rj]
x0αa,j,k[1, rj]

−x0 .

Moreover, with the definition of αa,j,k this yields

(1, . . . , qi − 1, rj) = [1, rj]
x0

 [1, qi] if j = Ci(a)

[qd + 1, qd + qi] otherwise

 [1, rj]
−x0 .

With Lemma 5.10 this implies the following:

• x0 ≡ 1 mod rj (and hence j ∈ A′) if j = Ci(a), and

• x0 ≡ qd + 1 mod rj (and hence j /∈ A′) if j 6= Ci(a).

Hence, there is exactly one j ∈ A′ ∩ Ci, namely Ci(a).
Vice versa, suppose there is a subset A′ ⊆ {1, . . . , n} such that |A′∩Ci| =

1 for all i ∈ {1, . . . , d}. In order to satisfy for every i ∈ {1, . . . , d} equation
12 (the projection of (11) onto the direct factor Spi of G) we consider the
unique element in A′ ∩Ci. Assume that it is Ci(a) (1 ≤ a ≤ 3). We then set

• xa ≡ 1 mod qi,

• xb ≡ 0 mod qi for b ∈ {1, 2, 3} \ {a}, and

36

• x0 ≡ (a− 1)qi + 1 mod pi.

By Lemma 5.11 this choice satisfies (12). Moreover, for different i ∈ {1, . . . , d}
the above choices do not conflict with each other since they refer to different
primes.

Now consider the projection

(1, . . . , qDj(k) − 1, rj) = [1, rj]
x0αx11,j,kα

x2
2,j,kα

x3
3,j,k[1, rj]

−x0 (14)

of (11) onto the kth direct factor Srj in S
|Dj |
rj , where 1 ≤ j ≤ n and 1 ≤ k ≤

|Dj|. In order to satisfy this equation, we choose x0 ≡ 1 mod rj if j ∈ A′ and
x0 ≡ qd + 1 mod rj if j /∈ A′.

Let Dj(k) = i ∈ {1, . . . , d} so that j ∈ Ci. As above, assume that
the unique element in A′ ∩ Ci is Ci(a) (1 ≤ a ≤ 3). By the above choices
for x` mod qi (1 ≤ ` ≤ 3) and the fact that all α`,j,k are cycles of length
qDj(k) = qi, equation 14 reduces to

(1, . . . , qi − 1, rj) = [1, rj]
x0αa,j,k[1, rj]

−x0 . (15)

There are now two cases:

Case 1. j ∈ A′ and thus x0 ≡ 1 mod rj and j ∈ A′ ∩ Ci. Hence, we have
j = Ci(a) = CDj(k)(a). We thus have αa,j,k = [1, qDj(k)] = [1, qi] and (15)
becomes

(1, . . . , qi − 1, rj) = [1, rj]
x0 [1, qi][1, rj]

−x0 ,

which is true by Lemma 5.10 since x0 ≡ 1 mod rj.

Case 2. j /∈ A′ and thus x0 ≡ qd + 1 mod rj. Hence, j 6= Ci(a) and we get
αa,j,k = [qd + 1, qd + qi]. Hence, (15) becomes

(1, . . . , qi − 1, rj) = [1, rj]
x0 [qd + 1, qd + qi][1, rj]

−x0 ,

which is true by Lemma 5.10 since x0 ≡ qd + 1 mod rj.

The above proof also shows the following result:

Theorem 5.12. The following problem is NP-complete:
Input: m ≥ 1 and permutations f, g, h1, h2, h3 ∈ Sm such that h1, h2, h3
pairwise commute.
Question: Is there i ∈ N such that f ∈ gi〈h1, h2, h3〉g−i?

37

6. Application to intersection problems

In this section we prove Theorems 1.12 and 1.13. The proofs of the two
results are almost identical. Let us show how to deduce Theorem 1.12 from
Theorem 1.10. Let G be a grammar from CFG(k) and let A1, . . . ,An be a
list of group DFAs. Let Ai = (Qi,Σ, qi,0, δi, Fi). W.l.o.g. we assume that
the Qi are pairwise disjoint and let Q =

⋃
1≤i≤nQi. To every a ∈ Σ we can

associate a permutation πa ∈ SQ by setting πa(q) = δi(q, a) if q ∈ Qi. Let
G ′ ∈ CFG(k) be the context-free grammar over the terminal alphabet SQ
obtained by replacing in G every occurence of a ∈ Σ by πa. Then, we have
L(G) ∩

⋂
1≤i≤n L(Ai) 6= ∅ if and only if there exists a permutation π ∈ L(G ′)

such that π(qi,0) ∈ Fi for every 1 ≤ i ≤ n. We can nondeterministically
guess such a permutation and check π ∈ L(G ′) in NP using Theorem 1.10.
This proves the upper bound from Theorems 1.12. The lower bound already
holds for the case that L(G) = Σ∗ [10].

The proof of the upper bound in Theorem 1.13 is identical to the above
proof, except that we use Theorem 1.9. For the lower bound, notice that the
PSPACE-complete context-free membership problem for symmetric groups
can be directly reduced to the intersection non-emptiness problem from The-
orem 1.13 (several group DFAs and a single context-free grammar): Take
a context-free gammar G over the terminal alphabet Sm. Let {π1, . . . , πn}
be the permutations that appear as terminal symbols in G. Let G ′ be the
context-free gammar obtained from G by replacing every occurrence of πi by
a new terminal symbol ai. We construct m group DFAs A1, . . . ,Am over
the terminal alphabet {a1, . . . , an} and state set {1, . . . ,m}. The initial and
(unique) final state of Ai is i and the transition function of every Ai is the
same function δ with δ(q, ai) = qπi for 1 ≤ q ≤ m. Then we have L(G)
contains the identity permutation if and only if L(G ′)∩

⋂
1≤i≤m L(Ai) is non-

empty.

Acknowledgement

This work has been supported by the DFG research project LO 748/12-2.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

38

[2] Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer,
Ismaël Jecker, Mateus de Oliveira Oliveira, and Petra Wolf. On the
complexity of intersection non-emptiness for star-free language classes.
In Proceedings of the 41st IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2021,
volume 213 of LIPIcs, pages 34:1–34:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.34.

[3] László Babai. Graph isomorphism in quasipolynomial time [extended
abstract]. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, pages 684–697. ACM, 2016. doi:
10.1145/2897518.2897542.

[4] László Babai, Robert Beals, Jin-Yi Cai, Gábor Ivanyos, and Eugene M.
Luks. Multiplicative equations over commuting matrices. In Proceed-
ings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 1996, pages 498–507. ACM/SIAM, 1996.

[5] László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups
in NC. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, STOC 1987, pages 409–420. ACM, 1987. doi:10.1145/
28395.28439.

[6] László Babai and Endre Szemerédi. On the complexity of matrix group
problems I. In Proceedings of the 25th Annual Symposium on Founda-
tions of Computer Science, FOCS 1984, pages 229–240. IEEE Computer
Society, 1984. doi:10.1109/SFCS.1984.715919.

[7] Paul Bell, Vesa Halava, Tero Harju, Juhani Karhumäki, and Igor
Potapov. Matrix equations and Hilbert’s tenth problem. Interna-
tional Journal of Algebra and Computation, 18(8):1231–1241, 2008.
doi:10.1142/S0218196708004925.

[8] Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche. A charac-
terization of wreath products where knapsack is decidable. In Pro-
ceeding of the 38th International Symposium on Theoretical Aspects of
Computer Science, STACS 2021, volume 187 of LIPIcs, pages 11:1–
11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:

10.4230/LIPIcs.STACS.2021.11.

39

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/28395.28439
https://doi.org/10.1145/28395.28439
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1142/S0218196708004925
https://doi.org/10.4230/LIPIcs.STACS.2021.11
https://doi.org/10.4230/LIPIcs.STACS.2021.11

[9] Jean-Camille Birget, Stuart Margolis, John Meakin, and Pascal Weil.
PSPACE-complete problems for subgroups of free groups and inverse
finite automata. Theoretical Computer Science, 242(1-2):247–281, 2000.
doi:10.1016/S0304-3975(98)00225-4.

[10] Michael Blondin, Andreas Krebs, and Pierre McKenzie. The complexity
of intersecting finite automata having few final states. Computational
Complexity, 25(4):775–814, 2016. doi:10.1007/s00037-014-0089-9.

[11] Stephen A. Cook. Characterizations of pushdown machines in terms
of time-bounded computers. Journal of the Association for Computing
Machinery, 18(1):4–18, 1971. doi:10.1145/321623.321625.

[12] Mateus de Oliveira Oliveira and Michael Wehar. On the fine grained
complexity of finite automata non-emptiness of intersection. In Pro-
ceedings of the 24th International Conference Developments in Language
Theory, DLT 2020, volume 12086 of Lecture Notes in Computer Science,
pages 69–82. Springer, 2020. doi:10.1007/978-3-030-48516-0_6.

[13] Javier Esparza, Antońın Kucera, and Stefan Schwoon. Model checking
LTL with regular valuations for pushdown systems. Information and
Computation, 186(2):355–376, 2003. doi:10.1016/S0890-5401(03)

00139-1.

[14] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief
history of Strahler numbers. In Proceedings of the 8th International
Conference on Language and Automata Theory and Applications, LATA
2014, volume 8370 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2014. doi:10.1007/978-3-319-04921-2_1.

[15] Shimon Even and Oded Goldreich. The minimum-length generator se-
quence problem is NP-hard. Journal of Algorithms, 2(3):311–313, 1981.
doi:10.1016/0196-6774(81)90029-8.

[16] Michael Figelius, Moses Ganardi, Markus Lohrey, and Georg Zet-
zsche. The complexity of knapsack problems in wreath products. In
Proceedings of the 47th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2020, volume 168 of LIPIcs, pages
126:1–126:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ICALP.2020.126.

40

https://doi.org/10.1016/S0304-3975(98)00225-4
https://doi.org/10.1007/s00037-014-0089-9
https://doi.org/10.1145/321623.321625
https://doi.org/10.1007/978-3-030-48516-0_6
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.1016/0196-6774(81)90029-8
https://doi.org/10.4230/LIPIcs.ICALP.2020.126

[17] Elizaveta Frenkel, Andrey Nikolaev, and Alexander Ushakov. Knapsack
problems in products of groups. Journal of Symbolic Computation, 2015.
doi:10.1016/j.jsc.2015.05.006.

[18] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP–completeness. Freeman, 1979.

[19] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre.
Reachability analysis of communicating pushdown systems. In Proceed-
ings of the 13th International Conference on Foundations of Software
Science and Computational Structures, FOSSACS 2010, volume 6014
of Lecture Notes in Computer Science, pages 267–281. Springer, 2010.
doi:10.1007/978-3-642-12032-9_19.

[20] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[21] Robert E. Horton. Erosional development of streams and their drainage
basins: hydro-physical approach to quantitative morphology. Geological
Society of America Bulletin, 56(3):275–370, 1945. doi:https://doi.

org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

[22] Trevor Jack. On the complexity of properties of partial bijection semi-
groups, 2021. doi:10.48550/ARXIV.2101.00324.

[23] Mark Jerrum. The complexity of finding minimum-length generator
sequences. Theoretical Computer Science, 36:265–289, 1985. doi:10.

1016/0304-3975(85)90047-7.

[24] Mark Kambites, Pedro V. Silva, and Benjamin Steinberg. On the ra-
tional subset problem for groups. Journal of Algebra, 309(2):622–639,
2007. doi:10.1016/j.jalgebra.2006.05.020.

[25] Ilya Kapovich and Alexei Myasnikov. Stallings foldings and subgroups
of free groups. Journal of Algebra, 248(2):608–668, 2002. doi:10.1006/
jabr.2001.9033.

[26] Arthur A. Khashaev. On the membership problem for finite au-
tomata over symmetric groups. Discrete Mathematics and Ap-
plications, 32(6):389–395, 2022. URL: https://doi.org/10.1515/

dma-2022-0033, doi:doi:10.1515/dma-2022-0033.

41

https://doi.org/10.1016/j.jsc.2015.05.006
https://doi.org/10.1007/978-3-642-12032-9_19
https://doi.org/https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
https://doi.org/https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
https://doi.org/10.48550/ARXIV.2101.00324
https://doi.org/10.1016/0304-3975(85)90047-7
https://doi.org/10.1016/0304-3975(85)90047-7
https://doi.org/10.1016/j.jalgebra.2006.05.020
https://doi.org/10.1006/jabr.2001.9033
https://doi.org/10.1006/jabr.2001.9033
https://doi.org/10.1515/dma-2022-0033
https://doi.org/10.1515/dma-2022-0033
https://doi.org/doi:10.1515/dma-2022-0033

[27] Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and sub-
set sum problems in nilpotent, polycyclic, and co-context-free groups.
In Algebra and Computer Science, volume 677 of Contemporary Math-
ematics, pages 138–153. American Mathematical Society, 2016. doi:

10.1090/conm/677.

[28] Dexter Kozen. Lower bounds for natural proof systems. In Proceedings
of the 18th Annual Symposium on Foundations of Computer Science,
FOCS 1977, pages 254–266. IEEE Computer Society, 1977. doi:10.

1109/SFCS.1977.16.

[29] Markus Lohrey. The rational subset membership problem for groups:
a survey, page 368–389. London Mathematical Society Lecture
Note Series. Cambridge University Press, 2015. doi:10.1017/

CBO9781316227343.024.

[30] Markus Lohrey. Knapsack in hyperbolic groups. Journal of Algebra,
545(1):390–415, 2020. doi:https://doi.org/10.1016/j.jalgebra.

2019.04.008.

[31] Markus Lohrey, Andreas Rosowski, and Georg Zetzsche. Membership
problems in finite groups. In Proceedings of the 47th International Sym-
posium on Mathematical Foundations of Computer Science, MFCS 2022,
volume 241 of LIPIcs, pages 71:1–71:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPICS.MFCS.2022.71.

[32] Markus Lohrey and Georg Zetzsche. Knapsack in graph groups.
Theory of Computing Systems, 62(1):192–246, 2018. doi:10.1007/

s00224-017-9808-3.

[33] Eugene M. Luks. Isomorphism of graphs of bounded valence can be
tested in polynomial time. Journal of Computer and System Sciences,
25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.

[34] Eugene M. Luks. Permutation groups and polynomial-time computa-
tion. In Groups And Computation, Proceedings of a DIMACS Work-
shop, New Brunswick, New Jersey, USA, October 7-10, 1991, volume 11
of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 139–175. DIMACS/AMS, 1991. doi:10.1090/dimacs/

011/11.

42

https://doi.org/10.1090/conm/677
https://doi.org/10.1090/conm/677
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1017/CBO9781316227343.024
https://doi.org/10.1017/CBO9781316227343.024
https://doi.org/https://doi.org/10.1016/j.jalgebra.2019.04.008
https://doi.org/https://doi.org/10.1016/j.jalgebra.2019.04.008
https://doi.org/10.4230/LIPICS.MFCS.2022.71
https://doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1090/dimacs/011/11
https://doi.org/10.1090/dimacs/011/11

[35] Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack
problems in groups. Mathematics of Computation, 84:987–1016, 2015.
doi:10.1090/S0025-5718-2014-02880-9.

[36] Ákos Seress. Permutation Group Algorithms. Cambridge Tracts
in Mathematics. Cambridge University Press, 2003. doi:10.1017/

CBO9780511546549.

[37] Charles C. Sims. Computational methods in the study of permutation
groups. In Computational Problems in Abstract Algebra, pages 169–183.
Pergamon, 1970. doi:10.1016/B978-0-08-012975-4.50020-5.

[38] Arthur N. Strahler. Hypsometric (area-altitude) analysis of erosional
topology. Geological Society of America Bulletin, 63(11):1117–1142,
1952. doi:https://doi.org/10.1130/0016-7606(1952)63[1117:

HAAOET]2.0.CO;2.

[39] Joseph Swernofsky and Michael Wehar. On the complexity of in-
tersecting regular, context-free, and tree languages. In Proceedings
of the 42nd International Colloquium Automata, Languages, and Pro-
gramming, Part II, ICALP 2015, volume 9135 of Lecture Notes in
Computer Science, pages 414–426. Springer, 2015. doi:10.1007/

978-3-662-47666-6_33.

Appendix A. Testing membership in CFG(k)

In view of Theorem 1.10, the reader might ask how difficult it is to check
for a fixed constant k whether a given context-free grammar in Chomsky
normal form belongs to the class CFG(k). We do not know whether a poly-
nomial time algorithm exists for this problem. In this appendix, we show that
the problem belongs to coNP (the class of all problems whose complement
belongs to NP.

Lemma Appendix A.1. Let G = (N, T, P, S) be a context-free grammar.
We have L(G) 6= ∅ if and only if G has an acyclic derivation tree whose root
is labelled with S.

Proof. Clearly, if there is an acyclic derivation tree, then there is a derivation
tree and hence L(G) 6= ∅. For the reverse implication note that an arbitrary
derivation tree can be made acyclic (as in the proof of the pumping lemma
for context-free languages).

43

https://doi.org/10.1090/S0025-5718-2014-02880-9
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1016/B978-0-08-012975-4.50020-5
https://doi.org/https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
https://doi.org/https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
https://doi.org/10.1007/978-3-662-47666-6_33
https://doi.org/10.1007/978-3-662-47666-6_33

Theorem Appendix A.2. For every fixed k ≥ 1, the problem of checking
whether a given context-free grammar belongs to CFG(k) is in coNP.

Proof. Let G = (N,Σ, P, S) be a context-free grammar in Chomsky normal
form. We have G ∈ CFG(k) if and only if for every acyclic derivation tree
the Horton-Strahler number is at most k. By this we obtain G 6∈ CFG(k) if
and only if there is an acyclic derivation tree with Horton-Strahler number
greater than k. By Lemma 2.3 this holds if and only if one of the following
conditions holds:

• There is an acyclic derivation tree with at most 2(|N |+ 1)k nodes and
Horton-Strahler number greater than k.

• There is an acyclic derivation tree with more than 2(|N |+ 1)k nodes.

The second statement holds if and only if there is a partial acyclic derivation
tree T with 2(|N |+ 1)k < |T | ≤ 2(|N |+ 1)k + 2 (|T | denotes the number of
nodes of T) and for every leave v in T that is labelled with a nonterminal A
there is an acyclic derivation tree Tv of arbitrary size whose root is labelled
with A and which contains no nonterminal that has already appeared on the
path from the root of T to node v. This holds, since in an acyclic derivation
tree with more than 2(|N | + 1)k nodes we can remove subtrees such that
the resulting partial acyclic derivation tree T ′ satisfies 2(|N | + 1)k < |T ′| ≤
2(|N |+ 1)k + 2.

These conditions can be checked in NP as follows: First, we guess an
acyclic derivation tree with at most 2(|N |+ 1)k nodes and compute in poly-
nomial time its Horton-Strahler number s. If s > k then we accept. If s ≤ k,
then we guess a partial acyclic derivation tree T with 2(|N | + 1)k < |T | ≤
2(|N |+1)k+2. For every leaf v of T that is labelled with a nonterminal A we
define the subgrammar Gv = (Nv, T, Pv, A): let A1, . . . , Ad (Ad = A) be the
nonterminals that appear on the path from the root of T to the leaf v. Then
we set Nv = N \ {A1, . . . , Ad−1}. Moreover, Pv is obtained from P by re-
moving every production that contains one of the nonterminals A1, . . . , Ad−1.
Finally the algorithm verifies deterministically in polynomial time whether
Gv has an acyclic derivation tree Tv of arbitrary size that is rooted in A. By
Lemma Appendix A.1 this holds if and only if L(Gv) 6= ∅.

44

	Introduction
	Preliminaries
	Black box groups
	Context-free membership in black box groups
	Restrictions of rational subset membership in symmetric groups
	Subset sum in permutation groups
	Knapsack in permutation groups
	Another NP-complete special case of 3-membership

	Application to intersection problems
	Testing membership in CFG(k)

