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Abstract. We study deterministic and randomized streaming algorithms for

word problems of finitely generated groups. For finitely generated groups that

can be obtained from linear groups using the following operations we show the
existence of randomized streaming algorithms with logarithmic space com-

plexity for their word problems: finite extensions, taking a finitely generated

subgroups, graph products and wreath products by finitely generated abelian
groups. We contrast these results with several lower bounds. An example of a

finitely presented group, where the word problem has only a linear space ran-

domized streaming algorithm, is Thompson’s group F . Finally, randomized
streaming algorithms for subgroup membership problems in free groups and

direct products of free groups are studied.

1. Introduction

The word problem for a finitely generated group G is the following computational
problem: Fix a finite set of generators Σ for G, which means that every element
of G can be written as a finite product of elements from Σ. The input for the
word problem is a finite word a1a2 · · · an over the alphabet Σ and the question is
whether this word evaluates to the group identity of G. The word problem was
introduced by Dehn in 1911 [18]. It is arguably the most important computational
problem in group theory and has been studied by group theorists as well as computer
scientists; see [54] for a survey. In recent years, complexity theoretic investigations
of word problems moved into the focus. For many important classes of groups it
turned out that the word problem belongs to low-level complexity classes. The first
result in this direction was proved by Lipton and Zalcstein [43] (if the field F has
characteristic zero) and Simon [66] (if the field F has prime characteristic): if G is
a finitely generated linear group over an arbitrary field F (i.e., a finitely generated
group of invertible matrices over F ), then the word problem for G can be solved in
deterministic logarithmic space. Related results can be found in [39, 70].

The word problem of a group G with a finite generating set Σ can be identified
with a formal language WP(G,Σ) consisting of all words over the alphabet Σ that
evaluate to the group identity of G. Language theoretic aspects of the word problem
have been studied intensively in the past. For instance, Anissimov and Seifert [2]
showed that WP(G,Σ) is regular if and only if G is finite, and Muller and Schupp
[57] showed that WP(G,Σ) is context-free if and only if G is virtually free,1 see [31]
for an overview.

In this paper we initiate the study of streaming algorithms for word problems.
These are algorithms that do not have random access on the whole input. In-
stead, the k-th input symbol is only available at time k [1]. Quite often, streaming

1If C is a property or class of groups, then a group G is called virtually C, if G is a finite
extension of a C-group.
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algorithms are randomized and have a bounded error probability. Usually, one
is interested in the space used by a streaming algorithm, but also update times
(i.e., the worst case time spend to process a new input symbol) have been stud-
ied. Clearly, every regular language L has a deterministic streaming algorithm with
constant space; it is a deterministic finite automaton for L. Randomized streaming
algorithms for context-free languages have been studied in [5, 9, 22, 48].

Let us now explain the main results of this paper. For a finitely generated
group G with finite generating set Σ, the deterministic (resp., randomized) stream-
ing space complexity of WP(G,Σ) is the space complexity of the best deterministic
(resp., randomized) streaming algorithm for WP(G,Σ). The concrete choice of
the generating set has only a minor influence on the deterministic (resp., random-
ized) streaming space complexity of WP(G,Σ); see Lemma 5.1 for a precise state-
ment. In statements where the influence of the generating set on the streaming
space complexity is blurred by the Landau notation, we speak of the determinis-
tic/randomized streaming space complexity of the word problem of G or simply the
deterministic/randomized streaming space complexity of G.

The deterministic streaming space complexity of WP(G,Σ) is directly linked to
the growth function γG,Σ(n) of the group G. The latter is the number of different
group elements of G that can be represented by words over the finite generating set
Σ of length at most n (also here the generating set Σ only has a minor influence).
The deterministic streaming space complexity of the word problem for G turns out
to be log2 γG,Σ(n/2) up to a small additive constant (Theorem 6.1). The growth
of finitely generated groups is a well investigated topic in geometric group theory.
A famous theorem of Gromov says that a finitely generated group has polynomial
growth if and only if it is virtually nilpotent; see [17, 51] for a discussion. Theo-
rem 6.1 reduces all questions about the deterministic streaming space complexity of
word problems to questions about growth functions. Due to this, we mainly study
randomized streaming algorithms for word problems in this paper.

In the randomized setting, the growth of G still yields a lower bound: The ran-
domized streaming space complexity of the word problem of G is lower bounded
by Ω(log log γG,Σ(n/2)) (Theorem 6.2). A large class of groups, where this lower
bound can be exactly matched by an upper bound, is the class of finitely generated
linear groups. Recall that Lipton and Zalcstein [43] and Simon [66] showed that
the word problem of a finitely generated linear group can be solved in logarithmic
space. Their algorithm can be turned into a randomized streaming algorithm with
logarithmic space complexity. In order to plug these streaming algorithms into clo-
sure results for randomized streaming space complexity (that are discussed below)
we need the notion of a so-called ε-distinguisher for 0 ≤ ε < 1. Roughly speak-
ing, a randomized streaming algorithm for a finitely generated group G with finite
generating set Σ is an ε-distinguisher if for all words u, v ∈ Σ∗ of length at most
n the following hold: (i) if u and v evaluate to the same element of G then with
probability at least 1− ε, u and v lead to the same memory state of the streaming
algorithm, and (ii) if u and v evaluate to different elements of G then with probabil-
ity at least 1−ε, u and v lead to different memory states of the streaming algorithm;
see Section 8. The error probability ε many depend on the input length n. It is
easy to obtain from an ε-distinguisher R for the group G a randomized streaming
algorithm S for the word problem of G with error probability ε. Moreover, the
space complexity of S is only twice the space complexity of R; see Lemma 8.1.
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We then show that for every finitely generated linear group G there is an ε(n)-
distinguisher with space complexity O(log n) (Theorem 9.2) and inverse polynomial
error probability ε(n) = 1/nc for any constant c ≥ 1. If G is moreover virtually
nilpotent, then the space complexity can be further reduced to O(log log n) at
the cost of an inverse polylogarithmic error probability 1/ logc n (for any constant
c ≥ 1); see Theorem 9.3. In fact, using a known gap theorem for the growth of linear
groups [55, 71], it turns out that the randomized streaming space complexity of the
word problem for a finitely generated linear group G is either Θ(log log n) (if G is
virtually nilpotent) or Θ(log n) (if G is not virtually nilpotent), see Theorem 10.3.

For non-linear groups the situation turns out to be more difficult. We show
that the existence of low-error distinguishers with logarithmic space complexity is
preserved by certain group constructions including finite extensions (Theorem 10.2),
graph products (Theorem 10.7) and wreath products by finitely generated abelian
groups (Corollary 10.13). Using these transfer results we obtain also non-linear
groups with a logarithmic randomized streaming space complexity, e.g., metabelian
groups (Corollary 10.5) and free solvable groups (Corollary 10.14).

In Section 12 we prove lower bounds for the randomized streaming space com-
plexity of word problems. For wreath products of the form H o G such that H is
non-abelian and G is infinite, we can show that the randomized streaming space
complexity is Θ(n) by a reduction from the randomized communication complexity
of disjointness (Theorem 11.1). A concrete finitely presented group with random-
ized streaming space complexity Θ(n) is Thompson’s group F (Corollary 11.3).
Thompson’s group F (introduced by Richard Thompson in 1965) belongs due to
its unusual properties to the most intensively studied infinite groups; see e.g. [12].
From a computational perspective it is interesting to note that F is co-context-free
(i.e., the set of all words over any set of generators that do not evaluate to the
group identity is a context-free language) [42]. This implies that the word prob-
lem for Thompson’s group is in DSPACE(log2 n). Finally, we consider the famous
Grigorchuk group G [26], which was the first example of a group with intermediate
word growth as well as the first example of a group that is amenable but not ele-
mentary amenable. We show that the deterministic streaming space complexity of
G is O(n0.768), whereas the randomized streaming space complexity of G is Ω(n1/3)
(Theorem 11.6).

In the last section of the paper we consider randomized streaming algorithms
for subgroup membership problems. In a subgroup membership problem one has a
subgroup H of a finitely generated group G and for a given input word w ∈ Σ∗ (Σ
is again a finite set of generators for G) one has to determine whether w represents
an element of H. The word problem is the special case where H = 1. We present
a randomized streaming algorithm with logarithmic space complexity for the case
where G is a finitely generated free group and H is a finitely generated subgroup
of G (Theorem 12.4). Moreover, we show that this result extends neither to the
case where H is not finitely generated (Theorem 12.5) nor the case where H is
a finitely generated subgroup of a direct product of two free groups of rank two
(Theorem 12.6).

Related results. In this paper, we are only interested in streaming algorithms for a
fixed infinite group. Implicitly, streaming algorithms for finite groups are studied in
[24]. Obviously, every finite group G has deterministic streaming space complexity
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O(log |G|).2 In [24], it is shown that for the group G = SL(2,Fp) this upper bound
is matched by a lower bound, which even holds for the randomized streaming space
complexity. More precisely, Gowers and Viola study the communication cost of
the following problem: Alice receives a sequence of elements a1, . . . , an ∈ G, Bob
receives a sequence of elements b1, . . . , bn ∈ G and they are promised that the
interleaved product a1b1 · · · anbn is either 1 or some fixed element g ∈ G \ {1} and
their job is to determine which of these two cases holds. For G = SL(2,Fp) it is
shown that the randomized communication complexity of this problem is Θ(log |G| ·
n) (the upper bound is trivial). From this it follows easily that the randomized
streaming space complexity of SL(2,Fp) is Ω(log |G|).

Our transfer theorems for graph products (Theorem 10.7) and wreath prod-
ucts (Corollary 10.13) have similar counterparts in classical complexity theory: For
graph products, the following result is shown in [19]: If the word problem for every
group Gi (1 ≤ i ≤ k) can be solved in deterministic logspace on a Turing machine
then the same is true for every graph product of the groups G1, . . . , Gk. Kausch
in his thesis [38] strengthened this result by showing that the word problem of the
graph product is AC0-Turing-reducible to the word problems of the Gi and the free
group of rank two. A similar result holds for the wreath product: The word prob-
lem for the wreath product G oH is AC0-Turing-reducible to the word problems for
G and H [52].

The results of this paper where presented at the conferences MFCS 2022 and
MFCS 2024; extended abstracts appeared in [46, 47].

2. Preliminaries

For integers a < b let [a, b] be the integer interval {a, a + 1, . . . , b}. We write
[0, 1]R for the set {r ∈ R : 0 ≤ r ≤ 1} of all probabilities. We write exp(x) for ex,
where e is Euler’s number.

Let Σ be a finite alphabet. As usual we write Σ∗ for the set of all finite words
over the alphabet w. The empty word is denoted with ε. For a word w = a1a2 · · · an
(a1, a2, . . . , an ∈ Σ) let |w| = n be its length and w[i] = ai (for 1 ≤ i ≤ n) the
symbol at position i. A prefix of a word w is a word u such that w = uv for some
word v. We denote with P(w) the set of all prefixes of w. Let Σ+ = Σ∗ \ {ε} be
the set of non-empty words and Σ≤n = {w ∈ Σ∗ : |w| ≤ n} be the set of all words
of length at most n. For a subalphabet Θ ⊆ Σ we denote with πΘ : Σ∗ → Θ∗ the
projection homomorphism that deletes all symbols from Σ\Θ in a word: πΘ(a) = a
for a ∈ Θ and πΘ(a) = ε for a ∈ Σ \Θ.

Several times we will make use of the Chernoff bound. There are many variations
of the Chernoff bound, the following form can be found for instance in [20, equation
(1)]:

Theorem 2.1. Let δ > 0, p ∈ [0, 1]R, and X1, X2, . . . Xk be independent identically
distributed Bernoulli random variables with Prob[Xi = 1] = ε and Prob[Xi = 0] =
1− ε for all i. Then we have:

Prob

[
k∑
i=1

Xi > (1 + δ)εk

]
< exp

(
− δ

2εk

δ + 2

)
if δ ≥ 1

≤ exp

(
−δεk

3

)
. (1)

2In our setting, |G| would be a constant, but for the moment let us make the dependence on
the finite group G explicit.
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2.1. Communication complexity. Our lower bounds for randomized streaming
space complexity will be based on randomized communication complexity. We
present the necessary background from communication complexity; see [41] for a
detailed introduction. Consider a function f : X × Y → {0, 1} for some finite sets
X and Y . A randomized (communication) protocol P for f consists of two parties
called Alice and Bob. The input for Alice (resp., Bob) is an element x ∈ X and
a random choice r ∈ R (resp., y ∈ Y and a random choice s ∈ S). Here, R and
S are finite sets. The goal of Alice and Bob is to compute f(x, y). For this, they
communicate in a finite number of rounds, where in each round either Alice sends
a bit to Bob or Bob sends a bit to Alice. The protocol determines which of the two
communication directions is chosen. At the end, Bob outputs a bit P (x, r, y, s).
In a one-way protocol, only Alice sends bits to Bob. We assume a probability
distribution on the set R (resp., S) of Alice’s (resp., Bob’s) random choices. The
protocol P computes f if for all (x, y) ∈ X × Y we have

Prob
r∈R,s∈S

[P (x, r, y, s) 6= f(x, y)] ≤ 1

3
. (2)

The cost of the protocol is the maximum of the number of transmitted bits, where
the maximum is taken over all (x, r, y, s) ∈ X × R × Y × S. The randomized
(one-way) communication complexity of f is the minimal cost among all (one-way)
randomized protocols that compute f . Here, the size of the finite sets R and S is
not restricted. The choice of the constant 1/3 in (2) is arbitrary in the sense that
changing the constant to any λ < 1/2 only changes the communication complexity
by a constant (depending on λ), see [41, p. 30]. Also note that we only use the
private version of randomized communication protocols, where Alice and Bob make
private random choices from the sets R and S, respectively, and their choices are
not known to the other party (in contrast to the public version of randomized
communication protocols).

2.2. Probabilistic finite automata. In the following we introduce probabilistic
finite automata [60, 61], which will be used as our model for randomized streaming
algorithms. A probabilistic finite automaton (PFA) A = (Q,Σ, ι, ρ, F ) consists of a
finite set of states Q, a finite alphabet Σ, an initial state distribution ι : Q→ [0, 1]R,
a transition probability function ρ : Q × Σ × Q → [0, 1]R and a set of final states
F ⊆ Q such that

∑
q∈Q ι(q) = 1 and

∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ.

If ι and ρ map into {0, 1}, then A is a deterministic finite automaton (DFA). If
only ρ is required to map into {0, 1}, then A is called a semi-probabilitistic finite
automaton (semiPFA). This means that after choosing the initial state according
to the distribution ι, A proceeds deterministically.

Let A = (Q,Σ, ι, ρ, F ) be a PFA. For a random variable X with values from Q
and a ∈ Σ we define the random variable X · a (which also takes values from Q) by

Prob[X · a = q] =
∑
p∈Q

Prob[X = p] · ρ(p, a, q).

For a word w ∈ Σ∗ we define a random variableA(w) with values from Q inductively
as follows: the random variable A(ε) is defined such that Prob[A(ε) = q] = ι(q)
for all q ∈ Q. Moreover, A(wa) = A(w) · a for all w ∈ Σ∗ and a ∈ Σ. Thus,
Prob[A(w) = q] is the probability that A is in state q after reading w.

We can define Prob[A(w) = q] also via runs: A run on a word a1 · · · am ∈ Σ∗

in the PFA A is a sequence π = (q0, a1, q1, a2, . . . , am, qm) where q0, . . . , qm ∈
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Q. We say that π ends in qm. Given a run π in A we define ρι(π) = ι(q0) ·∏n
i=1 ρ(qi−1, ai, qi). For each w ∈ Σ∗ the function ρι is a probability distribution

on the set Runs(w) of all runs of A on w. Then, Prob[A(w) = q] is the sum of all
probabilities ρι(π), where π ∈ Runs(w) ends in q.

If A is a semiPFA then we can identify ρ with a mapping ρ : Q×Σ→ Q, where
ρ(p, a) is the unique state q with ρ(p, a, q) = 1. This mapping ρ is extended to a
mapping ρ : Q×Σ∗ → Q in the usual way: ρ(p, ε) = p and ρ(p, aw) = ρ(ρ(p, a), w)
for all a ∈ Σ and w ∈ Σ∗. We then obtain

Prob[A(w) = q] =
∑
{ι(p) : p ∈ Q, ρ(p, w) = q}.

For a semiPFA A = (Q,Σ, ι, ρ, F ) and a boolean condition E(q) that depends on
the state q ∈ Q, we define the probability

Prob
q∈Q

[E(q)] =
∑

q∈Q,E(q)=1

ι(q).

For a language L ⊆ Σ∗, a PFA A and a word w ∈ Σ∗ we define the error probability
of A on w ∈ Σ∗ for L as

ε(A, w, L) =

{
Prob[A(w) /∈ F ] if w ∈ L,
Prob[A(w) ∈ F ] if w /∈ L.

2.3. Sequential transducer. In Section 10.2 we make use of (left-)sequential
transducers, see e.g. [10] for more details. A sequential transducer is a tuple
T = (Q,Σ,Γ, q0, δ), where Q is a finite set of states, Σ is the input alphabet,
Γ is the output alphabet, q0 ∈ Q is the initial state, and δ : Q × Σ → Q × Γ∗ is
the transition function. If δ(q, a) = (p, u) then this should be read as follows: if the
transducer is in state q and the next input symbol is a then it moves to state p and
outputs the word u. We extend δ to a mapping δ : Q × Σ∗ → Q × Γ∗ as follows,
where q ∈ Q, a ∈ Σ and w ∈ Σ∗:

• δ(q, ε) = (q, ε) for all q ∈ Q, and
• if δ(q, a) = (p, u) and δ(p, w) = (r, v) then δ(q, aw) = (r, uv).

Finally, we define the function fT : Σ∗ → Γ∗ computed by T as follows (where
w ∈ Σ∗ and x ∈ Γ∗): fT (w) = x if and only if δ(q0, w) = (q, x) for some q ∈ Q.
Intuitively, in order compute fT (w), T reads the word w starting in the initial state
q0 and thereby concatenates all the outputs produced in the transitions.

3. Streaming algorithms: definitions

In this section we define our model of randomized streaming algorithms. It is a
non-uniform model in the sense that for every input length n we have a separate
algorithm that handles inputs of length at most n. Formally, a (non-uniform)
randomized streaming algorithm is a sequence R = (An)n≥0 of PFA An over the
same input alphabet Σ. If every An is deterministic (resp., semi-probabilitistic),
we speak of a deterministic (resp., semi-randomized) streaming algorithm.

Let ε0, ε1 : N → [0, 1]R be monotonically decreasing functions. A randomized
streaming algorithm R = (An)n≥0 is (ε0, ε1)-correct for a language L ⊆ Σ∗ if for
every large enough n ≥ 0 and every word w ∈ Σ≤n we have the following:

• if w ∈ L then ε(An, w, L) ≤ ε1(n) and
• if w /∈ L then ε(An, w, L) ≤ ε0(n).
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If ε0 = ε1 =: ε then we also say that R is ε-correct for L.
We say that R is a

• randomized streaming algorithm for L if it is 1/3-correct for L;
• 0-sided randomized streaming algorithm for L if it is (1/3, 0)-correct for L;
• 1-sided randomized streaming algorithm for L if it is (0, 1/3)-correct for L;
• deterministic streaming algorithm for L if it is deterministic and 0-correct

for L;
• nondeterministic streaming algorithm for L if it is (0, ε)-correct for L for

any monotonically decreasing function ε with 0 ≤ ε(n) < 1;
• co-nondeterministic streaming algorithm for L if it is (ε, 0)-correct for L for

any monotonically decreasing function ε with 0 ≤ ε(n) < 1.

The choice of 1/3 for the error probability is not important. Using a standard
application of the Chernoff bound, one can make the error probability an arbitrarily
small constant; see Theorem 4.1 below.

The space complexity of the randomized streaming algorithm R = (An)n≥0 is
the function s(R, n) = dlog2 |Qn|e, where Qn is the state set of An. The motivation
for this definition is that states of Qn can be encoded by bit strings of length at
most dlog2 |Qn|e. The randomized streaming space complexity of the language L is
the smallest possible function s(R, n), where R is a randomized streaming algo-
rithm for L. In an analogous way we define the 0-sided (resp., 1-sided) randomized
streaming space complexity, the deterministic streaming space complexity, and the
(co-)nondeterministic streaming space complexity of a language L.

The (non)deterministic streaming space complexity of a language L is directly
linked to the automaticity of L. The automaticity of L ⊆ Σ∗ is the function AL(n)
that maps n to the number of states of a smallest DFA An such that for all words
w ∈ Σ≤n we have: w ∈ L if and only if w is accepted by An. If we allow the
automata An to be nondeterministic then we obtain the nondeterministic auto-
maticity NL(n) of L. Hence, the deterministic (resp., nondeterministic) streaming
space complexity of L is exactly dlog2AL(n)e (resp., dlog2NL(n)e). The (nonde-
terministic) automaticity of languages was studied in [23, 65]. Interesting in our
context is the following result of Karp [37]: if L is a non-regular language then
AL(n) ≥ (n+3)/2 for infinitely many n. Hence, for every non-regular language the
deterministic streaming space complexity of L is lower bounded by log2(n)− c for
a constant c and infinitely many n.

As remarked before, our model of streaming algorithms is non-uniform in the
sense that for every input length n we have a separate streaming algorithm An.3

This makes lower bounds of course stronger. On the other hand, the streaming
algorithms that we construct for concrete groups will be mostly uniform in the
sense that there is an efficient algorithm that constructs from a given n the PFA
An.

4. Streaming algorithms: general results

Before we investigate streaming algorithms for word problems we prove a few
general results that are of independent interest. Let us first prove that (as stated
above) the error probability of a randomized streaming algorithm can be pushed

3This is analogous to circuit complexity, where for every input length n one has a separate
boolean circuits with n input gates.
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down to any constant ε > 0 at the cost of an additional constant factor in the space
complexity:

Theorem 4.1. Let r : N→ N a monotonic function and R a randomized stream-
ing algorithm such that R is 1

3 -correct for the language L. Then there exists a
randomized streaming algorithm S such that s(S, n) = r(n) · s(R, n) and S is
exp(−r(n)/30)-correct for the language L.

Proof. Let R = (An)n≥0 with An = (Qn,Σ, ιn, ρn, Fn). We use the standard idea
of running (in parallel) r(n) copies of An and making a majority vote at the end.
Formally, for an n ≥ 0 and k ≥ 1 we define the semiPFA Akn as follows:

• Akn = (Qkn,Σ, ι
k
n, ρ

k
n, Fn,k),

• ιkn(q1, . . . , qk) =
∏

1≤i≤k ιn(qi),

• ρkn((p1, . . . , pk), a, (q1, . . . , qk)) =
∏

1≤i≤k ρn(pi, a, qi), and

• Fn,k = {(q1, . . . , qk) : qi ∈ Fn for more than k/2 many i ∈ [1, k]}.
We then define the new randomized streaming algorithm Rr = (Ar(n)

n )n≥0. In
order to bound the error probability of Rr by exp(−r(n)/30) we have to show that
ε(Akn, w, L) ≤ exp(−k/30) for every input word w ∈ Σ≤n. For this we introduce
identically distributed independent Bernoulli random variables X1, . . . , Xk with
Prob[Xi = 1] = 1

3 . Then, for every w ∈ Σ≤n we have:

ε(Akn, w, L) ≤ Prob

[
k∑
i=1

Xi >
k

2

]
.

Let δ = 1
2 . With ε = 1

3 we obtain with the Chernoff bound (1):

Prob

[
k∑
i=1

Xi >
k

2

]
= Prob

[
k∑
i=1

Xi > (1 + δ)kε

]
< exp

(
− δ

2εk

δ + 2

)
= exp

(
− k

30

)
.

The space complexity of Rr is clearly r(n) times the space complexity of R. �

Let A = (Q,Σ, ι, ρ, F ) be a PFA and 0 < δ < 1, ε > 0. We say that δ is an
ε-isolated cutpoint for A if for all words w ∈ Σ∗ we have

|Prob[A(w) ∈ F ]− δ| ≥ ε. (3)

The language L(A, δ) accepted by A with cut-point δ is the set of all words w
with Prob[A(w) ∈ F ] > δ. Paz stated in [59, Theorem 30’] that in this situation
there exists a DFA for L(A, δ) with (1 + 1/2ε)|Q|−1 states. A proof can be found
in [60, p. 160]; it uses the proof technique for a slightly weaker result of Rabin [61,
Theorem 3]. Paz’s proof easily yields the following result:

Theorem 4.2. Let L be a language with randomized streaming space complexity
S(n). Then the deterministic streaming space complexity of L is bounded by 2S(n)+1.

Proof. Let R = (An) be a randomized streaming algorithm for L such that S(n) =
dlog2 |Qn|e. Fix an n and set δ = 1/2 and ε = 1/6, so that δ − ε = 1/3 and
δ+ ε = 2/3. We cannot directly apply the above mentioned result of Paz since 1/2
is not necessarily a 1/6-isolated cut-point for An: (3) only has to hold for words w
of length at most n. But we can argue as follows: Recall the automaticity function
AL(n) of the language L from Section 3. Then the deterministic streaming space
complexity of L is dlog2AL(n)e.
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It is shown in [34] (see also [65]) that AL(n) is the maximal number k for which
there exist words v1, . . . , vk ∈ Σ≤n such that for all i, j ∈ [1, k] with i < j there
exists a word wi,j ∈ Σ∗ such that viwi,j , vjwi,j ∈ Σ≤n and viwi,j ∈ L if and only if
vjwi,j /∈ L.

Assume now that k = AL(n) and fix the above words vi and wi,j . Consider
i, j ∈ [1, k] with i < j. Since viwi,j , vjwi,j ∈ Σ≤n and viwi,j ∈ L if and only if
vjwi,j /∈ L we get

|Prob[An(viwi,j) ∈ F ]− Prob[An(viwi,j) ∈ F ]| ≥ 2ε =
1

3
.

whenever i < j. In the proof of [59, Theorem 30’] (see [60, p. 160]) it is shown that
this implies

k ≤ (1 + 1/2ε)|Qn|−1 = 4|Qn|−1.

We obtain AL(n) ≤ 4|Qn| ≤ 42S(n)

and hence dlog2AL(n)e ≤ 2S(n)+1. �

We now turn to the connection between randomized and semi-randomized stream-
ing algorithms. Our next result states that a randomized streaming algorithm can
be transformed into an equivalent semi-randomized streaming algorithms with a
moderate blow-up in the space complexity.

Theorem 4.3. Let 0 < ε(n) < 1/4 for all n ≥ 0 and let R be a randomized
streaming algorithm which is ε(n)-correct for the language L. Then there is a semi-
randomized streaming algorithm S with s(S, n) = s(R, n) + Θ(log n+ log(1/ε(n)))
and S is 2ε(n)-correct for the language L.

Proof. LetR = (An)n≥0. Let us fix an n and consider the PFA An = (Q,Σ, ι, ρ, F ).
We first transform An into an acyclic PFA A′n = (Q′,Σ, ι′, ρ′, F ′), where acyclic
means that for every run π = (q0, a1, . . . , am, qm) of A′n such that m ≤ n and
qi = qj for some i < j we have ρι(π) = 0. We define the components of A′n as
follows:

• Q′ = Q× [0, n]
• F ′ = F × [0, n]
• For all states (p, i), (q, i+1) ∈ Q′ and all a ∈ Σ we set ρ′((p, i), a, (q, i+1)) =
ρ(p, a, q). Moreover, ρ′((p, i), a, (q, j)) = 0 if i < n and j 6= i+ 1.
• For states (p, n) we define ρ′ arbitrarily. Let us set ρ′((p, n), a, (p, n)) = 1

for all a ∈ Σ and ρ′((p, n), a, (q, i)) = 0 whenever (q, i) 6= (p, n).
• For all states (q, 0) ∈ Q′ we set ι′(q, 0) = ι(q). Moreover, ι′(q, i) = 0 if
i > 0.

The randomized streaming algorithm R′ = (A′n)n≥0 is also ε(n)-correct for the
language L. Moreover the space complexity of R′ is s(R, n) + dlog2(n+ 1)e.

We now define a random variable Dn, whose value is a DFA (Q′,Σ, (q0, 0), δ, F ′),
as follows:

• For every state (p, i) of A′n and every a ∈ Σ we choose a state (q, j) with
probability ρ′((p, i), a, (q, j)) and define δ((p, i), a) = (q, j).
• The initial state (q0, 0) ∈ Q′ is chosen with probability ι′(q0, 0).

The above choices are made independently. Let sup(Dn) be the support of Dn (the
set of DFAs that have non-zero probability).

For every fixed word w ∈ Σ∗ with |w| ≤ n and D ∈ sup(Dn) define Z[w,D] ∈
{0, 1} by Z[w,D] = 1 if and only if w ∈ L \ L(D) ∪ L(D) \ L. In other words:
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Z[w,D] = 1 if and only if D makes an error (with respect to the language L) on
the word w. For the expected value of Z[w,D] we obtain

E[w] :=
∑

D∈sup(Dn)

Prob[Dn = D] · Z[w,D] ≤ ε(n),

because the left-hand side of the inequality is exactly the error probability of A′n on
w. For this, it is important that we construct the DFAs from the acyclic PFA A′n: in
our original PFAAn, there could be a run of the form π = (. . . , p, a, q, . . . , p, a, q′, . . .)
with q 6= q′ and ρι(π) > 0. But runs of this form cannot occur in a DFA.

The rest of the proof follows the arguments from the proof of Newman’s theorem
from communication complexity, see e.g. [41]. Fix a number t that will be suitably
chosen later. For a t-tuple of DFAs D = (Dn,1, . . . ,Dn,t) from sup(Dn) we construct

a semi-probabilistic automaton S(D) by taking the disjoint union of the Dn,i. To

define the initial state distribution ῑ of S(D), let q0,i be the initial state of Dn,i.
Then we set ῑ(q0,i) = 1/t. Thus, the starting state of a run in S(D) is chosen
uniformly among the initial states of the Dn,i.

We show that there exists a t-tuple D of the above form such that for every input
word w ∈ Σ≤n the error probability of Sn := S(D) on w is at most 2ε(n). Then
(Sn)n≥0 is the desired semi-randomized streaming algorithm from the theorem.

Fix again an input word w ∈ Σ≤n and a t-tuple D = (Dn,1, . . . ,Dn,t). Then the

error probability of S(D) on w is

ε(S(D), w, L) =
1

t
·

t∑
i=1

Z[w,Dn,i].

We now choose the tuple D = (Dn,1, . . . ,Dn,t) randomly by taking t independent
copies of the random variable Dn. With the Chernoff bound (1) and E[w] ≤ ε(n)

(i.e., 2ε(n)
E[w] − 1 ≥ 1) we obtain

Prob

[
1

t
·

t∑
i=1

Z[w,Dn,i] > 2ε(n)

]

= Prob

[
t∑
i=1

Z[w,Dn,i] >
(

1 +
2ε(n)

E[w]
− 1

)
· E[w] · t

]

≤ exp

(
−2ε(n)/E[w]− 1

3
· E[w] · t

)
= exp

(
−2ε(n) + E[w]

3
· t
)

≤ exp

(
−ε(n) · t

3

)
.

By the union bound, the probability that ε(S(D), w, L) > 2ε(n) for some word
w ∈ Σ∗ of length at most n (where D is randomly chosen using t independent
copies of the random variable Dn) is bounded by

|Σ|n+1 · exp(−ε(n) · t/3) = exp(ln |Σ| · (n+ 1)− ε(n) · t/3).



STREAMING WORD PROBLEMS 11

If we choose t = 3(n + 1) ln |Σ|/ε(n) + O(1) then this probability is strictly below
1. With such a t the space complexity of S(D) becomes s(R′, n) + dlog2 te =
s(R, n) + Θ(log n+ log(1/ε(n))). �

Note that if s(R, n) ≥ Ω(log n) and ε(n) ≥ Ω(1/nc) for some constant c ≥ 1 then
s(S, n) = Θ(s(R, n)) in Theorem 4.3. Also notice that the proof of Theorem 4.3
uses non-uniformity in a crucial way.

Our final result in this section is a trade-off between the space complexity and
the error probability for semi-randomized streaming algorithms:

Theorem 4.4. Let s(n) be the deterministic streaming space complexity of the
language L ⊆ Σ∗ and let R = (An)n≥0 be a semi-randomized streaming algorithm
that is ε(n)-correct for the language L. Then for every large enough n ≥ 0 we have

s(R, n) ≥ min{s(n), log2(1/ε(n))}.

Proof. Fix an n ≥ 0 large enough such that for every word w ∈ Σ≤n the error
probability ε(An, w, L) is bounded by ε(n). Let An = (Qn,Σ, ιn, ρn, Fn). Hence, we
have s(R, n) = dlog2 |Qn|e. If s(R, n) ≥ log2(1/ε(n)) then we are done. Therefore,
assume that 1/ε(n) > 2s(R,n) ≥ |Qn|, i.e., ε(n) < 1/|Qn|. There must exist a state
qn ∈ Qn with ιn(qn) ≥ 1/|Qn| > ε(n). Consider the DFA Bn = (Qn,Σ, qn, ρn, Fn).
If there is a word w ∈ Σ≤n such that w ∈ L(Bn) ⇔ w /∈ L then we would have
ε(n) ≥ ιn(qn), which yields a contradition. Therefore we have L(Bn) ∩ Σ≤n =
L ∩ Σ≤n. Since Bn is a DFA with state set Qn, we get s(R, n) ≥ s(n). �

5. Groups and word problems

Let G be a group. The identity element will be always denoted with 1. For a
subset Σ ⊆ G, we denote with 〈Σ〉 the subgroup of G generated by Σ. It is the set
of all products of elements from Σ ∪ Σ−1. It can be also defined as the smallest
(w.r.t. inclusion) subgroup of G that contains Σ. Similarly, the normal closure
N(Σ) of Σ is smallest normal subgroup of G that contains Σ. It can be also defined
as the subgroup 〈{g−1ag : a ∈ Σ, g ∈ G}〉. We can then construct the quotient
group G/N(Σ). The commutator of g, h ∈ G is the element [g, h] = ghg−1h−1 and
for subsets A,B ⊆ G we write [A,B] for the subgroup 〈{[a, b] : a ∈ A, b ∈ B}〉.

In this paper, we only consider finitely generated (f.g.) groups. The group G
is finitely generated if there is a finite set Σ ⊆ G such that G = 〈Σ〉. In this
situation, Σ is called a finite generating set for G. If Σ = Σ−1 then we say that Σ
is a finite symmetric generating set for G. In the following we assume that all finite
generating sets are symmetric. Every word w ∈ Σ∗ evaluates to a group element
πG(w) in the natural way. Here πG : Σ∗ → G is the unique morphism from the free
monoid Σ∗ to G such that πG(a) = a for all a ∈ Σ. Instead of πG(u) = πG(v) we
also write u ≡G v. For a word u = a1a2 · · · an ∈ Σ∗ with ai ∈ Σ we define the word
u−1 = a−1

n · · · a−1
2 a−1

1 ∈ Σ∗. Clearly, we have πG(u−1) = πG(u)−1.
Let C(G,Σ) be the Cayley graph of G with respect to the finite symmetric

generating set Σ. It is the edge-labelled graph whose vertex set is G and that
has an a-labelled edge from πG(u) to πG(ua) for all u ∈ Σ∗ and a ∈ Σ. Let
WP(G,Σ) = {w ∈ Σ∗ : πG(w) = 1} be the word problem for G with respect to the
generating set Σ.

Next we introduce free groups and some related concepts. Fix a finite alphabet
Γ and take a copy Γ−1 = {a−1 : a ∈ Γ} of formal inverses. Let Σ = Γ ∪ Γ−1.
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We extend the mapping a 7→ a−1 (a ∈ Γ) to the whole alphabet Σ by setting
(a−1)−1 = a. For a word u ∈ Σ∗ the word u−1 is defined as above. A word
u ∈ Σ∗ is called reduced if it contains no factor of the form aa−1 for a ∈ Σ. Let
Red(Σ) ⊆ Σ∗ be the set of reduced words. The free group F (Γ) can be defined as the
set Red(Σ) of reduced words together with the following multiplication operation:
Let u, v ∈ Red(Σ). Then one can uniquely write u and v as u = xy and v = y−1z
such that xz ∈ Red(Σ) and define the product of u and v in the free group F (Γ) as
xz. For every word w ∈ Σ∗ we can define a unique reduced word red(w) as follows:
if w ∈ Red(Σ) then red(w) = w and if w = uaa−1v for u, v ∈ Σ∗ and a ∈ Σ then
red(w) = red(uv). It is important that this definition does not depend on which
factor aa−1 is deleted in w. The reduction relation uaa−1v → uv for all u, v ∈ Σ∗

and a ∈ Σ is a so-called confluent relation. The reduction mapping w 7→ red(w)
then becomes the unique morphism mapping a word w ∈ Σ∗ to the element of the
free group represented by w.

Group presentations are a common way to describe groups. Let Γ and Σ as in the
previous paragraph and let R ⊆ F (Γ). Then the quotient group F (Γ)/N(R) is also
denoted by 〈Γ | R〉 and the pair (Γ, R) is called a group presentation. The group
〈Γ | R〉 is finitely generated (since we assume Γ to be finite) and every f.g. group
can be written in this form. If also R is finite then the group 〈Γ | R〉 is called
finitely presented.

We are interested in streaming algorithms for word problems WP(G,Σ). The
following lemma is simple but important:

Lemma 5.1. Let Σ1 and Σ2 be finite symmetric generating sets for the group G and
let si(n) be the deterministic/randomized streaming space complexity of WP(G,Σi).
Then there exists a constant c that depends on G, Σ1 and Σ2 such that s1(n) ≤
s2(c · n).

Proof. For every generator a ∈ Σ1 there is a word wa ∈ Σ∗2 such that πG(a) =
πG(wa). Let c = max{|wa| : a ∈ Σ1} and let φ : Σ∗1 → Σ∗2 be the homomorphism
with φ(a) = wa for a ∈ Σ1. Let R2 = (A2,n)n≥0 be a deterministic/randomized
streaming algorithm for the language WP(G,Σ2) with space complexity s2(n).
We obtain a deterministic/randomized streaming algorithm R1 = (A1,n)n≥0 for

WP(G,Σ1) as follows: on input w ∈ Σ≤n1 , the PFA A1,n simulates the PFA A2,c·n
on the input word φ(w) ∈ Σ≤c·n2 . This yields a deterministic/randomized streaming
algorithm for WP(G,Σ1) with space complexity s2(c · n). �

By Lemma 5.1, the dependence of the streaming space complexity from the
generating set is often blurred by the use of the Landau notation. In such situations
we will speak of the deterministic/randomized streaming space complexity for the
group G (instead of the deterministic/randomized streaming space complexity of
the language WP(G,Σ)).

6. Streaming algorithms for word problems and growth

Let G be a finitely generated group and let Σ be a finite symmetric generating
set for G. For n ∈ N let BG,Σ(n) = πG(Σ≤n) ⊆ G be the ball of radius n in the
Cayley graph C(G,Σ) with center 1. The growth function γG,Σ : N→ N is defined
by

γG,Σ(n) = |BG,Σ(n)|
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for all n ≥ 0. For different finite generating sets Σ1,Σ2 of G the functions γG,Σ1

and γG,Σ2 are different, but their asymptotic behavior is the same; see e.g. [51,
Proposition 1.3] for a precise statement.

The (non)deterministic streaming space complexity of G is directly linked to the
growth of G by the following theorem.

Theorem 6.1. Let G be a finitely generated infinite group and let Σ be a finite
symmetric generating set for G. Define the function S(n) by

S(n) =

{
γG,Σ(n/2) if n is even,

γG,Σ(bn/2c) + 1 if n is odd.
(4)

Then, the deterministic streaming space complexity of WP(G,Σ) is dlog2 S(n)e and
the nondeterministic streaming space complexity of WP(G,Σ) is dlog2 γG,Σ(bn/2c)e.

Proof. We start with the upper bound for the deterministic streaming space com-
plexity in case n is even. In the following we identify the ball BG,Σ(n/2) with its
induced subgraph of the Cayley graph C(G,Σ). We define a deterministic finite
automaton An by taking the edge-labelled graph BG,Σ(n/2) with the initial and
unique final state 1. It can be viewed as a partial DFA in the sense that for every
g ∈ BG,Σ(n/2) and every a ∈ Σ, g has at most one outgoing edge labelled with a
(that leads to ga if ga ∈ BG,Σ(n/2)). In order to add the missing transitions we
choose an element gf ∈ BG,Σ(n/2) \ BG,Σ(n/2 − 1) (here, we set BG,Σ(−1) = ∅).
Such an element exists because G is infinite. If g ∈ BG,Σ(n/2) has not outgoing
a-labelled edge in BG,Σ(n/2) then we add an a-labelled edge from g to gf . We call
those edges spurious. The resulting DFA is An.

We claim that for every word w ∈ Σ≤n, w is accepted by An if and only if
w ∈ WP(G,Σ). This is clear, if no spurious edge is traversed while reading w into
An. In this case, after reading w, we end up in state πG(w). Now assume that a
spurious edge is traversed while reading w into An and let x be the shortest prefix
of w such that a spurious edge is traversed while reading the last symbol of x. Let
us write w = xy. We must have |x| > n/2 and πG(x) /∈ BG,Σ(n/2). Moreover,
|y| < n − n/2 = n/2. Since πG(x) /∈ BG,Σ(n/2), we have w = xy /∈ WP(G,Σ).
Moreover, w is rejected by An, because x leads in An from the initial state 1 to
state gf and there is no path of length at most n/2 − 1 from gf back to the final
state 1.

For the case that n is odd, we take the ball BG,Σ(bn/2c). Instead of adding
spurious edges we add a failure state f . If g ∈ BG,Σ(bn/2c) has no outgoing a-
labelled edge in BG,Σ(bn/2c), then we add an a-labelled edge from g to f . Moreover,
for every a ∈ Σ we add an a-labelled loop at state f . As for the case n even, one can
show that the resulting DFA accepts a word w ∈ Σ≤n if and only if w ∈WP(G,Σ).

The upper bound for the nondeterministic streaming space complexity follows
with the same arguments. Notice that the failure state f in case n is odd is not
needed in a nondeterministic automaton.

For the lower bound we start with the nondeterministic streaming space com-
plexity. Let k = γG,Σ(bn/2c) and choose words w1, . . . , wk such that |wi| ≤ bn/2c
for all i ∈ [1, k] and wi 6≡G wj whenever i 6= j. Then for every i ∈ [1, k] we have

wiw
−1
i ∈ WP(G,Σ) and wjw

−1
i /∈ WP(G,Σ) for all j ∈ [1, k] \ {i}. Moreover,

|wjw−1
i | ≤ n for all i, j ∈ [1, k]. In the language of [23], {w1, . . . , wk} is a set
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of uniformly n-dissimilar words. By [23, Lemma 3.1] this implies that the nonde-
terministic automaticity of WP(G,Σ) satisfies NWP(G,Σ)(n) ≥ γG,Σ(bn/2c). This
shows the lower bound on the nondeterministic streaming space complexity.

For the lower bound on the deterministic streaming space complexity, let A =
(Q,Σ, q0, δ, F ) be a smallest DFA such that L(A) ∩ Σ≤n = WP(G,Σ) ∩ Σ≤n. We
have to show that |Q| ≥ S(n) for S(n) from (4). Let us consider two words u, v ∈ Σ∗

of length at most bn/2c such that u 6≡G v and δ(q0, u) = δ(q0, v). We then have
uv−1 6∈WP(G,Σ) and vv−1 ∈WP(G,Σ). On the other hand, we have δ(q0, uv

−1) =
δ(q0, vv

−1), which is a contradiction (note that |uv−1|, |vv−1| ≤ n). Hence, if
δ(q0, u) = δ(q0, v) for two words u, v ∈ Σ∗ of length at most bn/2c, then u ≡G v.

Let Q′ = {δ(q0, w) : w ∈ Σ∗, |w| ≤ bn/2c} ⊆ Q. The previous paragraph shows
that |Q′| ≥ γG,Σ(bn/2c). If n is even then bn/2c = n/2 and we are done. So, let us
assume that n is odd.

If |Q| > γG,Σ(bn/2c) then we are again done. So, let us assume that Q = Q′

and |Q| = γG,Σ(bn/2c). Then, to every state q ∈ Q we can assign a unique group
element gq ∈ BG,Σ(bn/2c) such that for every word w ∈ Σ∗ with |w| ≤ bn/2c we
have δ(q0, w) = q if and only if πG(w) = gq. The mapping q 7→ gq is a bijection
between Q and BG,Σ(bn/2c).

Let us now take a state q ∈ Q and a generator a ∈ Σ such that gq · a /∈
BG,Σ(bn/2c). Such a state and generator must exist since G is infinite. Let
u, v ∈ Σ∗ be words of length at most bn/2c such that δ(q0, u) = q and δ(q0, v) =
δ(q, a) = δ(q0, ua). We obtain δ(q0, vv

−1) = δ(q0, uav
−1). But vv−1 ∈ WP(G,Σ)

and uav−1 /∈WP(G,Σ) since πG(uav−1) = gq ·a ·πG(v−1) and gq ·a /∈ BG,Σ(bn/2c),
πG(v−1) ∈ BG,Σ(bn/2c). This is a contradiction since vv−1 and uav−1 both have
length at most n. Hence, we must have |Q| > γG,Σ(bn/2c). �

The growth of f.g. groups is well-studied and Theorem 6.1 basically closes the
chapter on (non)deterministic streaming algorithms for word problems. Hence, in
the rest of the paper we focus on randomized streaming algorithms. Here, we can
still prove a lower bound (that will turn out to be sharp in some cases but not
always) using the randomized one-way communication complexity of the equality
problem:

Theorem 6.2. Let G be a finitely generated group and let Σ be a finite symmetric
generating set for G. The randomized streaming space complexity of WP(G,Σ) is
Ω(log log γG,Σ(bn/2c)).

Proof. We make a reduction from the equality problem in communication com-
plexity. In this problem, Alice and Bob each have a private number (say i ∈ [1, n]
for Alice and j ∈ [1, n] for Bob) and their goal is to check whether i = j. It is
known that the randomized one-way communication complexity (where Alice can
send information to Bob in one round) of the equality problem is Θ(log log n) when
Alice and Bob make private random choices [41].

Fix an arbitrary bijection

α : [1, γG,Σ(bn/2c)]→ BG,Σ(bn/2c)
and let

β : BG,Σ(bn/2c)→ Σ≤bn/2c

be an injective mapping that maps every group element g ∈ BG,Σ(bn/2c) to a word

w ∈ Σ≤bn/2c such that πG(w) = g. Assume now that R = (An)n≥0 is a randomized
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streaming algorithm for WP(G,Σ) and assume that its space complexity is s(n).
Then we obtain a randomized one-way communication protocol for equality on
numbers from [1, γG,Σ(bn/2c)] with communication cost s(n), which implies that
s(n) ≥ Ω(log log γG,Σ(bn/2c)): If Alice holds the number i ∈ [1, γG,Σ(bn/2c)], then
she runs (using her random choices) the PFA An on input β(α(i)). The state q
reached at the end (which can be encoded by a bit string of length at most s(n))
is communicated to Bob. Assume that Bob holds the number j ∈ [1, γG,Σ(bn/2c)].
Bob then simulates (using his random choices) the PFA An on input β(α(j)−1)
starting from state q and accepts if and only if a final state of An is reached. We
have i = j if and only if α(i) ·α(j)−1 = 1 in G if and only if β(α(i))β(α(j)−1) ≡G 1.
This shows that we obtain indeed a randomized one-way protocol for equality. �

Remark 6.3. Since every f.g. infinite group has growth at least n, Theorem 6.2
has the following consequence: If G is a f.g. infinite group, then the randomized
streaming space complexity of G is Ω(log log n).

Remark 6.4. Later in this paper, we will make use of the following two famous
results on the growth of groups, see also [17, 51]:

• Gromov’s theorem [28]: A f.g. group G has polynomial growth if and only
if G is virtually nilpotent (i.e., G has a nilpotent subgroup of finite index).
• Wolf-Milnor theorem [55, 71]; see also [17, p. 202]: A f.g. solvable group
G is either virtually nilpotent (and hence has polynomial growth) or there
is a constant c > 1 such that G has growth cn (i.e., G has exponential
growth). It is well known that the same dichotomy also holds for f.g. linear
groups. This is a consequence of Tits alternative [67]: A f.g. linear group
G is either virtually solvable or contains a free group of rank at least two
(in which case G has exponential growth).

The dichotomy theorem of Milnor and Wolf does not generalize to all f.g. groups.
Grigorchuk [26] constructed a group whose growth is lower bounded by exp(n0.515)
[7] and upper bounded by exp(n0.768) [6]. The streaming space complexity of this
remarkable group will be studied in Theorem 11.6.

7. Comparison to sofic groups

In this section we will discuss a relationship between randomized streaming space
complexity and sofic groups. There are many equivalent definitions of sofic groups.
The following definition is from [4, 13]:

With Sym(k) we denote the symmetric group on [1, k] (the set of all permutations
on [1, k] together with the operation of function composition). For σ ∈ Sym(k) the
normalized Hamming weight wH(σ) is defined by

wH(σ) =
1

k
· |{i ∈ [1, k] : σ(i) 6= i}|.

Let G be a f.g. group and Σ be a finite symmetric generating set for G. Let
πG : Σ∗ → G be the canonical morphism that evaluates words in the group G.
Then G is called sofic if for every n ≥ 0 there exists a k ≥ 1 and a monoid
morphism σ : Σ∗ → Sym(k) (with σ(a−1) = σ(a)−1) such that for every word
w ∈ Σ≤n the following holds:

• if πG(w) = 1 then wH(σ(w)) ≤ 1/n, and
• if πG(w) 6= 1 then wH(σ(w)) ≥ 1− 1/n.
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In case G is sofic, we define the sofic dimension growth of G (with respect to Σ)
as the function κG,Σ : N → N such that κG,Σ(n) is the minimal value k for which
the above conditions hold. For different finite generating sets Σ1,Σ2 of G the
functions κG,Σ1

and κG,Σ2
are different, but their asymptotic behavior is the same

(analogously to the growth functions γG,Σ1
and γG,Σ2

); see [13, Proposition 3.3.2]
for a precise statement.

It is a famous open problem whether every group G is sofic.4 The connection to
randomized streaming complexity can be seen as follows: Assume that G is sofic
and consider its sofic dimension growth κG,Σ. For every n ≥ 0 let kn = κG,Σ(n) and
let πn : Σ∗ → Sym(kn) be the monoid morphism satisfying the above conditions
for soficity. Then we obtain a semi-randomized streaming algorithm R = (An)n≥0

that is 1/n-correct for WP(G,Σ) as follows: define An = (Qn,Σ, ιn, ρn, Fn) with

• Qn = [1, kn]× [1, kn],
• ιn(i, i) = 1/kn for all i ∈ [1, kn] and ιn(i, j) = 0 for i 6= j,
• ρn((i, j), a) = (i, πn(j)) for all i, j ∈ [1, kn] and a ∈ Σ, and
• Fn = {(i, i) : i ∈ [1, kn]}.

The space complexity of this algorithm is s(R, n) = d2 log2 kne.
The above semi-randomized streaming algorithm R = (An)n≥0 has some partic-

ular properties:

• for every a ∈ Σ, the transition function q 7→ ρn(q, a) (for q ∈ Qn) is a
permutation on Qn, and
• the initial state distribution ιn is a uniform distribution on a subset of Qn.

The second property is not a real restriction. With an additional constant factor in
the space complexity one can easily ensure that ιn is the uniform distribution on a
subset of Qn. The first property is a severe restriction that makes the existence of
non-sofic groups possible.

8. Distinguishers for groups

Let G be a f.g. group G with the finite generating set Σ. Moreover, let ε0, ε1 :
N → [0, 1]R be monotonically decreasing functions. A semi-randomized streaming
algorithm (An)n≥0 with An = (Qn,Σ, ιn, ρn, Fn) (a semiPFA) is called an (ε0, ε1)-
distinguisher for G (with respect to Σ), if the following properties hold for all large
enough n ≥ 0 and all words u, v ∈ Σ≤n:

• If u ≡G v then Probq∈Qn [ρn(q, u) = ρn(q, v)] ≥ 1 − ε1(n). In other words:
for a randomly chosen initial state, the semiPFAAn arrives with probability
at least 1− ε1(n) in the same state after reading u and v.
• If u 6≡G v then Probq∈Qn [ρn(q, u) 6= ρn(q, v)] ≥ 1 − ε0(n). In other words:

for a randomly chosen initial state, the semiPFAAn arrives with probability
at least 1− ε0(n) in different states after reading u and v.

Note that the set Fn of final states of An is not important and we will just write
An = (Qn,Σ, ιn, ρn) in the following if we talk about an (ε0, ε1)-distinguisher
(An)n≥0.

4One can define the concept of sofic groups also for non-finitely generated groups, but here we
only talk about finitely generated groups.
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Lemma 8.1. Let R be an (ε0, ε1)-distinguisher for G with respect to Σ. Then
WP(G,Σ) has an (ε0, ε1)-correct semi-randomized streaming algorithm with space
complexity 2 · s(R, n).

Proof. Let R = (An)n≥0 with An = (Qn,Σ, ιn, ρn). Using the above definition of
an (ε0, ε1)-distinguisher with the empty string v = ε we get for every word u ∈ Σ≤n:

• If u ∈WP(G,Σ) then Probq∈Qn [ρn(q, u) = q] ≥ 1− ε1(n).
• If u /∈WP(G,Σ) then Probq∈Qn [ρn(q, u) 6= q] ≥ 1− ε0(n).

This allows to construct an (ε0, ε1)-correct randomized streaming algorithm (Bn)n≥0

for WP(G,Σ). Thereby the space complexity of the algorithm only doubles: We
define Bn = (Qn ×Qn,Σ, ι′n, ρ′n, Fn) where

• ι′n(p, p) = ιn(p) for all p ∈ Qn and ι′n(p, q) = 0 if p 6= q,
• ρ′n((p, q), a) = (p, ρn(q, a)) for p, q ∈ Qn and a ∈ Σ, and
• Fn = {(p, p) : p ∈ Qn}.

It is easy to check that this semi-randomized streaming algorithm is indeed (ε0, ε1)-
correct for WP(G,Σ). �

Due to Lemma 8.1, our goal in the rest of the paper will be the construction of
space efficient (ε0, ε1)-distinguishers for groups.

We will need (ε0, ε1)-distinguishers in order to get transfer results for graph
products and wreath products. For this, we need some further observations on
(ε0, ε1)-distinguishers that we discuss in the rest of the section.

For equivalence relations ≡1 and ≡2 on a set A and a subset S ⊆ A we say that:

• ≡1 refines ≡2 on S if for all a, b ∈ S we have: if a ≡1 b then a ≡2 b;
• ≡1 equals ≡2 on S if for all a, b ∈ S we have: a ≡1 b if and only if a ≡2 b.

For a semiPFA A = (Q,Σ, ι, ρ) and a state q ∈ Q we define the equivalence relation
≡A,q on Σ∗ as follows: u ≡A,q v if and only if ρ(q, u) = ρ(q, v). Whenever A is
clear from the context, we just write ≡q instead of ≡A,q.

Lemma 8.2. Let (An)n≥0 be an (ε0, ε1)-distinguisher for the finitely generated
group G with respect to the finite generating set Σ. Let An = (Qn,Σ, ιn, ρn).
Consider a set S ⊆ Σ≤n. Then, the following statements hold, where ≡q refers to
An:

• Probq∈Qn [≡G equals ≡q on S] ≥ 1−max{ε0(n), ε1(n)}
(|S|

2

)
,

• Probq∈Qn [≡G refines ≡q on S] ≥ 1− ε1(n)
(|S|

2

)
,

• Probq∈Qn [≡q refines ≡G on S] ≥ 1− ε0(n)
(|S|

2

)
.

Proof. All three statements follow from the union bound and the fact that there

are
(|S|

2

)
unordered pairs of different elements from S. For the first statement note

that Probq∈Qn [(u ≡G v and u 6≡q v) or (u 6≡G v and u ≡q v)] ≤ max{ε0(n), ε1(n)}
for all u, v ∈ S. For the second statement, note that Probq∈Qn [u ≡G v and u 6≡q
v] ≤ ε1(n), and similarly for the third statement. �

Recall that for a word w we write P(w) for the set of all prefixes of w.

Lemma 8.3. Let G be a finitely generated group with the finite generating set Σ
and let A = (Q,Σ, ι, ρ) be a semiPFA with q ∈ Q. Consider words u, v ∈ Σ∗ such
that ≡G refines ≡q on P(u) ∪P(v) and let u = xyz with y ≡G 1. Then ≡G refines
≡q on P(xz) ∪ P(v).
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Proof. Assume that s, t ∈ P(xz)∪P(v) are such that s ≡G t. We have to show that
ρ(q, s) = ρ(q, t). If s /∈ P(u)∪P(v) we must have s = xz′ for a prefix z′ of z. Since
x ≡G xy, x, xy ∈ P(u) and ≡G refines ≡q on P(u)∪P(v), we have ρ(q, x) = ρ(q, xy).
This implies that ρ(q, s) = ρ(q, xz′) = ρ(q, xyz′). In addition we have s ≡G xyz′

and xyz′ ∈ P(u). In this way we obtain from s a word s̃ ∈ P(u) ∪ P(v) such that
ρ(q, s) = ρ(q, s̃) and s ≡G s̃ (we might have s = s̃). In the same way, we can obtain
from t a word t̃ ∈ P(u) ∪ P(v) such that ρ(q, t) = ρ(q, t̃) and t ≡G t̃. Since s ≡G t
we have s̃ ≡G t̃. Since ≡G refines ≡q on P(u)∪P(v) and s̃, t̃ ∈ P(u)∪P(v) we get
ρ(q, s) = ρ(q, s̃) = ρ(q, t̃) = ρ(q, t). �

Lemma 8.4. Let G, A, and q be as in Lemma 8.3. Consider words u, v ∈ Σ∗ such
that ≡q refines ≡G on P(u) ∪ P(v) and let u = xyz with ρ(q, x) = ρ(q, xy). Then
≡q refines ≡G on P(xz) ∪ P(v).

Proof. Assume that s, t ∈ P(xz) ∪ P(v) are such that ρ(q, s) = ρ(q, t). We have to
show that s ≡G t. Since ρ(q, x) = ρ(q, xy) and x, xy ∈ P(u), we have x ≡G xy, i.e.,
y ≡G 1. We can then define the words s̃, t̃ ∈ P(u) ∪ P(v) in the same way as in
the proof of Lemma 8.3. We obtain ρ(q, s̃) = ρ(q, s) = ρ(q, t) = ρ(q, t̃). Since ≡q
refines ≡G on P(u) ∪ P(v) we get s ≡G s̃ ≡G t̃ ≡G t. �

9. Randomized streaming algorithms for linear groups

Recall that a group is linear if it is isomorphic to a group of invertible matrices
over a field K. The group of all invertible (r × r)-matrices with entries from F
is denoted with GLr(K). For every f.g. linear group, the word problem can be
solved in logarithmic space. This was shown by Lipton and Zalcstein [43] (if the
underlying field has characteristic zero) and Simon [66] (if the underlying field has
prime characteristic). In this section, we show that with some care, one can turn
the algorithms from [43, 66] into (ε0(n), 0)-distinguishers with ε0(n) = 1/nc for a
constant c and space complexity O(log n). We will make use of the following well-
known result of DeMillo, Lipton, Schwartz and Zippel [72, 64, 16]. The degree of
a multivariate polynomial p(x1, . . . , xn) ∈ K[x1, . . . , xn] with coefficients from the

field K is the maximal sum k1 + k2 + · · ·+ kn where xk1
1 x

k2
2 · · ·xknn is a monomial

of p.

Theorem 9.1. Let p(x1, . . . , xn) ∈ K[x1, . . . , xn] be a non-zero multivariate poly-
nomial of degree d, and let S ⊆ K be finite. If (s1, . . . , sn) ∈ Sn is randomly chosen
according to the uniform distribution, then Prob[p(s1, . . . , sn) = 0] ≤ d

|S| .

We now come to the main result of this section.

Theorem 9.2. For every f.g. linear group G and every c > 0 there exists a
(1/nc, 0)-distinguisher with space complexity O(log n).

Proof. By [43], G is a finitely generated subgroup of GLr(K), where the field K
is of the form K = F (x1, . . . , xm) for a prime field F . Thus, F is either Q or a
finite field Fp for a prime p and F (x1, . . . , xm) is the field of all fractions q1/q2 for
polynomials q1, q2 ∈ F [x1, . . . , xm] with q2 6= 0.

Let us first assume that F = Q. Let Σ be a generating set for G. Then every
generator M ∈ Σ is a matrix, whose entries are quotients of polynomials from
Z[x1, . . . , xm]. Therefore there exists a fixed non-zero polynomial t ∈ Z[x1, . . . , xm]

such that every matrix M̂ := t · M for M ∈ Σ has entries from Z[x1, . . . , xm].
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Let r be the dimension of the matrices. Let d be the maximal degree of t and all
polynomials that appear in matrices M̂ with M ∈ Σ. The parameters m, r, and d
are constants in the further considerations.

Fix an input length n. Clearly, for all matrices M1, . . . ,Mk, N1, . . . , Nl ∈ Σ

with k, l ≤ n we have
∏k
i=1Mi =

∏l
i=1Ni if and only if tn+1−k∏k

i=1 M̂i =

tn+1−l∏l
i=1 N̂i.

Consider two input words M1M2 · · ·Mk, N1N2 · · ·Nl ∈ Σ∗ with k, l ≤ n and
assume that

tn+1−k
k∏
i=1

M̂i 6= tn+1−l
l∏
i=1

N̂i.

Define the matrix

A := tn+1−k
k∏
i=1

M̂i − tn+1−l
l∏
i=1

N̂i ∈ Z[x1, . . . , xm]r×r.

Note that all entries of the matrix A are polynomials of degree at most d(n + 1)
and at least one of them is not the zero polynomial.

Let S = [1, 2d(n + 1)c+1], where c is the value from the theorem. For a tuple

φ̄ = (s1, . . . , sm) ∈ Sm and a matrix M ∈ Z[x1, . . . , xm]r×r let M̂(φ̄) be the integer

matrix obtained from M̂ by replacing every variable xi by si. For a randomly
chosen tuple φ̄ ∈ Sm, Theorem 9.1 implies that

Prob
φ̄∈Sm

[A(φ̄) 6= 0] ≥ 1− 1

2(n+ 1)c
≥ 1− 1

2nc
. (5)

Let us now consider a tuple φ̄ ∈ Sm such that A(φ̄) 6= 0. Every entry in a matrix

M̂(φ̄) (M ∈ Σ) has an absolute value of order O((2d(n + 1)c+1)d) = O(nd(c+1))
(d is a constant) and also t(φ̄) ≤ O(nd(c+1)). Therefore, all entries in the ma-

trix t(φ̄)n+1−k∏k
i=1 M̂i(φ̄) are of absolute value O(rnnd(c+1)n), and similarly for

t(φ̄)n+1−l∏l
i=1 N̂i(φ̄). Hence, A(φ̄) is a non-zero matrix with all entries of absolute

value at most O(rnnd(c+1)n).
The number of different prime factors of a numberD ≤ O(rnnd(c+1)n) is bounded

by

lnD

ln lnD
· (1 + o(1)) ≤ O

(
n log n

log n

)
= O(n);

see [62, Theorem 16]. By a weak form of the prime number theorem, the number of
primes of size at most nc+2 lnn is Θ(nc+2). Hence, by randomly choosing a prime
of size at most nc+2 lnn we can obtain the bound

Prob
φ̄,p

[A(φ̄) mod p = 0 | A(φ̄) 6= 0] ≤ O
(

1

nc+1

)
≤ 1

2nc
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for n large enough. Hence, we obtain

Prob
φ̄,p

[
t(φ̄)n+1−k

k∏
i=1

M̂i(φ̄) 6≡ t(φ̄)n+1−l
l∏
i=1

N̂i(φ̄) mod p

]
= Prob

φ̄,p
[A(φ̄) mod p 6= 0 | A(φ̄) 6= 0] · Prob

φ̄
[A(φ̄) 6= 0]

≥
(

1− 1

2nc

)2

≥ 1− 1

nc

for n large enough. The streaming algorithm for inputs of length at most n is now
clear: Initially, the algorithm guesses φ̄ ∈ Sm (for S = [1, 2d(n+1)c+1]) and a prime
p ≤ nc+2 lnn. All these numbers need O(log n) bits in total. If t(φ̄) mod p = 0
then the algorithm ignores the input word. Otherwise, the algorithm initializes a
matrix B := t(φ̄)n+1 · Idr mod p, where Idr is the r-dimensional identity matrix.
Then, for every new generator matrix M ∈ Σ the algorithm updates B by

B := t(φ̄)−1 ·B · M̂(φ̄) mod p.

All computation are carried out in the field Fp. If
∏k
i=1Mi =

∏l
i=1Ni (k, l ≤ n)

then after reading the input words M1 · · ·Mk and N1 · · ·Nl, the algorithm arrives

with probability one in the same state. On the other hand, if
∏k
i=1Mi 6=

∏l
i=1Ni

then the reached states differ with probability at least 1− 1/nc by the above error
analysis.

Let us now briefly discuss the case where the underlying prime field is F = Fp
for a prime p. Then we have to work in a finite extension Fpe for some e such that
pe ≥ 2d(n + 1)c+1, which can be achieved by taking e of size Θ(log n). By fixing
a subset S ⊆ Fpe of size 2d(n+ 1)c+1 and choosing a tuple φ̄ = (s1, . . . , sm) ∈ Sm
randomly, we obtain the bound (5). Since an r-dimensional matrix over the field
Fpe can be stored in space O(log n) (r and p are constants and e = Θ(log n)), this
yields the desired algorithm in the same way as for the case F = Q. �

A group is nilpotent if its lower central series terminates after finitely many
steps in the trivial group 1. The lower central series of a group G is the series
G = G1 D G2 D G3 D · · · where Gi+1 = [G,Gi]. Every nilpotent group is linear.
For nilpotent groups we can improve the algorithm from the proof of Theorem 9.2,
at least if we sacrifice the inverse polynomial error probability:

Theorem 9.3. For every f.g. nilpotent group G and every constant c > 0 there
exists a (1/ logc n, 0)-distinguisher with space complexity O(log log n).

Proof. We can assume that G is infinite. With UTd(Z) we denote the set of all
upper triangular (d × d)-matrices over Z with all diagonal entries equal to 1 (so-
called unitriangular matrices). These matrices form a f.g. nilpotent group. Let G
be a f.g. nilpotent group. Then G has a f.g. torsion-free nilpotent subgroup H such
that the index [G : H] is finite [36, Theorem 17.2.2]. Moreover, there exists d ≥ 1
such that the finitely generated torsion-free nilpotent group H can be embedded
into the group UTd(Z) [36, Theorem 17.2.5]. By Theorem 10.2 below it suffices to
show that every UTd(Z) has an ε(n)-distinguisher with ε(n) = 1/ logc n and space
complexity O(log log n).
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Fix a finite generating set Σ for UTd(Z) and an input length n. Consider a
product M :=

∏m
i=1Mi with m ≤ n and Mi ∈ Σ. From [45, Proposition 4.18] it

follows that the absolute value of every entry of the matrix M has size at most
O(md−1) ≤ O(nd−1). The randomized streaming algorithm for UTd(Z) will guess
a prime number of size Θ(logc+1 n · log log(n)) and computes the product matrix
M modulo p. For this, O(log log n) bits are sufficient.

Consider two input words u = M1M2 · · ·Ml ∈ Σ∗ and v = N1N2 · · ·Nm ∈ Σ∗

with l,m ≤ n. If
∏l
i=1Mi =

∏m
i=1Ni then our randomized streaming algorithm

will reach with probability one the same state after reading the input words u

and v, respectively. On the other hand, if
∏l
i=1Mi 6=

∏m
i=1Ni, then consider

a non-zero matrix entry a ∈ Z of the matrix
∏l
i=1Mi −

∏m
i=1Ni. We have

|a| ≤ O(nd−1). The number of different prime factors of a is therefore bounded
by O(log n/ log log n). Hence, by randomly choosing a prime number p of size at
most O(logc+1 n · log log(n)) we can obtain a probability of at most 1/ logc n for
a mod p = 0. Hence, with probability 1 − 1/ logc n we reach different states after
reading u and v, respectively. �

Note that if G is infinite, the space bound from Theorem 9.3 is sharp up to
constant factors even if we allow a constant error probability; see Remark 6.3.

By Theorem 4.4 the inverse polylogarithmic error in Theorem 9.3 cannot be
improved if G is infinite: Consider an ε(n)-distinguisher with space complexity
O(log log n) for the infinite group G. Lemma 8.1 yields an ε(n)-correct semi-
randomized streaming algorithm for the word problem of G with space complexity
r(n) ≤ O(log log n). By Theorem 6.1, the deterministic streaming space com-
plexity of the word problem for G is lower bounded by Ω(log n). Hence, if n
is large enough, we must have r(n) ≥ log2(1/ε(n)) by Theorem 4.4. We get
log2(1/ε(n)) ≤ c · log2 log2 n for some constant c > 0, i.e., ε(n) ≥ 1/ logc2 n.

10. Closure properties for the space complexity of distinguishers

In this section, we will show that many group theoretical constructions preserve
the space complexity of distinguishers.

10.1. Finitely generated subgroups, finite extensions, direct products.
For many algorithmic problems in group theory, the complexity is preserved when
(i) going down to a finitely generated subgroup and (ii) going up to a finite exten-
sion. This is also true for our model of distinguishers:

Theorem 10.1. Let G be a f.g. group and H a f.g. subgroup of H. If R is an
(ε0(n), ε1(n))-distinguisher for G then H has an (ε0(cn), ε1(cn))-distinguisher with
space complexity s(R, c · n) for some constant c.

Proof. Fix the generating sets Σ and Γ of G and H, respectively. Then for every
generator a ∈ Γ there is a word wa ∈ Σ∗ such that a and wa represent the same
element of H. We can then argue as in the proof of Lemma 5.1. �

Theorem 10.2. Assume that H is a f.g. group and G is a subgroup of H of finite
index (hence, also G must be finitely generated). Assume that R is an (ε0(n), ε1(n))-
distinguisher for G. Then H has an (ε0(cn), ε1(cn))-distinguisher with space com-
plexity s(R, c · n) +O(1) for some constant c.
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Proof. We can assume that G is a normal subgroup of H: It is well known that
there exists a normal subgroup N of H (the so-called normal core of G) such that
N ≤ G and N has finite index in H, see e.g. [63, Excercise 1.6.9]. Since N has
finite index in H, also N must be finitely generated. Since N ≤ G, Theorem 10.1
implies that N has an (ε0(dn), ε1(dn))-distinguisher with space complexity s(R, dn)
for some constant d. This shows that we can replace G by N .

For the rest of the proof we assume that G is normal in H. Fix a generating
set Σ for G. Let h1, . . . , hk ∈ H be a set of coset representatives for G where
h1 = 1. Then Γ = Σ∪{h2, . . . , hk} generates H. Since G is normal, for every a ∈ Σ
and every i ∈ [1, k] there exists an element g(a, i) ∈ G such that hia = g(a, i)hi
in H (with g(a, 1) = a). Moreover, for all i, j ∈ [1, k] there are g(i, j) ∈ G and
1 ≤ α(i, j) ≤ k such that hihj = g(i, j)hα(i,j) in H (with α(1, i) = α(i, 1) = i and
g(i, 1) = g(1, i) = 1). We identify the group elements g(a, i), g(i, j) with words over
the alphabet Σ. Let c be the maximal length of these words.

Let R = (An)n≥0 be the (ε0(n), ε1(n))-distinguisher for G with respect to Σ.
An (ε0(cn), ε1(cn))-distinguisher S = (Bn)n≥0 for H with respect to Γ works as
follows: Fix n ≥ 0 and an input word w ∈ Γ≤n. The automaton Bn will store a
coset representative h ∈ {h1, . . . , hk} (using space O(1)) and a state of Acn. Let
Acn = (Q,Σ, ι, ρ, F ). Initially, we set h = h1 = 1 and a state from Q is guessed
according to the initial state distribution ι. Assume that q ∈ Q is the current
state of Acn, h = hi is the current coset and we read a generator from Γ. If this
generator is a ∈ Σ then (recall the identity hia = g(a, i)hi in H) we proceed to the
state ρ(q, g(a, i)) ∈ Q and the coset representative hi is not changed. If we read a
generator hj ∈ {h2, . . . , hk} then (recall the identity hihj = g(i, j)hα(i,j) in H) we
proceed to the state ρ(q, g(i, j)) ∈ Q and the coset representative hα(i,j). It is easy
to observe that S is an (ε0(cn), ε1(cn))-distinguisher for H. �

Recall that Gromov [28] proved that a finitely generated group has polynomial
growth if and only if it is virtually nilpotent.

Corollary 10.3. Let G be an infinite finitely generated linear group.

• If G is virtually nilpotent then the (0-sided) randomized streaming space
complexity of G is Θ(log log n).

• If G is not virtually nilpotent then (0-sided) the randomized streaming space
complexity of G is Θ(log n).

Proof. The upper bounds follow from Theorems 9.2, 9.3 and 10.2. Since G is in-
finite, the randomized streaming space complexity of the word problem of G is
Ω(log log n) (see Remark 6.3), which yields the lower bound for the virtually nilpo-
tent case. If G is not virtually nilpotent, then G has growth cn for some constant
c > 1 (see Remark 6.4), which yields the lower bound Θ(log n) by Theorem 6.2. �

It is conjectured that for every f.g. group G that is not virtually nilpotent the
growth is lower bounded by exp(n0.5). This is known as the gap conjecture [27]. It
would imply that for every f.g. group that is not virtually nilpotent the randomized
streaming space complexity is lower bounded by Ω(log n).

Also direct products preserve the space complexity of distinguishers (simply run
the distinguishers for the two factor groups in parallel):

Lemma 10.4. Let G (resp., H) be a finitely generated group for which there
exists an (ε0, ε1)-distinguisher (resp., (ζ0, ζ1)-distinguisher) R (resp., S). Then
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there exists an (max{ε0, ζ0}, ε1 + ζ1)-distinguisher for G×H with space complexity
s(R, n) + s(S, n).5

Recall that a group G is metabelian if it has an abelian normal subgroup A ≤ G
such that the quotient G/A is abelian as well. Every finitely generated metabelian
group can be embedded into a direct product of finitely generated linear groups
(over fields of different characteristics) [69]. Hence, with Lemma 10.4 and Theo-
rem 9.2 we obtain:

Corollary 10.5. For every finitely generated metabelian group and every c > 0
there exists a (1/nc, 0)-distinguisher with space complexity O(log n).

10.2. Randomized streaming algorithms for graph products. In this section
we investigate a common generalization of the free product and direct product,
which is known as the graph product of groups.

A graph product is specified by a list of groups G1, . . . , Gc (here, we only consider
the case where all Gi are f.g.) and a symmetric and irreflexive relation I ⊆ [1, c]×
[1, c]. To define the corresponding graph product, write every Gi as Gi = 〈Γi | Ri〉
for a finite set Γi and a possible infinite set Ri ⊆ F (Γi). W.l.o.g. we can assume
that the Γi are pairwise disjoint. Let

Γ =

c⋃
i=1

Γi and R =

c⋃
i=1

Ri.

Then, the graph product G = GP(G1, . . . , Gc, I) is the group

〈Γ | R ∪
⋃

(i,j)∈I

{[a, b] : a ∈ Γi, b ∈ Γj}〉.6 (6)

Graph products interpolate in a natural way between free products (I = ∅) and di-
rect products (I = {(i, j) : i, j ∈ [1, c], i 6= j}). The graph product GP(G1, . . . , Gc, I)
is obtained from the free product ∗i∈[1,c]Gi by allowing elements from groups Gi
and Gj with (i, j) ∈ I to commute. Graph products were introduced by Green in
her thesis [25].

Graph products GP(G1, . . . , Gc, I), where every Gi is isomorphic to Z, are also
known as graph groups (or right-angled Artin groups). We will make use of the fact
that every graph group is linear [33].

Let Σi be a finite symmetric generating set for Gi, where w.l.o.g. 1 /∈ Σi and
Σi ∩ Σj = ∅ for i 6= j. Then, Σ =

⋃c
i=1 Σi generates G. For a word u ∈ Σ∗, the

block factorization of u is the unique factorization u = u1u2 · · ·ul such that l ≥ 0,
u1, . . . , ul ∈

⋃
i∈[1,c] Σ+

i and ujuj+1 6∈
⋃
i∈[1,c] Σ+

i for all j ∈ [1, l − 1]. The factors

u1, u2, . . . , ul are also called the blocks of u.
We define several rewrite relations on words from Σ∗ as follows: take u, v ∈ Σ∗

and let u = u1u2 · · ·ul be the block factorization of u.

• We write u ↔s v (s for swap) if there is i ∈ [1, l − 1] and (j, k) ∈ I
such that ui ∈ Σ+

j , ui+1 ∈ Σ+
k and v = u1u2 · · ·ui−1ui+1uiui+2 · · ·ul. In

other words, we swap consecutive commuting blocks. Note that ↔s is a
symmetric relation.

5Here, max{ε0, ζ0} denotes the pointwise maximum of the two functions ε0 and ζ0.
6Up to isomorphism, this definition does not depend on the presentations (Γi, Ri) for the

groups Gi.
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• We write u →d v (d for delete) if there is i ∈ [1, l] and j ∈ [1, c] such that
ui ∈ Σ+

j , ui ≡Gj 1 and v = u1u2 · · ·ui−1ui+1ui+2 · · ·ul. In other words, we
delete a block that is trivial in its group.
• We write u↔r v (r for replace) if there is i ∈ [1, l] and j ∈ [1, c] such that
ui, u

′
i ∈ Σ+

j , ui ≡Gj u′i and v = u1u2 · · ·ui−1u
′
iui+1ui+2 · · ·ul. In other

words, we replace a block by an equivalent non-empty word. Note that↔r

is a symmetric relation.

Clearly, in all three cases we have u ≡G v. If u →d v, then the number of blocks
of v is smaller than the number of blocks of u and if u ↔s v then the number of
blocks of v can be smaller than the number of blocks of u (since two blocks can be
merged into a single block). We write u ↔sr v if u ↔s v or u ↔r v and we write
u→sd v if u↔s v or u→d v.

Let us say that a word u ∈ Σ∗ with l blocks is reduced, if there is no v ∈ Σ∗ such
that u→∗sd v and v has at most l − 1 blocks. Clearly, for every word u ∈ Σ∗ there
is a reduced word u′ ∈ Σ∗ such that u →∗sd u′. The following result can be found
in [25, Theorem 3.9] and [32] in slightly different notations.

Lemma 10.6. Let G be a graph product as above and u, v ∈ Σ∗. Then the following
are equivalent:

• u ≡G v
• There are reduced words u′, v′ such that u→∗sd u′, v →∗sd v′, and u′ ↔∗r v′.

Consider a word u ∈ Σ∗ and its block factorization u = u1u2 . . . ul. A pure prefix
of u is a word uk1

uk2
· · ·ukm such that for some i ∈ [1, c] we have

• 1 ≤ k1 < k2 < · · · < km ≤ l,
• uk1

, uk2
, . . . , ukm ∈ Σ+

i and
• if kj < p < kj+1 for some j ∈ [1,m− 1] or 1 ≤ p < k1 then up /∈ Σ+

i .

Theorem 10.7. Let G = GP(G1, . . . , Gc, I) be a graph product as above and let
Ri = (Ai,n)n≥0 be an (ε0, ε1)-distinguisher for Gi. Let d ≥ 1 and define

ζ0(n) = 2ε0(n)cn2 + 1/nd,

ζ1(n) = 2ε1(n)cn2.

Then, there is a (ζ0, ζ1)-distinguisher for the graph product G with space complexity
O(
∑c
i=1 s(Ri, n) + log n).7

Proof. Let us fix an input length n and let Ai,n = (Qi,n,Σi, ιi,n, ρi,n), where
w.l.o.g. Qi,n = [0, |Qi,n| − 1] consists of the first |Qn| integers. To simplify the
notation, we will omit the second subscript n in the following, i.e., we write
Ai = (Qi,Σi, ιi, ρi) with Qi = [0, |Qi| − 1] for the semiPFA Ai,n. For a state
q ∈ Qi, we will use in the following the equivalence relation ≡q = ≡Ai,q defined in
Section 8. For a word w ∈ Σ∗, we will write πi(w) for the projection πΣi(w).

For every i ∈ [1, c] we choose a new symbol ai and consider the infinite cyclic
group 〈ai〉 ∼= Z. Let ∆ = {a1, a

−1
1 , . . . , ac, a

−1
c } and consider the graph group

H = GP(〈a1〉, . . . , 〈ac〉, I). Since every graph group is linear, there is a (1/md, 0)-
distinguisher (Bm)m≥0 with space complexity O(logm) for H by Theorem 9.2. Let
Bm = (Rm,∆, λm, σm).

7Note that Theorem 10.7 only makes sense if ε0(n), ε1(n) < 1/2cn2.
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Algorithm 1: (ζ0, ζ1)-distinguisher for G = GP(G1, . . . , Gc, I)

global variables: qi ∈ Qi for all i ∈ [1, c], r ∈ Rm
initialization:

1 guess qi ∈ Qi = [0, |Qi| − 1] according to the input distribution ιi of Ai ;

2 guess r ∈ Rm according to the input distribution λm of Bm ;

next input letter: a ∈ Σ
3 if a ∈ Σi then

4 r := σm(r, a−qii a
ρi(qi,a)
i ) ;

5 qi := ρi(qi, a)

6 end

We build from the semiPFA Ai and a state q ∈ Qi a sequential transducer
Ti,q = (Qi,Σi, {ai, a−1

i }, q, δi), where

δi(p, a) = (ρi(p, a), a−pi a
ρi(p,a)
i )

for all a ∈ Σi and p ∈ Qi. Let fi,q = fTi,q : Σ∗i → {ai, a
−1
i }∗ be the function

computed by the sequential transducer Ti,q.
For a tuple q̄ = (q1, . . . , qc) ∈

∏
i∈[1,c]Qi of states from the semiPFAs Ai we

define the sequential transducer Tq̄ by taking the direct product of the sequential
transducers Ti,qi (i ∈ [1, c]). Formally, it is defined as follows:

Tq̄ =

( ∏
i∈[1,c]

Qi,Σ,∆, q̄, δ

)
where for every i ∈ [1, c], a ∈ Σi, and (p1, . . . , pc) ∈

∏
i∈[1,c]Qi we have

δ((p1, . . . , pc), a) =
(
(p1, . . . , pi−1, ρi(pi, a), pi+1, . . . , pc), a

−pi
i a

ρi(pi,a)
i

)
.

Let fq̄ = fTq̄ : Σ∗ → ∆∗ be the function computed by Tq̄; note that it is not a
homomorphism. Let

m = 2 · n ·max{|Qi| : i ∈ [1, c]} ≤ n · 21+max{s(Ri,n) : i∈[1,c]}.

Note that |fq̄(w)| ≤ m if |w| ≤ n.
Our randomized streaming algorithm for G and input length n will use the

semiPFA Bm for the graph group H. States of Bm can be stored with O(logm) ≤
O(max{s(Ri, n) : i ∈ [1, c]} + log n) bits. Basically, for an input word w ∈ Σ≤n

the algorithm simulates the automata Ai (i ∈ [1, c]) on the projections wi = πi(w)
and feeds the word fq̄(w) into the semiPFA Bm. Here, the state tuple q̄ is ran-
domly guessed in the beginning according to the distributions ιi. The complete
streaming algorithm is Algorithm 1. It stores in total at most

∑c
i=1 s(Ri, n) +

O(max{s(Ri, n) : i ∈ [1, c]}+ log n) bits.
Before we analyze the error probability of the algorithm we need some prepa-

rations. For i ∈ [1, c] and a word w ∈ Σ∗ let Pi(w) = P(πi(w)) be the set of
all prefixes of the projection πi(w). Assume that y ∈ Σ+

i is a block of w and
write w = xyz. We then have fq̄ = fq̄(x)fr̄(y)fs̄(z), where δ(q̄, x) = (r̄, fq̄(x)) and
δ(r̄, y) = (s̄, fr̄(y)). The word fr̄(y) is also a block of fq̄ (for this it is important
that every Tj,q translates non-empty words into non-empty words). Since y ∈ Σ+

i
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we have rj = sj for all j ∈ [1, c]\{i} and fr̄(y) = fi,ri(y). In addition, the definition

of the sequential transducer Ti,ri implies that fr̄(y) ≡〈ai〉 a
−ri
i asii .

Consider now two input words u, v ∈ Σ≤n and let Si = Pi(u)∪Pi(v) for i ∈ [1, c].
By Lemma 8.2 we have for all i ∈ [1, c]:

Prob
q∈Qi

[≡q refines ≡Gi on Si] ≥ 1− ε0(n)

(
|Si|
2

)
≥ 1− 2ε0(n)n2,

Prob
q∈Qi

[≡Gi refines ≡q on Si] ≥ 1− ε1(n)

(
|Si|
2

)
≥ 1− 2ε1(n)n2.

Claim 1. Assume that q̄ = (q1, . . . , qc) is such that ≡Gi refines ≡qi on Si for every
i ∈ [1, c]. If u →∗sd u′ and v →∗sd v′, then fq̄(u) →∗sd fq̄(u′), fq̄(v) →∗sd fq̄(v′) and
≡Gi refines ≡qi on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c].

Proof of Claim 1. It suffices to show the following: If u →sd u′ holds, then
fq̄(u)→sd fq̄(u

′) and ≡Gi refines ≡qi on Pi(u′)∪Pi(v) for every i ∈ [1, c]. From this
(and the symmetric statement where v →sd v

′ and u = u′) we obtain the general
statement by induction on the number of →sd -steps. We distinguish two cases.

Case 1. u↔s u
′. We must have u = xy1y2z and u′ = xy2y1z for blocks y1, y2 such

that y1 ∈ Σ+
i , y2 ∈ Σ+

j and (i, j) ∈ I (in particular i 6= j). We obtain

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z) and

fq̄(u
′) = fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z),

where δ(q̄, x) = (p̄, fq̄(x)), δ(p̄, y1) = (r̄, fp̄(y1)), δ(r̄, y2) = (s̄, fr̄(y2)), δ(p̄, y2) =
(r̄′, fp̄(y2)), and δ(r̄′, y1) = (s̄, fr̄′(y1)). If we write p̄ = (p1, . . . , pc), then there are
states ri ∈ Qi and rj ∈ Qj such that

r̄ = (p1, . . . , pi−1, ri, pi+1, . . . , pc), (7)

r̄′ = (p1, . . . , pj−1, rj , pj+1, . . . , pc), and (8)

s̄ = (p1, . . . , pi−1, ri, pi+1, . . . , pj−1, rj , pj+1, . . . , pc) (9)

(we assume w.l.o.g. that i < j). Moreover, fp̄(y1) = fi,pi(y1) = fr̄′(y1) ∈
{ai, a−1

i }+ and fr̄(y2) = fj,pj (y2) = fp̄(y2) ∈ {aj , a−1
j }+. Thus, we have

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z)

= fq̄(x)fi,pi(y1)fj,pj (y2)fs̄(z)

↔s fq̄(x)fj,pj (y2)fi,pi(y1)fs̄(z)

= fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z)

= fq̄(u
′).

Moreover, since Pi(u′) = Pi(u) and ≡Gi refines ≡qi on Si for all i ∈ [1, c], it follows
that ≡Gi refines ≡qi on Pi(u′) ∪ Pi(v) for all i ∈ [1, c].

Case 2. u→d u
′. Then we obtain a factorization u = xyz, where y ∈ Σ+

i is a block,
y ≡Gi 1, and u′ = xz. We obtain a factorization

fq̄(u) = fq̄(x)fr̄(y)fs̄(z),

where δ(q̄, x) = (r̄, fq̄(x)) and δ(r̄, y) = (s̄, fr̄(y)). The word fr̄(y) is a block of
fq̄(u). For the projection πi(u) we have πi(u) = πi(x)yπi(z). Since ≡Gi refines ≡qi
on Si and πi(x) ≡Gi πi(x)y, we obtain πi(x) ≡qi πi(x)y. Since ri (resp., si) is the
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state reached from qi by the automaton Ai after reading πi(x) (resp., πi(x)y), we
obtain ri = si and hence r̄ = s̄. This implies

fr̄(y) ≡〈ai〉 a
−ri
i asii ≡〈ai〉 1.

Moreover, we have

fq̄(u
′) = fq̄(xz) = fq̄(x)fr̄(z) = fq̄(x)fs̄(z).

We therefore get fq̄(u)→d fq̄(u
′).

It remains to show that ≡Gj refines ≡qj on Pj(u′) ∪ Pj(v) for every j ∈ [1, c].
For j 6= i this is clear since Pj(u′) ∪ Pj(v) = Sj . For j = i we can use Lemma 8.3
for the words πi(u) = πi(x)yπi(z) and πi(v). This concludes the proof of Claim 1.

Claim 2. Assume that q̄ = (q1, . . . , qc) is such that ≡qi refines ≡Gi on Si for every
i ∈ [1, c]. If fq̄(u) →∗sd ũ and fq̄(v) →∗sd ṽ, then there are u′, v′ ∈ Σ∗ such that
u →∗sd u′, v →∗sd v′, fq̄(u′) = ũ, fq̄(v

′) = ṽ and ≡qi refines ≡Gi on Pi(u′) ∪ Pi(v′)
for every i ∈ [1, c].

Proof of Claim 2. The proof is very similar to the proof of Claim 1. As in the proof
of Claim 1, it suffices to consider the case where fq̄(u)→sd ũ and ṽ = fq̄(v).

Case 1. fq̄(u) ↔s ũ. Since the blocks of u are translated into the blocks of fq̄(u)
by the sequential transducer Tq̄, we obtain a factorization u = xy1y2z for blocks
y1 ∈ Σ+

i , y2 ∈ Σ+
j of u such that (i, j) ∈ I (in particular i 6= j) and

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z),

ũ = fq̄(x)fr̄(y2)fp̄(y1)fs̄(z).

Here, the state tuples p̄ = (p1, . . . , pc), r̄, and s̄ are as in the proof of Claim 1, see
in particular (7) and (9). We can then define the tuple r̄′ as in (8) and get

fp̄(y1) = fi,pi(y1) = fr̄′(y1) ∈ {ai, a−1
i }

+ and

fr̄(y2) = fj,pj (y2) = fp̄(y2) ∈ {aj , a−1
j }

+.

We thus have

ũ = fq̄(x)fr̄(y2)fp̄(y1)fs̄(z) = fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z) = fq̄(xy2y1z).

Clearly, we also have u = xy1y2z →s xy2y1z. So, we can set u′ = xy2y1z. Since
Pi(u′) = Pi(u) for all i ∈ [1, c], it follows that ≡qi refines ≡Gi on Pi(u′)∪Pi(v) for
all i ∈ [1, c].

Case 2. fq̄(u) →d ũ. Then we obtain a factorization u = xyz, where y ∈ Σ+
i is a

block of u,

fq̄(u) = fq̄(x)fr̄(y)fs̄(z), and

ũ = fq̄(x)fs̄(z).

The state tuples r̄ and s̄ are such that δ(q̄, x) = (r̄, fq̄(x)) and δ(r̄, y) = (s̄, fr̄(y)).
Moreover, the word fr̄(y) is a block of fq̄(u) with

a−rii asii ≡〈ai〉 fr̄(y) ≡〈ai〉 1.

This implies that ri = si and hence r̄ = s̄. We therefore have

ρi(qi, πi(x)) = ri = si = ρi(qi, πi(x)y).
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Since ≡qi refines ≡Gi on Si and πi(x), πi(x)y ∈ Si, we get πi(x) ≡Gi πi(x)y, i.e.,
y ≡Gi 1. If we set u′ = xz we get u→d u

′ and

ũ = fq̄(x)fs̄(z) = fq̄(x)fr̄(z) = fq̄(xz) = fq̄(u
′).

It remains to show that ≡qj refines ≡Gj on Pj(u′) ∪ Pj(v) for every j ∈ [1, c]. For
j 6= i this is clear since Pj(u′) ∪ Pj(v) = Sj . For j = i we can use Lemma 8.4 for
the words πi(u) = πi(x)yπi(z) and πi(v). This concludes the proof of Claim 2.

We now estimate the error for the input words u and v. There are two cases to
consider:

Case 1. u ≡G v. We will show that Algorithm 1 reaches with probability at least
1 − 2ε1(n)cn2 the same state when running on u and v, respectively. For this,
assume that the randomly selected initial states qi ∈ Qi are such that ≡Gi refines
≡qi on Si for all i ∈ [1, c]. This happens with probability at least 1− 2ε1(n)cn2.

First note that u ≡G v implies πi(u) ≡Gi πi(v) for all i ∈ [1, c]. Since ≡Gi
refines ≡qi on Si, we obtain ρi(qi, πi(u)) = ρi(qi, πi(v)). It remains to show that
after reading u and v, also the states of Bm are the same. For this we show that
fq̄(u) ≡H fq̄(v) in the graph group H.

From Lemma 10.6 it follows that there are reduced words u′, v′ ∈ Σ∗ such that
u →∗sd u′, v →∗sd v′, and u′ ↔∗r v′. Claim 1 implies fq̄(u) →∗sd fq̄(u

′), fq̄(v) →∗sd
fq̄(v

′), and ≡Gi refines ≡qi on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c]. Since u′ ↔∗r v′
we can write the block factorizations of u′ and v′ as u′ = u1u2 · · ·ul and v′ =
v1v2 · · · vl with ui, vi ∈ Σ+

ji
for some ji ∈ [1, c] and ui ≡Gji vi for all i ∈ [1, l]. The

block factorizations of fq̄(u
′) and fq̄(v

′) can be written as fq̄(u
′) = ũ1ũ2 · · · ũl and

fq̄(v
′) = ṽ1ṽ2 · · · ṽl with ũi, ṽi ∈ {aji , a−1

ji
}+.

We claim that ũi ≡〈aji 〉 ṽi for all i ∈ [1, l], which implies fq̄(u
′) ≡H fq̄(v

′).

Since ui ≡Gji vi for all i ∈ [1, l], we get the following: if u′′ = uk1
uk2
· · ·uke ∈ Σ∗j

is a pure prefix of u′ for some j ∈ [1, c] then v′′ = vk1vk2 · · · vke ∈ Σ∗j is a pure
prefix of v′ such that u′′ ≡Gj v′′. Since ≡Gj refines ≡qj on Pj(u′) ∪ Pj(v′) and
u′′, v′′ ∈ Pj(u′)∪Pj(v′), we obtain ρj(qj , u

′′) = ρj(qj , v
′′). This implies ũi ≡〈aji 〉 ṽi

for all i ∈ [1, l] and hence fq̄(u
′) ≡H fq̄(v

′). From this, we finally get fq̄(u) ≡H
fq̄(u

′) ≡H fq̄(v
′) ≡H fq̄(v).

Recall that fq̄(u) (resp., fq̄(v) is the word fed into the semiPFA Bm on input
u (resp., v). Since (Bn)n≥0 is a (1/nd, 0)-distinguisher for the graph group H, it
follows that fq̄(u) and fq̄(v) lead in Bm with probability one to the same state.
Hence, Algorithm 1 reaches with probability at least 1− 2ε1(n)cn2 the same state
when running on u and v, respectively.

Case 2. u 6≡G v. We will show that Algorithm 1 reaches with probability at least
1 − (2ε0(n)cn2 + 1/nd) different states when running on u and v, respectively. To
show this, assume that the randomly selected initial states qi ∈ Qi are such that
≡qi refines ≡Gi on Si for all i ∈ [1, c]. This happens with probability at least
1− 2ε0(n)cn2.

We claim that fq̄(u) 6≡H fq̄(v) holds, where q̄ = (q1, . . . , qc). In order to get
a contradiction, assume that fq̄(u) ≡H fq̄(v). From Lemma 10.6 it follows that
there are reduced words ũ, ṽ ∈ ∆∗ such that fq̄(u)→∗sd ũ, fq̄(v)→sd ṽ and ũ↔∗r ṽ.
Claim 2 implies that there exist u′, v′ ∈ Σ∗ such that u→∗sd u′, v →∗sd v′, fq̄(u′) = ũ,
fq̄(v

′) = ṽ and ≡qi refines ≡Gi on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c].
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Since fq̄(u
′) = ũ ↔∗r ṽ = fq̄(v

′) we can write the block factorizations of fq̄(u
′)

and fq̄(v
′) as fq̄(u

′) = ũ1ũ2 · · · ũl and fq̄(v
′) = ṽ1ṽ2 · · · ṽl with ũi, ṽi ∈ {aji , a−1

ji
}+

for some ji ∈ [1, c] and ũi ≡〈aji 〉 ṽi for all i ∈ [1, l]. Clearly, the block factorizations

of u′ and v′ can then be written as u′ = u1u2 · · ·ul and v′ = v1v2 · · · vl, where the
block ui ∈ Σ+

ji
(resp., vi ∈ Σ+

ji
) is translated into the block ũi (resp., ṽi) by the

sequential transducer Tq.
We claim that ui ≡Gji vi for all i ∈ [1, l]. Since ũi ≡〈aji 〉 ṽi for all i ∈ [1, l] we

have the following: if ũ′′ = ũk1
ũk2
· · · ũke ∈ {aj , a−1

j }∗ is a pure prefix of fq̄(u
′) for

some j ∈ [1, c] then ṽ′′ = ṽk1 ṽk2 · · · ṽke ∈ {aj , a−1
j }∗ is a pure prefix of fq̄(v

′) such

that ũ′′ ≡〈aj〉 ṽ′′. Let pj = ρj(qj , uk1uk2 · · ·uke) and rj = ρj(qj , vk1vk2 · · · vke). We
then have

a
−qj
j a

pj
j ≡〈aj〉 ũ

′′ ≡〈aj〉 ṽ
′′ ≡〈aj〉 a

−qj
j a

rj
j ,

i.e., pj = rj . Since ≡qj refines ≡Gj on Pj(u′) ∪ Pj(v′) and uk1
uk2
· · ·uke as well as

vk1
vk2
· · · vke belong to Pj(u′) ∪ Pj(v′), we obtain uk1

uk2
· · ·uke ≡Gj vk1

vk2
· · · vke .

This holds for all pure prefixes of u′. We therefore have ui ≡Gji vi for all i ∈
[1, l], which implies u′ ≡G v′. Finally, we get u ≡G u′ ≡G v′ ≡G v, which is a
contradiction. Hence, we must have fq̄(u) 6≡H fq̄(v).

Since the algorithm feeds fq̄(u) (resp., fq̄(v)) into the semiPFA Bm, the latter
reaches different states with probability at least 1 − 1/md ≥ 1 − 1/nd (under the
assumption that ≡qi refines ≡Gi on Si for all i ∈ [1, c]). Hence, the probability
that Algorithm 1 reaches different states when running on u and v is at least
(1− 2ε0(n)cn2)(1− 1/nd) ≥ 1− (2ε0(n)cn2 + 1/nd). �

10.3. Randomized streaming algorithms for wreath products. In this sec-
tion we will investigate distinguishers for wreath products. We start with the
definition of the wreath product of two group.

Let G and H be groups. Consider the direct sum K =
⊕

g∈GHg, where Hg is

a copy of H. We view K as the set H(G) of all mappings f : G → H such that
supp(f) := {g ∈ G : f(g) 6= 1} is finite, together with pointwise multiplication in H
as the group operation. The set supp(f) ⊆ G is called the support of f . The group
G has a natural left action on H(G) given by gf(a) = f(g−1a), where f ∈ H(G) and
g, a ∈ G. The corresponding semidirect product H(G) o G is the wreath product
H oG. More concretely:

• Elements of H oG are pairs (f, g), where g ∈ G and f ∈ H(G).
• The multiplication in H oG is defined as follows: Let (f1, g1), (f2, g2) ∈ H oG.

Then (f1, g1)(f2, g2) = (f, g1g2), where f(a) = f1(a)f2(g−1
1 a) for all a ∈ G.

The following intuition might be helpful: An element (f, g) ∈ H oG can be seen as a
finite multiset of elements of H \{1H} that are sitting at certain elements of G (the
mapping f) together with the distinguished element g ∈ G, which can be thought of
as a cursor moving in G. If we want to compute the product (f1, g1)(f2, g2), we do
this as follows: First, we shift the finite collection of H-elements that corresponds
to the mapping f2 by g1: If the element h ∈ H \ {1H} is sitting at a ∈ G (i.e.,
f2(a) = h), then we remove h from a and put it to the new location g1a ∈ G.
This new collection corresponds to the mapping f ′2 : a 7→ f2(g−1

1 a). After this shift,
we multiply the two collections of H-elements pointwise: If in a ∈ G the elements
h1 and h2 are sitting (i.e., f1(a) = h1 and f ′2(a) = h2), then we put the product
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h1h2 into the location a. Finally, the new distinguished G-element (the new cursor
position) becomes g1g2.

Clearly, G is a subgroup of H o G. We also regard H as a subgroup of H o G
by identifying H with the set of all f ∈ H(G) with supp(f) ⊆ {1}. This copy of
H together with G generates H o G. In particular, if G = 〈Σ〉 and H = 〈Γ〉 with
Σ ∩ Γ = ∅ then H o G is generated by Σ ∪ Γ. In [58] it was shown that the word
problem of a wreath product H o G is TC0-reducible to the word problems for G
and H.

The above wreath product H oG is also called the restricted wreath product. In
the unrestricted wreath product one takes all mappings f : G → H and not only
those with finite support. We will only consider the restricted wreath product and
just call it the wreath product. The reason for this is that the unrestricted wreath
product of two finitely generated groups is in general not finitely generated.

In the rest of this section, we construct distingushers for wreath products. The
case of a wreath product H oG with G finite is easy:

Theorem 10.8. Let H be a finitely generated group for which there exists an
(ε0, ε1)-distinguisher R = (An)n≥0 and let G be a finite group of size c. Then, there
exists an (c · ε0, c · ε1)-distinguisher for H oG with space complexity O(s(R, n)).

Proof. We run c independent copies of An (for the direct product of c copies of H).
In addition we have to store an element of G (the cursor in the above intuition). �

The case of a wreath product H oG with G infinite turns out to be more inter-
esting. We will start with wreath products Z o G, where G is infinite and Z is a
cyclic group and split this case into three subcases:

• Z = Z; see Theorem 10.9,
• Z = Zp for a prime p; see Theorem 10.10,
• Z = Zpk for a prime p and k ≥ 2; see Theorem 10.12.

The case Z = Zm with m not a prime power (and more generally, the case of
a wreath product A o G with A finitely generated abelian) will follow easily from
those cases; see Corollary 10.13. In the following, Σ denotes a finite symmetric
generating set for the group G and a denotes a generator for the cyclic group Z.
Then, Γ = Σ∪{a, a−1} is a symmetric generating set for the wreath product Z oG.

Theorem 10.9. Let G be a f.g. infinite group and R = (An)n≥0 an (ε0, ε1)-
distinguisher for G. Let d be a fixed constant and define

ζ0(n) = 2 max{ε0(n), ε1(n)}n2 + 1/nd,

ζ1(n) = 2ε1(n)n2 + ε1(n).

Then there is a (ζ0, ζ1)-distinguisher for Z o G with space complexity 3 · s(R, n) +
Θ(log n).

Proof. Fix an input length n and let An = (Qn,Σ, ιn, ρn). W.l.o.g. we can assume
that Qn = [0, |Qn| − 1] consists of the first |Qn| integers.

For a word u = vaβ with v ∈ Γ∗ and β ∈ {−1, 1} we define σ(u) = β.
Consider a potential input word w ∈ Γ≤n and a state q ∈ Qn (later, it will be

randomly guessed according to the initial state distribution ιn). Define the mapping
ρq : Σ∗ → Q by ρq(w) = ρn(q, w). With w and q we associate a polynomial
Pq,w(x) ∈ Z[x] as follows: Let Rw be the set of all prefixes of w that end with a
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letter aγ for γ ∈ {−1, 1}. For every v ∈ Rw consider the An-state qv = ρq(πΣ(v)) ∈
[0, |Qn| − 1]. We then define the polynomial

Pq,w(x) :=
∑
v∈Rw

σ(v) · xqv . (10)

Note that this polynomial has degree at most |Qn| − 1, all its coefficients have
absolute value at most n, and there are at most n monomials.

Let us write (fw, gw) ∈ Z oG for the group element represented by the word w.
The element gw ∈ G is obtained by evaluating the projection πΣ(w) in the group
G. For this, the streaming algorithm for Z oG that we aim for (and that we describe
in detail later) will simply use the semiPFA An. The difficult part is the mapping
fw. For this we make use of the polynomial Pq,w(x).

Claim 1. Let u, v ∈ Γ≤n be two input words such that fu = fv. Then we have

Prob
q∈Qn

[Pq,u(x) = Pq,v(x)] ≥ 1− 2ε1(n)n2.

Proof of Claim 1. Define the set of words S = πΣ(Ru ∪ Rv) ⊆ Σ∗ and let
GS = πG(S) ⊆ G be the finite set of group elements represented by the words
in S. Clearly, |S| ≤ 2n. We will use the equivalence relations ≡q (q ∈ Qn) from
Lemma 8.2. It suffices to show for every state q ∈ Qn the following: if ≡G refines
≡q on S, then Pq,u(x) = Pq,v(x). If this is shown then the second statement of
Lemma 8.2 implies

Prob
q∈Qn

[Pq,u(x) = Pq,v(x)] ≥ Prob
q∈Qn

[≡G refines ≡q on S]

≥ 1− ε1(n)

(
|S|
2

)
≥ 1− 2ε1(n)n2.

So, consider a state q ∈ Qn and assume that ≡G refines ≡q on S. Let QS = ρq(S)
be the image of S under the mapping ρq. It is the set of states of An that can be
reached from q via words from S. Let [S]≡G and [S]≡q be the set of equivalence
classes of ≡G and ≡q, respectively, on S. With every state r ∈ QS we can associate
the equivalence class Ar = ρ−1

q (r)∩S ∈ [S]≡q . Similarly, with every group element

g ∈ GS we associate the equivalence class Bg = π−1
G (g) ∩ S ∈ [S]≡g . Moreover,

the Ar (r ∈ QS) and Bg (g ∈ GS) are all equivalence classes of ≡q and ≡G on S,
respectively. Since ≡G refines ≡q on S, there is a surjective mapping h : GS → QS
such that

Ar =
⊎

g∈h−1(r)

Bg

for every r ∈ QS . The definition of the mappings fu and fv yields for every g ∈ GS :∑
y∈π−1

Σ (Bg)∩Ru

σ(y) = fu(g) = fv(g) =
∑

y∈π−1
Σ (Bg)∩Rv

σ(y).

Note that for every r ∈ QS we have

π−1
Σ (Ar) ∩Ru = π−1

Σ

 ⊎
g∈h−1(r)

Bg

 ∩Ru =
⊎

g∈h−1(r)

(π−1
Σ (Bg) ∩Ru)
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and similarly for Rv. If we write Pq,u ∗ xr for the coefficient of the monomial xr

(where r ∈ QS) in the polynomial Pq,u(x) and analogously for Pq,v(x), then we
obtain for every r ∈ QS :

Pq,u ∗ xr =
∑

y∈π−1
Σ (Ar)∩Ru

σ(y) =
∑

g∈h−1(r)

∑
y∈π−1

Σ (Bg)∩Ru

σ(y)

=
∑

g∈h−1(r)

∑
y∈π−1

Σ (Bg)∩Rv

σ(y)

=
∑

y∈π−1
Σ (Ar)∩Rv

σ(y) = Pq,v ∗ xr.

Hence, we finally get Pq,u(x) = Pq,v(x), which proves Claim 1.

Claim 2. Let u, v ∈ Γ≤n be two input words such that fu 6= fv. Then we have

Prob
q∈Qn

[Pq,u(x) 6= Pq,v(x)] ≥ 1− 2 max{ε0(n), ε1(n)}n2.

Proof of Claim 2. The proof is very similar to the proof of Claim 1. Assume that
fu 6= fv. We use the same notations as in the proof of Claim 1. By the first
statement of Lemma 8.2 it suffices to show for every state q ∈ Qn: if ≡G equals ≡q
on S then Pq,u(x) 6= Pq,v(x).

Assume that ≡G equals ≡q on S for a state q. There is a bijection h : GS → QS
such that Bg = Ah(g) for every g ∈ GS . Since fu 6= fv there is a g ∈ GS with∑

y∈π−1
Σ (Bg)∩Ru

σ(y) = fu(g) 6= fv(g) =
∑

y∈π−1
Σ (Bg)∩Rv

σ(y).

For r = h(g) we obtain

Pq,u ∗ xr =
∑

y∈π−1
Σ (Ar)∩Ru

σ(y) =
∑

y∈π−1
Σ (Bg)∩Ru

σ(y)

6=
∑

y∈π−1
Σ (Bg)∩Rv

σ(y) =
∑

y∈π−1
Σ (Ar)∩Rv

σ(y) = Pq,v ∗ xr.

Thus, we have Pq,u(x) 6= Pq,v(x), which proves Claim 2.

In order to verify fu = fv, a randomized streaming algorithm could compute the
polynomial Pq,w(x) for an input word w ∈ Γ≤n and a random initial state q. The
problem is that the polynomial Pq,w(x) does not fit into the space bound we are
aiming for. Therefore, we only can afford to compute a fingerprint of Pq,w(x). This
fingerprint is obtained in two steps.

First, observe that the Cauchy bound8 implies for all words u, v ∈ Γ≤n that
Pq,u(x) = Pq,v(x) if and only if Pq,u(2n+ 1) = Pq,v(2n+ 1). To see this, note that
all coefficients of the polynomial Pq,u(x)− Pq,v(x) ∈ Z[x] are bounded in absolute
value by 2n. Hence, 2n+ 1 is not a root of the polynomial Pq,u(x)− Pq,v(x).

The value Pq,w(2n + 1) still needs too many bits. Therefore, our streaming
algorithm will compute it only modulo a sufficiently large prime number p. Note
that for every word w ∈ Γ≤n we have

|Pq,w(2n+ 1)| ≤ n · (2n+ 1)|Qn|−1.

8The Cauchy bound says that for a polynomial p(x) = anxn + an−1xn−1 + · · · a1x+ a0 every
root α of p(x) satisfies |α| < 1 + max{|a0|, |a1|, . . . |an−1|}/|an|.
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Algorithm 2: (ζ0, ζ1)-distinguisher for Z oG

global variables: prime number p, integer z ∈ [0, p− 1], state q ∈ Qn
initialization:

1 guess p ∈ Pα(n) according to the uniform distribution ;

2 guess q ∈ Qn according to the input distribution ιn of An ;

3 z := 0 ;

next input letter: b ∈ Γ
4 if b ∈ Σ then
5 q := ρn(q, a)

6 end

7 if b = aβ for β ∈ {−1, 1} then
8 z := (z + β · (2n+ 1)q) mod p

9 end

Hence, for two input words u, v ∈ Γ≤n we have

Du,v := |Pq,u(2n+ 1)− Pq,v(2n+ 1)| ≤ 2n(2n+ 1)|Qn|−1 ≤ (2n+ 1)|Qn|.

Let Pα be the set of prime numbers in [2, α]. We want to choose α = α(n) large
enough such that for a prime p uniformly chosen from Pα we obtain

Prob
p∈Pα

[p divides Du,v] ≤ 1/nd (11)

(in case Du,v 6= 0), where d is the parameter from the theorem.
The number of different prime factors of Du,v is bounded by

lnDu,v

ln lnDu,v
· (1 + o(1)) ≤

ln
(
(2n+ 1)|Qn|

)
ln ln

(
(2n+ 1)|Qn|

) · (1 + o(1))

≤ O
(

|Qn| · log n

log |Qn|+ log log n

)
≤ O

(
|Qn| · log n

log log n

)
(recall that log |Qn| ≥ s(R, n)−1 ≥ Ω(log log n) since G is infinite, see Remark 6.3).
Moreover, there are Θ(x) many primes of size at most x log x. Hence, by fixing the
number α = α(n) such that

α(n) = Θ

(
|Qn| · log n · nd

log log n
· log

(
|Qn| · log n · nd

log log n

))

= Θ

(
|Qn| · log n · nd

log log n
· (log |Qn|+ d log n)

)
≤ Θ(|Qn| · nd+2),

we can obtain (11).
We can now finally explain our streaming algorithm for the wreath product Z oG;

see Algorithm 2. For an input word w ∈ Γ≤n we simulate in lines 2, 4 and 5 the
semiPFA An on the projection πΣ(w). In the integer variable z we compute the
number Pq,w(2n+1) mod p, where p is the prime guessed in line 1 and q is the state
guessed in line 2. If we want to describe the algorithm by a semiPFA, then the
state of the algorithm would consist of the prime number p and the current values
of q and z. The prime number p is not changed when a new symbol b arrives.
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The algorithm stores 3 · s(R, n) + Θ(log n) bits:

• s(R, n) + Θ(log n) = dlog |Qn|e+ Θ(log n) bits for the prime p ≤ α(n),
• s(R, n) + Θ(log n) bits for the number z < p.
• s(R, n) bits for the state q.

It remains to compute the error probabilities of the algorithm. For this, consider
two words u, v ∈ Γ≤n. Let (fu, gu) ∈ Z o G (resp., (fv, gv) ∈ Z o G) be the group
element represented by the word u (resp., v). Let z(p, q, u) (resp., z(p, q, v)) be the
value of the variable z that Algorithm 2 computes on input u (resp., v) when p and
q are the random choices in lines 1 and 2, respectively.

Claim 3. If u ≡ZoG v then

Prob
p∈Pα,q∈Qn

[ρn(q, πΣ(u)) = ρn(q, πΣ(v)) ∧ z(p, q, u) = z(p, q, v)] ≥ 1− ζ1(n).

Proof of Claim 3. Assume that u ≡ZoG v, i.e., fu = fv and gu = gv. Since we run
the algorithm An on πΣ(u) and πΣ(v), respectively, and πΣ(u) ≡G πΣ(v), we get

Prob
q∈Qn

[ρn(q, πΣ(u)) = ρn(q, πΣ(v))] ≥ 1− ε1(n).

Moreover, fu = fv implies

Prob
p∈Pα,q∈Qn

[z(p, q, u) = z(p, q, v)] ≥ Prob
q∈Qn

[Pq,u(x) = Pq,v(x)] ≥ 1− 2ε1(n)n2,

where the second inequality follows from Claim 1. In total, we obtain

Prob
p∈Pα,q∈Qn

[ρn(q, πΣ(u)) 6= ρn(q, πΣ(v)) ∨ z(p, q, u) 6= z(p, q, v)]

≤ Prob
p∈Pα,q∈Qn

[ρn(q, πΣ(u)) 6= ρn(q, πΣ(v))] + Prob
p∈Pα,q∈Qn

[z(p, q, u) 6= z(p, q, v)]

≤ ε1(n) + 2ε1(n)n2 = ζ1(n).

Claim 4. If u 6≡ZoG v then

Prob
p∈Pα,q∈Qn

[ρn(q, πΣ(u)) 6= ρn(q, πΣ(v)) ∨ z(p, q, u) 6= z(p, q, v)] ≥ 1− ζ0(n).

Proof of Claim 4. Assume that u 6≡ZoG v. If gu 6= gv, i.e., πΣ(u) 6≡G πΣ(v), then
we get

Prob
q∈Qn

[ρn(q, πΣ(u)) 6= ρn(q, πΣ(v))] ≥ 1− ε0(n) ≥ 1− ζ0(n).

On the other hand, if the mappings fu and fv are different, we obtain

Prob
q∈Qn

[Pq,u(x) 6= Pq,v(x)] ≥ 1− 2 max{ε0(n), ε1(n)}n2.

from Claim 2. Consider a state q with Pq,u(x) 6= Pq,v(x). With inequality (11) for
Du,v := |Pq,u(2n+ 1)− Pq,v(2n+ 1)| we obtain the bound

Prob
p∈Pα

[z(p, q, u) = z(p, q, v)] = Prob
p∈Pα

[p divides Du,v] ≤ 1/nd.

for every fixed state q with Pq,u(x) 6= Pq,v(x). Therefore we have

Prob
p∈Pα,q∈Qn

[z(p, q, u) 6= z(p, q, v) | Pq,u(x) 6= Pq,v(x)] ≥ 1− 1/nd.
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Finally, we get

Prob
p∈Pα,q∈Qn

[z(p, q, u) 6= z(p, q, v)]

= Prob
p∈Pα,q∈Qn

[z(p, q, u) 6= z(p, q, v) | Pq,u(x) 6= Pq,v(x)] · Prob
q∈Qn

[Pq,u(x) 6= Pq,v(x)]

≥ (1− 1/nd) · (1− 2 max{ε0(n), ε1(n)}n2)

≥ 1− (2 max{ε0(n), ε1(n)}n2 + 1/nd) = 1− ζ0(n)

This proves the theorem. �

It is easy to extend Theorem 10.9 to a wreath product Zp oG with p prime.

Theorem 10.10. Let G be a f.g. infinite group and R = (An)n≥0 an (ε0, ε1)-
distinguisher for G. Let d be a fixed constant and define

ζ0(n) = 2 max{ε0(n), ε1(n)}n2 + 1/nd,

ζ1(n) = 2ε1(n)n2 + ε1(n).

Then there is a (ζ0, ζ1)-distinguisher for Zp oG with space complexity 3 · s(R, n) +
O(log n).

Proof. The proof is mostly identical to the proof of Theorem 10.9 and we reuse most
of the notation. We consider the polynomial Pq,w(x) from (10) as a polynomial
over Fp[x]. Instead of computing the number z(p, q, w) = Pq,w(2n+ 1) mod p for a
randomly guessed prime p, we compute

z(r, q, w) = Pq,w(r) ∈ Fpe ,

where e ≥ 1 is chosen such that e ≥ logp |Qn| + d · logp(n) (and hence |Qn|/pe ≤
1/nd) and r ∈ Fpe is randomly chosen in the initialization phase of the algorithm.
Since Pq,w has degree at most |Qn| − 1, we obtain for all words u, v ∈ Γ≤n:

Prob
r∈Fpe ,q∈Qn

[z(r, q, u) = z(r, q, v) | Pq,u(x) 6= Pq,v(x)] ≤ |Qn| − 1

pe
≤ 1

nd
.

Then, the error bounds of the algorithm can be computed as in the proof of Theo-
rem 10.9. The algorithm has to store s(R, n) + 2 · e · log2(p) = 3 · s(R, n) +O(log n)
bits (the prime p is a constant). �

Finally, we deal with a wreath product Zpk o G with p a prime and k ≥ 2. For
this, we need the following strengthening of the famous isolation lemma. Let S be
a finite set and ν : S → [1, k] for some k. We view ν(a) as the weight associated to
a ∈ S. For A ⊆ S we define the weight ν(A) as ν(A) =

∑
a∈A ν(a). For a set of

subsets P ⊆ 2S we say that P has a unique minimum weight set with respect to ν
if there is a set A ∈ P such that ν(A) < ν(B) for all B ∈ P \ {A}.

Theorem 10.11 ([15]). Let S be a finite set of size n and P ⊆ 2S with P 6= ∅ and
|P| ≤ m. Let F be the set of all mappings ν : S → [1, n7]. Using Θ(logm+ log n)
random bits (chosen uniformly and independently) one can construct a random
function ν ∈ F such that

Prob[P has a unique minimum weight set with respect to ν] ≥ 1/4.
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Theorem 10.12. Let G be a f.g. infinite group, R = (An)n≥0 an (ε0, ε1)-dis-
tinguisher for G, p a prime and k ≥ 2. Let ε′ > 0 be a fixed constant and define

ζ0(n) = 2 max{ε0(n), ε1(n)}n2 + ε′,

ζ1(n) = 2ε1(n)n2 + ε1(n).

Then there is a (ζ0, ζ1)-distinguisher for Zpk o G with space complexity s(R, n) +

Θ(log2s(R, n) + log n).

Proof. The proof follows again the strategy from the proof of Theorem 10.9. Let
An = (Qn,Σ, ιn, ρn) and s(n) = s(R, n). Note that |Qn| ≤ 2s(n). We assume
that Qn = [0, |Qn| − 1]. For d ≥ 1 let Φd be the set of all monic polynomials
φ(x) ∈ Zpk [x] of degree d. Below, we will apply Theorem 10.11 with n replaced by
s(n) and m replaced by 2n.

Initially, the streaming algorithm for Zpk oG guesses the following data indepen-
dently from each other:

(i) a state q ∈ Qn according to the initial state distribution ιn,
(ii) a tuple ν̄ = (ν1, . . . , νc1) of independently chosen functions νi : [1, s(n)] →

[1, s(n)7] for some constant c1 (that we fix later), where each νi is specified
by a uniformly distributed bit string of length Θ(log n + log s(n)) according
to Theorem 10.11, and

(iii) a t-tuple φ̄ = (φ1, . . . , φt) of monic polynomials φi ∈ Φd (uniformly dis-
tributed), where

d =
⌈
log2

(
12s(n)8

)⌉
= Θ(log s(n)) and t = c2d = Θ(log s(n)) (12)

for some constant c2.

In total, s(n) + Θ(log s(n) + log n) + Θ(d2) = s(n) + Θ(log2 s(n) + log n) bits are
needed to store these data. Note that each coefficient in a polynomial φi is from
Zpk and fits into constant space.

For the tuple ν̄ = (ν1, . . . , νc1), Theorem 10.11 implies the following for every
i ∈ [1, c1]: Whenever P ⊆ 2[1,s(n)] contains at most 2n sets then with probability
at least 1/4, P has a unique minimum weight set with respect to νi. Since the νi
are chosen independently, we can choose the constant c1 such that

Prob
ν̄

[ c1∨
i=1

P has a unique minimum weight set with respect to νi

]
≥ 1− ε′/2,

where ε′ is the constant from Theorem 10.12. We want to apply the random
mappings νi to states of An. For this, we fix an arbitrary injective mapping
κ : [0, |Qn| − 1] → 2[1,s(n)]. If P (x) ∈ Zpk [x] is a polynomial of degree at most

|Qn| − 1 then we can define the polynomial νi(P ) of degree at most s(n)8 by re-
placing every monomial xk in P by xνi(κ(k)) (recall that νi(κ(k)) is the total weight
of the set κ(k) ⊆ [1, s(n)] under νi and every individual weight is bounded by
s(n)7). If P (x) has at most 2n monomials and P (x) 6= 0, then with probability at
least 1/4, P (x) has a unique monomial xk such that κ(k) ⊆ [1, s(n)] has minimum

weight (with respect to νi) among all sets κ(k′) with xk
′

a monomial in P (x). In
particular, νi(P (x)) 6= 0 with probability at least 1/4. Hence, we have

Prob
ν̄

[ c1∨
i=1

νi(P (x)) 6= 0

]
≥ 1− ε′/2.
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Recall the definition of the polynomial Pq,w(x) from (10). We consider Pq,w as a
polynomial from Zpk [x]. Its degree is at most |Qn| − 1 and it contains at most n
monomials. The exponents of x in Pq,w(x) are numbers in the range [0, |Qn| − 1].

The ring Zpk is a finite local commutative ring.9 We use a randomized polynomial
identity test for finite local commutative rings from [3]. By [3, Lemma 6.5], if
P (x) ∈ Zpk [x] is a non-zero polynomial of degree at most s(n)8 then

Prob
φ∈Φd

[
φ(x) does not divide P (x) in Zpk [x]

]
≥ 1

4d
, (13)

where d is from (12). In [3, Lemma 6.5] this is stated for an arbitrary finite local
commutative ring R, but the right-hand side of the inequality is (1 − ε)/4d for a
constant ε. Let us explain, where this ε comes from: For an arbitrary finite local
commutative ring R one can find a copy of a field Fp inside a certain quotient of R
[3, Claim 5.6]. In [3], the authors show how to sample an element from this copy
of Fp such that the probability to sample a certain element from Fp is between
(1 − ε/2)/p and (1 + ε/2)/p for a constant ε; see [3, proof of Lemma 5.4]. For the
case R = Zpk we have the canonical epimorphism h : R→ Fp with h(b) = b mod p
for b ∈ R. Moreover, for every a ∈ Fp we have Probb∈R[h(b) = a] = 1/p if b is
chosen uniformly from R. Hence, we get ε = 0.

For the input word w ∈ Γ≤n and the initial random guesses from (i), (ii) and
(iii), our streaming algorithm computes and stores the data from (ii), (iii), as well
as

• the state ρn(q, πΣ(w)) of the semiPFA An (the algorithm does not have to
store the initial state q from (i)) and

• the polynomials pi,j(x) = νj(Pq,w(x)) mod φi(x) of degree d − 1 for all
1 ≤ i ≤ t and 1 ≤ j ≤ c1.

This yields the space bound s(n) + Θ(log2 s(n) + log n) of the algorithm.
The polynomials pi,j(x) can be easily computed in a streaming fashion: Assume

that at some time instant the algorithm reads the letter aγ , where γ ∈ {−1, 1}. If
pi,j(x) is the current polynomial, and q is the current An-state, which is a number
in the range [0, |Qn| − 1], then the algorithm updates pi,j(x) as follows:

pi,j(x) := (pi,j(x) + γ · xνj(κ(q))) mod φi(x)

Recall that all computations are done in Zpk [x] and that the polynomials φi(x) are
monic so that polynomial division by φi(x) can be done.

Let us now compute the error probabilities. In the following, we write

Prob
q,ν̄,φ̄

[E ]

for the probability of the event E when q ∈ Qn is chosen according to the initial
state distribution ιn of An, ν̄ = (ν1, . . . , νc1) is the mapping determined by the
uniformly chosen random bit string of length Θ(log s(n) + log n) (see point (ii)
above), and φ̄ = (φ1, . . . , φt) is the uniformly chosen t-tuple of polynomials from
Φd (see point (iii) above). We omit q, (resp., ν̄, φ̄) if the event E does not depend
on q, (resp., ν̄, φ̄).

9A commutative ring R is local if it has a unique maximal ideal. The unique maximal ideal of
the ring Zpk is pZpk .
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Consider two words u, v ∈ Γ≤n and let (fu, gu) ∈ Zpk oG (resp., (fv, gv) ∈ Zpk oG)
be the group element represented by the word u (resp., v). If fu = fv and gu = gv,
then we obtain

Prob
q,ν̄,φ̄

[
ρn(q, πΣ(u)) 6= ρn(q, πΣ(v)) ∨

t∨
i=1

c1∨
j=1

νj(Pq,u(x)) 6≡ νj(Pq,v(x)) mod φi(x)

]
≤ ζ1(n)

in the same way as in the proof of Theorem 10.9 (proof of Claim 3).
Now assume that (fu, gu) 6= (fv, gv). If gu 6= gv, i.e., πΣ(u) 6≡G πΣ(v), then we

get

Prob
q

[ρn(q, πΣ(u)) 6= ρn(q, πΣ(v))] ≥ 1− ε0(n) ≥ 1− ζ0(n)

and we are done. Let us therefore assume that the mappings fu and fv differ. With
the same argument as in the proof of Theorem 10.9 (Claim 2) we obtain

Prob
q

[Pq,u(x) 6= Pq,v(x)] ≥ 1− 2 max{ε0(n), ε1(n)}n2.

Consider a fixed state q ∈ Qn with Pq,u(x) 6= Pq,v(x). Then Pq,u(x) − Pq,v(x)
is a non-zero polynomial of degree at most |Qn| − 1, which contains at most 2n
monomials. Therefore, for our tuple ν̄ = (ν1, . . . , νc1) of random mappings νj :
[1, s(n)]→ [1, s(n)7] we have

Prob
q,ν̄

[ c1∨
j=1

νj(Pq,u(x)) 6= νj(Pq,v(x)) | Pq,u(x) 6= Pq,v(x)] ≥ 1− ε′/2

(note that νj(Pq,u(x))− νj(Pq,v(x)) = νj(Pq,u(x)− Pq,v(x))). Moreover, under the
assumption that νj(Pq,u(x))− νj(Pq,v(x)) 6= 0 for some j ∈ [1, c1], the above cited
result from [3] (see (13)) gives

Prob
φ∈Φd

[
νj(Pq,u(x)) 6≡ νj(Pq,v(x)) mod φ(x)

]
≥ 1

4d
.

Recall that d = Θ(log s(n)) diverges when n→∞. By choosing the constant c2 in
t = c2d (see (12)) large enough depending on the constant ε′ > 0 from the theorem,
we obtain

Prob
φ̄

[ t∨
i=1

νj(Pq,u(x)) 6≡ νj(Pq,v(x)) mod φi(x)

]
≥ 1−

(
1− 1

4d

)t
≥ 1− ε′/2

if n (and hence d) is large enough. We obtain

Prob
q,ν̄,φ̄

[ t∨
i=1

c1∨
j=1

νj(Pq,u(x)) 6≡ νj(Pq,v(x)) mod φi(x)

]
≥ (1− 2 max{ε0(n), ε1(n)}n2) · (1− ε′/2) · (1− ε′/2)

≥ 1− (2 max{ε0(n), ε1(n)}n2 + ε′) = 1− ζ0(n).

if n is large enough. This proves the theorem. �

Note that in Theorems 10.9, 10.10 and 10.12, ε1 = 0 implies ζ1 = 0.
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Corollary 10.13. Let G be a finitely generated group for which there exists an
(ε0, ε1)-distinguisher R. Let A be a finitely generated abelian group and ε′ > 0 a
fixed constant. Then there is a constant α and a (ζ0, ζ1)-distinguisher for A oG with

ζ0(n) = 2 max{ε0(n), ε1(n)}n2 + ε′, (14)

ζ1(n) = α(2n2 + 1)ε1(n),

s(S, n) ≤ O(s(R, n) + log n).

If A is free abelian, i.e., A = Zk for some k, then we can replace ε′ in (14) by 1/nd

for any fixed constant d.

Proof. The wreath product (H1 ×H2) oG is a subgroup of (H1 oG)× (H2 oG) [40,
Lemma 6.2]. Since A is a direct product of copies of Z and finite cyclic groups Zpk
for p a prime and k ≥ 1, the statement of the theorem follows from Lemma 10.4
and Theorems 10.9, 10.10 and 10.12. The constant α is the number of factors Z
and Zpk in the direct product decomposition of A. �

We can apply Corollary 10.13 to free solvable groups (the free objects in the
variety of solvable groups).

Corollary 10.14. Every free solvable group has 0-sided randomized streaming space
complexity Θ(log n).

Proof. Magnus’ embedding theorem [49] says that every free solvable group can
be embedded into an iterated wreath product Zm o (Zm o (Zm o · · · )). Since Zm is
linear, we can, using Theorem 9.2, obtain an (ε0(n), 0)-distinguisher for Zm with
space complexity O(log n) for every inverse polynomial ε0(n). We then apply Corol-
lary 10.13 a constant number of times and obtain a 0-sided randomized streaming
algorithm with space complexity O(log n). Here, we need the second statement
in Corollary 10.13, where A is free abelian (with the first statement the additive
constant ε′ would result in an additive term Θ(n2) in the error probability after
two applications). The lower bound follows from Theorem 6.2 and the Milnor-Wolf
theorem (see Remark 6.4). �

In [68] it is shown that the word problem of a free solvable group can be solved

with a randomized algorithm running in time O(n · logk n) for some constant k.
Our algorithm achieves the same running time (because for every new input sym-
bol, only numbers of bit length O(log n) have to be manipulated). In contrast
to our algorithm, the algorithm from [68] is non-streaming and does not work in
logarithmic space.

11. Lower bounds

In this section, we will construct groups with a large randomized streaming space
complexity. We will make use of the disjointness problem from communication
complexity. The disjointness problem is defined as follows: Alice (resp., Bob) has
a bit string u ∈ {0, 1}n (resp., v ∈ {0, 1}n) and their goal is to determine whether
there is no position 1 ≤ i ≤ n such that u[i] = v[i] = 1. It is well known that the
randomized communication complexity for the disjointness problem is Θ(n), see
e.g. [41, Section 4.6].

By the following result, the restriction to an abelian group A in Corollary 10.13
cannot be relaxed.
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Theorem 11.1. Let H be a f.g. non-abelian group and G be a f.g. infinite group.
The randomized streaming space complexity of H oG is Θ(n).

Proof. Let R = (An)n≥0 be a randomized streaming algorithm for the word prob-
lem of H o G. We show that we obtain a randomized communication protocol for
the disjointness problem with communication cost 3 · s(R, 12n− 8).

Fix n ≥ 1 and two elements g, h ∈ H with [g, h] 6= 1. We can w.l.o.g. assume
that g and h are generators of H. We also fix a finite generating set for G. Let s :=
t1t2 · · · tn−1 be a word over the generators of G such that t1t2 · · · ti and t1t2 · · · tj
represent different elements of G whenever i, j ∈ [0, n − 1] with i 6= j. Such a
word exists since the Cayley graph of G is an infinite locally finite graph and hence
contains an infinite ray. For a word w = a0a1 · · · an−1 ∈ {0, 1}n and an element
x ∈ {g, h, g−1, h−1} define the word

w[x] = xa0t1x
a1t2 · · ·xan−2tn−1x

an−1s−1.

It represents the element (fw,x, 1) ∈ H oG with

supp(fw,x) = {t1 · · · ti : i ∈ [0, n− 1], w[i] = 1}

and fw,x(t) = x for all t ∈ supp(fw,x). Therefore, for two words u, v ∈ {0, 1}n we
have u[g]v[h]u[g−1]v[h−1] = 1 in H oG if and only if there is no position i ∈ [0, n−1]
with u[i] = v[i] = 1. Note that the length of the word u[g]v[h]u[g−1]v[h−1] is
4(3n− 2) = 12n− 8.

Our randomized communication protocol for the disjointness problem works as
follows, where u ∈ {0, 1}n is the input for Alice and v ∈ {0, 1}n is the input for
Bob.

• Alice reads the word u[g] into A12n−8 and sends the resulting state to Bob.
• Bob continues the run in the state he received from Alice, reads the word
v[h] into the automaton and sends the resulting state back to Alice.
• Alice continues the run with the word u[g−1] and sends the resulting state

to Bob.
• Bob continues the run with v[h−1] and finally accepts if the resulting state

is an accepting state of A12n−8.

Both Alice and Bob use their private random choices in order to make the random
decisions in the PFA A12n−8. Clearly, the protocol is correct and its communication
cost is 3 ·s(R, 12n−8). Hence, we must have 3 ·s(R, 12n−8) ≥ Ω(n) which implies
s(R,m) ≥ Ω(m). �

Corollary 11.2. Let H be a finitely generated group and assume that G is an
infinite group such that H oG embeds into H. Then the randomized streaming space
complexity of H is in Ω(n).

Proof. Since H oG is non-abelian, also H must be non-abelian. Hence, the corollary
follows directly from Theorem 11.1. �

In 1965 Richard Thompson introduced three finitely presented groups F < T <
V acting on the unit-interval, the unit-circle and the Cantor set, respectively. Of
these three groups, F received most attention (the reader should not confuse F with
a free group). This is mainly due to the still open conjecture that F is not amenable,
which would imply that F is another counterexample to a famous conjecture of von
Neumann (a counterexample was found by Ol’shanskii). The group F consists of
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all homeomorphisms of the unit interval that are piecewise affine, with slopes a
power of 2 and dyadic breakpoints. It is a finitely presented group:

F = 〈a, b | [ab−1, a−1ba], [ab−1, a−2ba2]〉. (15)

The group F is orderable (so in particular torsion-free), its derived subgroup [F, F ]
is simple and the center of F is trivial (in particular, F is non-abelian); see [12]
for more details. Important for us is the fact that F contains a copy of F o Z [30,
Lemma 20]. Hence, Corollary 11.2 implies:

Corollary 11.3. The randomized streaming space complexity of Thompson’s group
F is Θ(n).

For the case that G is finite, we can prove the following variant of Corollary 11.2.

Theorem 11.4. Let H be a finitely generated group and assume there is a non-
trivial finite group G such that H o G embeds into H. Then there is a constant
0 < c < 1 such that the randomized streaming space complexity of H is in Ω(nc).

Proof. We can assume that G = Zk for some k ≥ 2. We fix an embedding φ :
H o Zk → H. Let τ be the generator of Zk and let Σ be a finite generating set for
G. We use a construction from [8] that yields an embedding φm : H o Zkm → H
for every m ≥ 1. More precisely, it is shown in [8, Lemma 9.5] that the following
mapping φm (where τm is the generator of Zkm in H o Zkm) defines an embedding
of H o Zkm into H:

φm(τm) = φm(τ)φm−1(τ) · · ·φ2(τ)φ(τ),

φm(a) = φm(a) for a ∈ Σ.

Let λ be the maximal length among the words φ(τ) and φ(a) for a ∈ Σ. W.l.o.g. we
assume that λ ≥ 2. Then, the maximal length among the words φm(τm) and φm(a)
(a ∈ Σ) is

∑m
i=1 λ

i ≤ λm+1.
Let us now fix an n. We want to get a randomized communication protocol for

the disjointness problem on inputs of length n. For this we choose m = dlogk ne
so that km ≥ n. Now observe that the protocol from the proof of Theorem 11.1
also works if the group G (the right factor of the wreath product) is Z` for some
` ≥ n. In particular, we can take the copy of H o Zkm in H. Note that H must be
non-abelian since the wreath product H o Zk is non-abelian.

In our situation, the length of the word u[g]v[h]u[g−1]v[h−1] from the proof
of Theorem 11.1 blows up to O(nλm) = O(n1+1/ logλ k), since every generator of
H o Zkm becomes a word of length at most O(λm) = O(n1/ logλ k) in the group H.
If sH(n) is the randomized streaming space complexity of H, we obtain

3 · sH(O(n1+1/ logλ k)) ≥ Ω(n),

which yields sH(n) ≥ Ω(nc), where one can take c = logλ(k)/(logλ(k) + 1). �

Theorem 11.4 can be applied to a large class of self-similar groups acting on
regularly branching infinite trees. In particular, it is shown in [8, Lemma 9.8] that
if G is a weakly branched group whose branching subgroup K contains elements
of finite order (see [8] for definitions), then K contains a copy of K o Zk for some
k ≥ 2. Hence we get:

Corollary 11.5. Let G is a weakly branched group whose branching subgroup K
contains elements of finite order. Then there is a constant 0 < c < 1 such that the
randomized streaming space complexity of G is in Ω(nc).
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An important example of a group covered by Corollary 11.5 is Grigorchuk’s
group. It was introduced by Grigorchuk in [26]. It is defined as a f.g. group
of automorphisms of the infinite binary tree; the generators are usually denoted
a, b, c, d and satisfy the identities a2 = b2 = c2 = d2 = 1 and bc = cb = d, bd =
db = c, dc = cd = b (we do not need the precise definition). Grigorchuk’s group is
a f.g. infinite torsion group and was the first example of a group with intermediate
growth as well as the first example of a group that is amenable but not elementary
amenable. For Grigorchuk’s group we can provide the following lower and upper
bound on the constant from Corollary 11.5:

Theorem 11.6. Let G be the Grigorchuk group. Then the following hold:

• The deterministic streaming space complexity of G is O(n0.768).
• The randomized streaming space complexity of G is Ω(n1/3).

Proof. The first statement follows from Theorem 6.1 and the fact that the growth of
the Grigorchuk group is upper bounded by exp(n0.768) [6]. For the second statement
we use the subgroup K ≤ G generated by t = (ab)2, v = (bada)2, and w = (abad)2.
We show that the randomized streaming space complexity of K is Ω(n1/3). This
subgroup K has the following properties that can be all found in [17]:

• K is not abelian; for instance tv 6= vt.
• K contains a copy of K ×K. More precisely, the mapping φ with

φ(t, 1) = v φ(1, t) = w

φ(v, 1) = v−1t−1vt φ(1, v) = w−1twt−1

φ(w, 1) = vtv−1t−1 φ(1, w) = wt−1w−1t

defines an injective homomorphism φ : K ×K → K [17, p. 262].

The embedding φ can be used to define for every k ≥ 1 an embedding φk : K2k → K

inductively by φ1 = φ and φk+1(x, y) = φ(φk(x), φk(y)) for all x, y ∈ K2k . Note

that for a 2k-tuple x ∈ {1, t, v, w, t−1, v−1, w−1}2k we have |φk(x)| ≤ 8k when φk(x)
is viewed as a word over {t, v, w, t−1, v−1, w−1}.

We can now prove the second statement of the theorem using arguments simi-
lar to those from the proof of Theorem 11.1. Let R = (An)n≥0 be a randomized
streaming algorithm for WP(K, {t, v, w, t−1, v−1, w−1}). We show that we obtain
a randomized communication protocol for the disjointness problem with communi-
cation cost 3 · s(R, 4n3). Fix n ≥ 1 and assume that n = 2k is a power of two. For
a word x = a0a1 · · · an−1 ∈ {0, 1}n and an element s ∈ {t, v, t−1, v−1} define the
word

x[s] = φk(sa0 , sa1 , . . . , san−2 , san−1).

Then, for two words x, y ∈ {0, 1}n we have x[t]y[v]x[t−1]y[v−1] = 1 in K if and
only if there is no position i ∈ [0, n− 1] with x[i] = y[i] = 1. Note that the length
of the word x[t]y[v]x[t−1]y[v−1] is 4 · 8k = 4n3.

Our randomized communication protocol for the disjointness problem works as
follows, where x ∈ {0, 1}n is the input for Alice and y ∈ {0, 1}n is the input for
Bob.

• Alice reads the word x[t] into A4n3 and sends the resulting state to Bob.
• Bob continues the run in the state he received from Alice, reads the word
y[v] into the automaton and sends the resulting state back to Alice.
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• Alice continues the run with the word x[t−1] and sends the resulting state
to Bob.
• Bob continues the run with y[v−1] and finally accepts if the resulting state

is an accepting state.

This protocol is clearly correct and has communication cost 3 ·s(R, 4n3). We hence
must have 3 · s(R, 4n3) ≥ Ω(n) which implies s(R,m) ≥ Ω(m1/3). �

12. Randomized streaming algorithms for subgroup membership
problems

Let G be a f.g. group with a finite symmetric generating set Σ and let H be a
subgroup of G. As before, πG : Σ∗ → G is the morphism that maps a word w ∈ Σ∗

to the group element represented by w. We can define the language

GWP(G,H,Σ) = {w ∈ Σ∗ : πG(w) ∈ H}.
GWP stands for generalized word problem which is another common name for the
subgroup membership problem. Note that GWP(G, 1,Σ) = WP(G,Σ). In the
following we are interested in randomized streaming algorithms for GWP(G,H,Σ).
One can easily show a statement for GWP(G,H,Σ) analogously to Lemma 5.1,
which allows us to skip the generating set Σ in combination with the O-notation and
just write GWP(G,H) in the following. The main result of this section states that
for every finitely generated free group F (Γ) and every finitely generated subgroup
G ≤ F (Γ) there exists a randomized streaming algorithm for GWP(F (Γ), G) with
space complexity O(log n). For this we first need a few more definitions concerning
finite automata.

We fix the finite alphabet Γ in this section. As usual, Γ−1 = {a−1 : a ∈ Γ}
is a set of formal inverses. Let Σ = Γ ∪ Γ−1. Recall that we identified the free
group F (Γ) with the set of all reduced words over the alphabet Σ. In the following
we have to deal with a special class of finite automata over the alphabet Σ. A
partial DFA is defined as an ordinary DFA except that the transition function
δ : Q×Σ→ Q is only partially defined. As for (total) DFAs we extend the partial
transition function δ : Q × Σ → Q to a partial function δ : Q × Σ∗ → Q. For
q ∈ Q and w ∈ Σ∗ we write δ(q, w) = ⊥ if δ(q, w) is undefined, which means that
one cannot read the word w into the automaton A starting from state q. A partial
inverse automaton A = (Q,Σ, q0, δ, qf ) over the alphabet Σ = Γ ∪ Γ−1 is a partial
DFA with a single final state qf and such that for all p, q ∈ Q and a ∈ Σ, δ(p, a) = q
implies δ(q, a−1) = p.

The main technique to deal with finitely generated subgroups of a free group is
Stallings folding [35]. We do not need the details of the technique. All we need is
that for every finitely generated subgroup G ≤ F (Γ) there exists a partial inverse
automaton AG over the alphabet Σ such that for every reduced word w ∈ Σ∗ we
have: w ∈ G if and only if w ∈ L(AG). We call AG the Stallings automaton for
G. It can be constructed quite efficiently from a given set of generators for G, but
we do not need this fact since G will be fixed and not considered to be part of the
input in our main result, Theorem 12.4 below.10 The Stallings automaton has the
additional property that its final state is also the initial state.

10This setting is more natural in our context, where we consider streaming algorithms for
languages. In Theorem 12.4 below, we will consider the language GWP(F (Γ), G) of all words

representing an element from the subgroup G.
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Let G be a fixed finitely generated subgroup of F (Γ) and let AG = (Q,Σ, q0, δ, q0)
be its Stallings automaton in the following. An important property of AG is the
following: If q, q′ ∈ Q and u ∈ Σ∗ (u is not necessarily reduced) are such that
δ(q, u) = q′ then also δ(q, red(u)) = q′. This follows from the fact that δ(q, aa−1) =
q for every q ∈ Q and a ∈ Σ. In particular, if δ(q0, u) 6= ⊥, then u ∈ L(AG) if and
only if red(u) ∈ L(AG) if and only if red(u) ∈ G.

Lemma 12.1. Let u, v ∈ Σ∗ and a ∈ Σ such that δ(q0, u) = q1 ∈ Q, δ(q1, a) = ⊥
and v has no prefix x with red(ax) = ε. Then red(uav) /∈ G.

Proof. Let u′ = red(u). Then we also have δ(q0, u
′) = q1 and red(uav) /∈ G if and

only if red(u′av) /∈ G. We can therefore assume for the rest the proof that u is
reduced. Moreover, observe that u cannot end with the symbol a−1: if u = u′a−1,
then ⊥ = δ(q1, a) = δ(δ(q0, u

′a−1), a) = δ(q0, u
′) 6= ⊥.

Assume now that v has no prefix x with red(ax) = ε. We claim that red(av)
begins with the symbol a. Assume for a moment that this is already shown. Write
red(av) = ay for some word y. Then uav reduces to uay. The latter word is
reduced, since ua is reduced (u is reduced and u does not end with a−1) and ay is
redued. But uay /∈ L(A), because δ(q0, uay) = ⊥. Hence, we have uay /∈ G and
thus red(uav) /∈ G.

It therefore remains to show that red(av) begins with the symbol a. We prove
by induction that for every prefix x of v, red(ax) begins with the symbol a. For
x = ε this is clear. Now assume that xb is a prefix of v (b ∈ Σ) and we have already
shown that red(ax) = ax′ for some word x′. We obtain red(axb) = red(ax′b).

If x′ = ε then red(axb) = red(ab). If b = a−1 then we obtain red(axb) = ε. This
leads to a contradiction since xb is a prefix of v. Hence, we have b 6= a−1 and thus
red(axb) = ab starts with a.

Let us now assume that x′ 6= ε and write x′ = x′′c for a symbol c ∈ Σ. Since
ax′′c = ax′ is reduced, we obtain

red(axb) =

{
ax′′cb if c 6= b−1

ax′′ if c = b−1.

In both cases, red(axb) starts with the symbol a. This concludes the proof of the
lemma. �

Definition 12.2. For a word w ∈ Σ∗ we define the AG-factorization of w uniquely
as either

(i) w = w0a1u1 w1a2u2 · · ·wk−1akuk wk or
(ii) w = w0a1u1 w1a2u2 · · ·wk−1akuk wkak+1v

such that k ≥ 0 and the following properties hold, where we set ` = k in case (i)
and ` = k + 1 in case (ii):

• w0, . . . , wk, u1, . . . , uk, v ∈ Σ∗, a1, . . . , a` ∈ Σ,
• there are states q1, . . . , qk+1 ∈ Q such that δ(qi, wi) = qi+1 for all i ∈ [0, k]

(recall that q0 is the initial state of AG),
• δ(qi, ai) = ⊥ for all i ∈ [1, `],
• for all i ∈ [1, k], red(aiui) = ε but there is no prefix u 6= ui of ui with

red(aiu) = ε, and
• in case (ii), v has no prefix x with red(ak+1x) = ε.
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Figure 1. An AG-factorization of type (i) for k = 4. The red-
blue loops outside of AG are loops in the Cayley graph of the free
group F (Γ).

Depending on which of the two cases (i) and (ii) in Definition 12.2 holds, we say
that w has an AG-factorization of type (i) or type (ii).

Let us explain the intuition of the AG-factorization of w; see also Figures 1 and 2.
We start reading the word w into the automaton AG, beginning at state q0, as long
as possible. If it turns out that δ(q0, w) is defined, then the AG-factorization of w
consists of the single factor w0 = w and we obtain type (i) with k = 0. Otherwise,
there is a shortest prefix w0 of w (the first factor of the AG-factorization) such
that after reading w0 we reach the state δ(q0, w0) = q1 of AG and δ(q1, a1) = ⊥,
where a1 is the symbol following w0 in w. In other words, when trying to read
a1, we escape the automaton AG for the first time. At this point let w = w0a1x.
We then take the shortest prefix u1 of x such that a1u1 evaluates to the identity
in the free group F (Γ) (if such a prefix does not exist, we terminate in case (ii)
with v = x). This yields a new factorization w = w0a1u1y. We then repeat this
process with the word y starting from the state q1 as long as possible. There are
two possible terminations of the process: starting from state qk we can read the
whole remaining suffix into AG (and arrive in state qk+1). This suffix then yields
the last factor wk and we are in case (i). In the other case, we leave the automaton
AG with the symbol ak+1 from state qk+1 (δ(qk+1, ak+1) = ⊥) and the remaining
suffix has no prefix x such that ak+1x evaluates to the identity in the free group
F (Γ). The remaining suffix then yields the last factor v and we are in case (ii).

Lemma 12.3. Let w ∈ Σ∗ and assume that the AG-factorization of w and the
states q1, . . . , qk+1 are as in Definition 12.2.

• If the AG-factorization of w is of type (i) then red(w) ∈ G if and only if
qk+1 = q0 (the initial and final state of AG).
• If the AG-factorization of w is of type (ii) then red(w) /∈ G.

Proof. Let us first assume that the AG-factorization of w is of type (i). Then the
word w can be reduced to w0w1 · · ·wk. Moreover, we have δ(q0, w0w1 · · ·wk) =
qk+1. Hence, we have red(w) ∈ G if and only if red(w0w1 · · ·wk) ∈ G if and only if
w0w1 · · ·wk ∈ L(AG) if and only if qk+1 = q0.
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Figure 2. An AG-factorization of type (ii) for k = 4. The red-
blue loops outside of AG are loops in the Cayley graph of the free
group F (Γ).

Now assume that the AG-factorization of w is of type (ii). The word w can be re-
duced to w0w1 · · ·wk−1wkak+1v. Let w′ = w0w1 · · ·wk. Note that δ(q0, w

′) = qk+1,
δ(qk+1, ak+1) = ⊥ and v has no prefix x with red(ak+1x) = ε. Hence, Lemma 12.1
yields red(w′ak+1v) /∈ G. Since red(w′ak+1v) = red(w), we obtain red(w) /∈ G. This
concludes the proof of the lemma. �

We now come to the main result of this section.

Theorem 12.4. Let G a fixed finitely generated subgroup of F (Γ). Then for every
c > 0 there exists a 1/nc-correct randomized streaming algorithm for the language
GWP(F (Γ), G) with space complexity O(log n).

Proof. Take the Stallings automaton AG = (Q,Σ, q0, δ, q0); note that |Q| is a con-
stant since G is fixed. We would like to use AG as a streaming algorithm for
GWP(F (Γ), G). The problem is that we cannot assume that the input word is re-
duced. We solve this problem by using a (1/nc+2, 0)-distinguisher (Bn)n≥0 for F (Γ)
with space complexity O(log n). It exists by Theorem 9.2 since finitely generated
free groups are linear.

Fix an input length n and let Bn = (Rn,Σ, λn, σn). Consider an input word
w ∈ Σ≤n. Our randomized streaming algorithm for GWP(F (Γ), G) is shown in
Algorithm 3.

The space needed by Algorithm 3 is O(log n). The variables q and β need
constant space and p and r both need O(log n) bits. Let us now show that the
error probability of Algorithm 3 is bounded by 1/nc. For this let S = P(w) be the
set of all prefixes of w. For the initially guessed state r0 ∈ Rn (line 3) we have

Prob
r0∈Rn

[≡F (Γ) equals ≡r0 on S] ≥ 1− 1/nc+2

(
|S|
2

)
≥ 1− 1/nc

by Lemma 8.2. Let us assume for the further consideration that the guessed state
r0 is such that ≡F (Γ) and ≡r0 are equal on S. We claim that under this assumption,
Algorithm 3 accepts in line 15 after reading w if and only if red(w) ∈ G. For this,
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Algorithm 3: 1/nc-correct randomized streaming algorithm for
GWP(F (Γ), G)

global variables: q ∈ Q, p, r ∈ Rn, β ∈ {0, 1}
initialization:

1 q := q0 ;

2 β := 1 ;

3 guess r ∈ Rn according to the initial state distribution λn of Bn ;

next input letter: a ∈ Σ
4 if β = 1 and δ(q, a) = ⊥ then
5 β := 0 ;

6 p := r

7 end

8 if β = 1 and δ(q, a) 6= ⊥ then
9 q := δ(q, a)

10 end

11 r := σn(r, a) ;

12 if β = 0 and r = p then
13 β := 1

14 end

15 accept if β = 1 and q = q0

assume that the AG-factorization of w and the states q1, . . . , qk+1 ∈ Q are as in
Definition 12.2. By Lemma 12.3 it suffices to show the following:

(a) If the AG-factorization of w is of type (i) then after reading w we have β = 1
and q = qk+1 in Algorithm 3.

(b) If the AG-factorization of w is of type (ii) then after reading w we have β = 0
in Algorithm 3.

To see this, observe that Algorithm 3 simulates Bn on w starting from r0 (line 11).
Moreover, initially we have β = 1 (line 2). This implies that Algorithm 3 simulates
the Stallings automaton AG on w as long as possible (line 9). If this is possible
for the whole input w (i.e., δ(q0, w) 6= ⊥) then w has an AG-factorization of type
(i) consisting of the single factor w (i.e., k = 0). Moreover, after processing w by
Algorithm 3, we have β = 1 and the program variable q holds δ(q0, w) = q1 = qk+1.
We obtain the above case (a).

Assume now that k > 0. The AG-factorization of w starts with w0a1, where
δ(q0, w0) = q1 and δ(q1, a1) = ⊥. After processing w0 by Algorithm 3 we have
q = q1 and r = σn(r0, w0). While processing the next letter a1, Algorithm 3 sets
β to 0 (line 5) and saves the current state r = σn(r0, w0) of Bn in the variable p
(line 6). Let us write w = w0a1v. Since the flag β was set to 0, Algorithm 3 only
continues the simulation of Bn on input a1v starting from state σn(r0, w0) = p.
Our assumption that ≡F (Γ) and ≡r0 are equal on the set S implies that for every
prefix x of v we have: red(a1x) = ε if and only if p = σn(r0, w0) = σn(r0, w0a1x).
In line 12, the algorithm checks the latter equality in each step (as long as β = 0).
If there is no prefix x of v with red(a1x) = ε then the AG-factorization of w is
of type (ii) (it is w0a1v) and the flag β is 0 after reading w. We then obtain
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the above case (b). Otherwise, u1 is the shortest prefix of v with red(a1u1) = ε.
Moreover, after processing u1, the if-condition in line 12 is true for the first time.
The algorithm then sets the flag β back to 1 (line 13) and resumes the simulation of
the automaton AG in state q1 (which is still stored in the program variable q). This
process now repeats and we see that the algorithm correctly locates the factors of
the AG-factorization of w. This shows the above points (a) and (b) and concludes
the proof of the theorem. �

It is not possible to generalize Theorem 12.4 to subgroups of F (Γ) that are not
finitely generated: Let F2 = F ({a, b}) be the free group generated by two elements.
In the following we make use of Thompson’s group F . Recall that the randomized
streaming space complexity of the word problem of Thompson’s group F is Θ(n); see
Corollary 11.3. Moreover, Thompson’s group F is finitely presented and generated
by two elements a and b; see (15).11 Let R = {[ab−1, a−1ba], [ab−1, a−2ba2]} be the
set of relators from (15) and let N = N(R) be the normal closure of R in the free
group F ({a, b}). Thus, we have F ∼= F ({a, b})/N .

Theorem 12.5. For the subgroup N ≤ F2 the randomized streaming space com-
plexity of the language GWP(F2, N) is Θ(n).

Proof. A word w ∈ {a, b, a−1, b−1}∗ represents in the free group F2 an element of
N if and only if in Thompson’s group F , w represents the group identity. The
theorem follows directly from Corollary 11.3. �

We now consider the direct product of F2 × F2 of two free groups of rank two.
It is also a linear group, hence the randomized streaming space complexity of the
word problem for F2 × F2 is in O(log n). For the subgroup membership problem,
this fact no longer holds by the following theorem. We make use of a construction of
Mihăılova from [53], where she constructed a finitely generated subgroup of F2×F2

with an undecidable subgroup membership problem.

Theorem 12.6. There is a finitely generated subgroup G of F2 × F2 such that the
randomized streaming space complexity of GWP(F2 × F2, G) is in Θ(n).

Proof. Take again Thompson’s group F and let N ≤ F ({a, b}) and R be as defined
above. We make use of Mihăılova’s construction from [53]. Let

D = {(r, 1) : r ∈ R} ∪ {(a, a), (b, b)},
which is viewed as a finite subset of F2 × F2. Mihăılova [53] showed that for every
element g ∈ F2:

g ∈ N ⇐⇒ (g, 1) ∈ 〈D〉 ≤ F2 × F2.

Hence, the theorem follows from Theorem 12.5. �

13. Open problems

Hyperbolic groups. Hyperbolic groups are one of the most important classes in
geometric group theory. The word problem for a hyperbolic group belongs to the
complexity class LogCFL, which is contained in DSPACE(log2 n) [44], and it is not
known whether for every hyperbolic group the word problem belongs to logspace.
What is the space complexity of randomized streaming algorithms for hyperbolic

11For our arguments we could take any finitely presented 2-generator group whose randomized
streaming space complexity is Ω(n).



STREAMING WORD PROBLEMS 49

groups? In particular, is the randomized streaming space complexity of the word
problem for a hyperbolic group in O(log n). It is known that there exist non-linear
hyperbolic groups.

Grigorchuk group. For the randomized streaming space complexity of the Grig-
orchuk group we proved the lower bound Ω(n1/3) and the upper bound O(n0.768)
(the upper bound even holds for the deterministic streaming space complexity); see
Theorem 11.6. This leaves a gap that we would like to close.

Residually finite groups. A group G is called residually finite if for every element
g ∈ G \ {1} there is a homomorphism φ : G→ H from G to a finite group H such
that φ(g) 6= 1. All the groups for which we have constructed randomized streaming
algorithms for the word problem with space complexity o(n) so far are residually
finite. This follows from the following results:

• Every f.g. linear group is residually finite [50].
• Every finite extension of a residually finite groups is residually finite ; this

seems to be folklore; see e.g. [14, Proposition 2.2.12].
• A graph product of f.g. residually finite group is f.g. residually finite [32].
• A wreath product H oG of f.g. groups G,H is residually finite if and only

if (i) either G is finite and H is residually finite or (ii) H is abelian and G
is residually finite [29].
• A f.g. group is residually finite if and only if it faithfully acts on a rooted

locally finite tree; see e.g.[11] (this includes the Grigorchuk group).

Erschler [21] constructed non-residually finite groups G of intermediate growth.
These groups are quasiisometric to the Grigorchuk group and therefore have growth
functions that are equivalent to the growth function of the Grigorchuk group.
Therefore, there is a non-residually finite group G, whose word problem has de-
terministic streaming space complexity O(n0.768); see Theorem 11.6. Is there also
a non-residually finite group whose word problem has randomized streaming space
complexity O(log n)? An interesting concrete non-residually finite group is the
Baumslag-Solitar group BS(2, 3) = 〈a, t | t−1a2t = a3〉. The word problem for
every Baumslag-Solitar group BS(p, q) belongs to DSPACE(log n) [70].

Graph of groups. Is it possible to prove a transfer theorem (in the style of The-
orem 10.7 for graph products) for graphs of groups under certain restrictions, e.g.,
if all edge groups are finite?
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