
Enumeration for MSO-Queries on Compressed Trees
MARKUS LOHREY, Universität Siegen, Germany

MARKUS L. SCHMID, Humboldt-Universität zu Berlin, Germany

We present a linear preprocessing and output-linear delay enumeration algorithm for MSO-queries over trees

that are compressed in the well-established grammar-based framework. Time bounds are measured with

respect to the size of the compressed representation of the tree. Our result extends previous work on the

enumeration of MSO-queries over uncompressed trees and on the enumeration of document spanners over

compressed text documents.

CCS Concepts: • Theory of computation → Tree languages; Finite Model Theory; Database query languages
(principles); Database query processing and optimization (theory).

Additional Key Words and Phrases: MSO-Enumeration, Unranked Trees, Evaluation Over Compressed Data,

Straight-Line Programs

ACM Reference Format:
Markus Lohrey and Markus L. Schmid. 2024. Enumeration for MSO-Queries on Compressed Trees. Proc. ACM
Manag. Data 2, 2 (PODS), Article 78 (May 2024), 17 pages. https://doi.org/10.1145/3651141

1 INTRODUCTION
The paradigm of algorithmics on compressed data (ACD) aims at solving fundamental computational

tasks directly on compressed data objects, without prior decompression. This allows us to work in

a completely compressed setting, where our data is always stored and processed in a compressed

form. ACD works very well with respect to grammar-based compression with so-called straight-line

programs (SLPs). Such SLPs use grammar-like formalisms in order to specify how to construct the

data object from small building blocks. For example, an SLP for a string 𝑤 is just a context-free

grammar for the language {𝑤}, which can be seen as a sequence of instructions that construct𝑤

from the terminal symbols. For instance, the SLP 𝑆 → 𝐴𝐴, 𝐴 → 𝐵𝐵𝐶 , 𝐵 → 𝑏𝑎, 𝐶 → 𝑐𝑏 (where

𝑆,𝐴, 𝐵,𝐶 are nonterminals and 𝑎, 𝑏, 𝑐 are terminals) produces the string 𝑏𝑎𝑏𝑎𝑐𝑏𝑏𝑎𝑏𝑎𝑐𝑏. String SLPs

are very popular and many results exist that demonstrate their wide-range applicability (see,

e. g., [4, 12, 17, 19] for some recent publications, and the survey [26]). Moreover, SLPs achieve

very good compression rates in practice (exponential in the best case) and are tightly related to

dictionary based compression, in particular LZ77 and LZ78 [13, 34].

An important point is that the ACD pradigm may lead to substantial running time improvements

over the uncompressed setting. Indeed, the algorithm’s running time only depends on the size of

the compressed input, so the smaller size of the input may directly translate into a lower running

time. For example, if the same problem can be solved in linear time both in the uncompressed

and in the compressed setting, then in the case that the input can be compressed from size 𝑛 to

size O(log(𝑛)), the algorithm in the compressed setting is exponentially faster. This is not just

Authors’ addresses: Markus Lohrey, lohrey@eti.uni-siegen.de, Universität Siegen, Hölderlinstr. 3, 57076, Siegen, Germany;

Markus L. Schmid, MLSchmid@MLSchmid.de, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099, Berlin,

Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/5-ART78

https://doi.org/10.1145/3651141

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0002-4680-7198
HTTPS://ORCID.ORG/0000-0001-5137-1504
https://doi.org/10.1145/3651141
https://orcid.org/0000-0002-4680-7198
https://orcid.org/0000-0001-5137-1504
https://doi.org/10.1145/3651141

78:2 M. Lohrey and M. L. Schmid

hypothetically speaking. In the field of string algorithms several fundamental problems are known

with this behaviour, e. g., string pattern matching [17].

Recently, the ACD paradigm has been combined with the enumeration perspective of query

evaluation. In [32, 35, 36], the information extraction framework of document spanners is investi-

gated in the compressed setting, and it has been shown that the results of regular spanners over

SLP-compressed text documents can be enumerated with linear preprocessing and constant delay.

Applying SLP-based ACD in the framework of document spanners suggests itself, since this is

essentially a query model for string data (or sequences), and ACD is most famous in the realm of

string algorithms.

We consider a different classical evaluation problem in the compressed setting: MSO-queries on

trees. It is known that MSO-queries can be enumerated with linear preprocessing and output-linear

delay [1, 2, 14, 24]. Output linear delay means that the delay is linearly bounded by the size of the

next element that is enumerated. If the elements of the solution have constant size (like, e. g., for

document spanners), then constant delay and output-linear delay are the same. Our main result

extends the work of [2, 14, 24] to the setting, where the tree is given in a compressed representation.

Our data models are unranked forests, and as compression scheme, we consider forest straight-line

programs (FSLPs) [20]. This is a convenient and versatile grammar-based compression scheme for

unranked forests, which also covers other SLP-models from the literature. As usual, MSO-queries

are represented by tree automata. Let us now explain the concept of SLP-compression of trees and

forests in more detail.

Grammar-compression of trees and forests: An advantage of grammar-based compression is

that it can be easily extended to other data types. For example, by using a context-free grammar

formalism for trees, we can define tree SLPs [27, 30, 31] and use them for the compression of ranked

trees. However, in the context of database theory, we are rather interested in unranked trees and

forests as data model. A typical example of such data are XML tree structures. Therefore, we use

forest straight-line programs (FSLPs) introduced in [20]. Let us sketch this model.

The set of rules of a string SLP essentially define a DAG (directed acyclic graph) whose inner

nodes (resp., leaves) are the non-terminals (resp., terminals) of the grammar. The edges of the DAG

are defined by the productions of the grammar (e. g., 𝑆 → 𝐴𝐵 means that from 𝑆 there is a left

edge to 𝐴 and a right edge to 𝐵). This DAG can also be seen as an algebraic circuit over the free
monoid Σ∗

where Σ is the terminal alphabet. FSLPs are also DAGs that represent circuits, but the

underlying algebraic structure is the forest algebra (see [6]). The elements of this algebra are forests

over the alphabet Σ∪ {∗} (i.e., ordered sequences of unranked trees with nodes labelled by symbols

from Σ ∪ {∗}) with the restriction that the special symbol ∗ occurs at most once in a forest and

moreover only at a leaf position. Intuitively, ∗ represents a substitution point where another forest

can be plugged in. Such forests can be built from atomic forests of the form 𝑎 ∈ Σ (representing a

single node-labelled 𝑎) and 𝑎∗ (representing a node-labelled Σ with a single child labelled ∗) using
two operations: the operation � horizontally concatenates two forests (where ∗ is allowed to occur

in at most one of them) and the operation � substitutes in a forest 𝐹1 containing ∗ the unique

occurrence of ∗ by a second forest 𝐹2. The tree 𝑇𝑒 in Figure 1 shows an expression in the forest

algebra that evaluates to the tree𝑇 at the right of Figure 2. Now the DAG 𝐷 at the left of Figure 2 is

an FSLP, since it is a natural DAG representation of 𝑇𝑒 . An FSLP produces a unique forest that we

denote with J𝐷K. For the FSLP at the left of Figure 2 it is exactly the tree 𝑇 at the right of Figure 2.

Consequently, FSLPs follow a two stage approach: A forest is represented as the parse-tree of a

forest algebra expression, and this parse-tree is then folded into a DAG.

Let us motivate our choice of FSLPs as compression scheme. First, FSLPs can describe node-

labelled unranked forests and therefore cover a large number of tree structures (e.g. XML tree

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

Enumeration for MSO-Queries on Compressed Trees 78:3

structures). Moreover, FSLPs also cover other popular tree compression schemes like top dags

[5, 15, 23] and tree straight-line programs [18, 28]. Furthermore, there exist compressors such as

TreeRePair that produce FSLPs
1
and show excellent compression ratios in practice. For a corpus

of typical XML documents, the number of edges of the original tree is reduced to approximately

3% using TreeRePair on the first-child next-sibling encoding of the XML tree [28]. Other available

grammar-based tree compressors are BPLEX [10] and CluX [7]. It is also known that for every forest

with 𝑛 nodes one can construct in linear time an FSLP of size O(𝑛 log |Σ|/log𝑛) (so O(𝑛/log𝑛) for a
fixed Σ) [18]. Finally, notice that FSLPs generalize string SLPs (only use the horizontal concatenation
�).

Main result: The following is a preliminary statement of our main result. Upper bounds refer to

data complexity.

Theorem 1.1. For an MSO-query𝜓 (𝑋) with a free set variable 𝑋 and a forest straight-line program
𝐷 one can compute in preprocessing time O(|𝐷 |) a data structure that allows to enumerate with
output-linear delay all 𝑆 ⊆ nodes(J𝐷K) such that J𝐷K |= Ψ(𝑆).

The MSO-query 𝜓 (𝑋) will be represented by a tree automaton A (for an automaton model

that is equivalent to MSO on unranked forests). We first reduce the enumeration problem from

Theorem 1.1 to the following enumeration problem for binary trees: given a DAG𝐷 that represents a

binary node-labelled tree𝑇 and a deterministic bottom-up tree automaton B, enumerate all subsets

𝑆 ⊆ leaves(𝑇) such that B accepts the tree (𝑇, 𝑆) (obtained by marking all leaves from 𝑆 with a

1). This enumeration problem is then instantiated by the FSLP 𝐷 (a DAG) and the forest algebra

parse tree 𝑇 represented by 𝐷 . The nodes of the forest J𝐷K uniquely correspond to the leaves of 𝑇

(see Figures 1 and 2). The bottom-up tree automaton B is obtained from the automaton A using a

known construction [25]. Since 𝑇 is a binary tree, we could enumerate all sets 𝑆 ⊆ leaves(𝑇) such
that B accepts (𝑇, 𝑆) with linear preprocessing and output-linear delay by one of the algorithms in

the literature, e. g., the one by Bagan [2]. But 𝑇 is given by the DAG 𝐷 and we cannot afford to

explicitly construct 𝑇 . Consequently, we have to adapt Bagan’s algorithm in such a way that it can

be used directly on DAG-compressed trees, which is our main technical contribution.

Related results: Forest algebras have been also used in the context of MSO-enumeration on trees

in [25, 33] for the purpose of enabling updates of the queried tree in logarithmic time by updating

and re-balancing a forest algebra expression for the tree. However no compression is achieved

in [25, 33]. Working with a DAG-representation of a forest algebra expression (i.e., an FSLP) is

a new aspect of our work and requires new algorithmic techniques. We discuss in Section 8 the

possibilities and difficulties for also supporting updates in a compressed setting.

The arguably most simple way of compressing a tree is to fold it into a DAG. In the con-

text of database theory, this type of compression has been investigated in [9, 16] for XPath and

monadic datalog queries, but the enumeration perspective is not investigated. Moreover, the simple

DAG-compression has other disadvantages in comparison to the grammar-based approach. In

general, DAG-compression can achieve exponential compression, but there are also trees non-

compressible by DAGs, but still exponentially compressible by FSLPs, e. g., unary trees of the

form 𝑓 (𝑓 (. . . 𝑓 (𝑎) . . .)). The experimental study of [28] also shows that in a practical setting

DAG-compression cannot compete with grammar-based tree compression. Further work on the

compression performance of DAGs for XML can be found in [8, 29].

Our work can also be seen as extending the results of [32, 35, 36] to the case of MSO queries on

trees, instead of regular spanners on text documents. In this regard, we also provide an alternative

1
Actually, TreeRePair works for ranked trees. It can produce a tree SLP for the first-child-next-sibling of an unranked forest

𝐹 . This tree SLP can be transformed in linear time into an equivalent FSLP for 𝐹 [20].

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

78:4 M. Lohrey and M. L. Schmid

proof for the result that regular spanners can be enumerated with linear preprocessing and constant

delay over SLP-compressed texts [32] (the latter uses so-called enumerable compact sets with

shifts).

In addition to Bagan’s algorithm, there are also other enumeration algorithms for MSO queries

over uncompressed trees [14, 24]. However, Bagan’s algorithm seems to be the one that can be

extended the best to the compressed setting.

2 PRELIMINARIES
2.1 Trees and Forests
Different rooted and finite trees will appear in this work. Note that forests are simply sequences

of trees, and we should keep in mind that each definition of a certain tree model yields the

corresponding concept of forests (which are just sequences of such trees).

Node-labelled ordered trees are trees, where nodes are labelled with symbols from some alphabet

Σ and may have an arbitrary number of children (i.e., the trees are unranked). Moreover, the children

are linearly ordered. A typical example of such trees are XML tree structures. A node-labelled

ordered tree can be defined as structure 𝑇 = (𝑉 , 𝐸, 𝑅, 𝜆), where 𝑉 is the set of nodes, 𝐸 is the set of

edges, 𝑅 is the sibling relation (i.e., (𝑢, 𝑣) ∈ 𝑅 if and only if 𝑣 is the right sibling of 𝑢), and 𝜆 : 𝑉 → Σ
is the function that assigns labels to nodes. In the following, when we speak of a tree, we always

mean a node-labelled ordered tree. A forest is a (possibly empty) ordered sequence of trees. We

write F (Σ) for the set of all forests. The size |𝐹 | of a forest is the number of nodes of 𝐹 . Forests are

the structures on which we want to enumerate query results.

We also use a term representation for forests, i. e., we write elements of F (Σ) as strings over the
alphabet Σ ∪ {(,)}.
Node-labelled binary trees (binary trees for short) are the special case of the trees from the

previous paragraph, where every node is either a leaf or has two children (a left and a right child).

It is then more common to replace the two relations 𝐸 (edge relation) and 𝑅 (sibling relation) by

the relations 𝐸ℓ (left edges) and 𝐸𝑟 (right edges), where (𝑢, 𝑣) ∈ 𝐸ℓ (resp., (𝑢, 𝑣) ∈ 𝐸𝑟) if 𝑣 is the

left (resp., right) child of 𝑢. We write 𝐸 = 𝐸ℓ ∪ 𝐸𝑟 for the set of all edges. Our binary trees have

the additional property that Σ is partitioned into two disjoint sets Σ0 and Σ2 labelling leaves and

internal nodes, respectively. We use the above term notation for general trees also for binary trees.

With leaves(𝑇) we denote the set of leaves of the binary tree 𝑇 . We number the leaves of 𝑇 from

left to right starting with 0. The number assigned to 𝑣 ∈ leaves(𝑇) is the leaf number of 𝑣 ; see the
binary tree in Figure 1, where the leaf numbers are written in blue color. Binary trees will be used

for describing algebraic expressions (mainly expressions in the so-called forest algebra).

Unordered trees are trees, without node labels and without an order on the children of a node.

They will be used as auxiliary data structures in our algorithms. An unordered tree will be defined

as a pair (𝑉 , 𝐸), where 𝑉 is the set of nodes and 𝐸 is the edge relation. An unordered forest is a

disjoint union of unordered trees.

Trees with edge weights:We also have to consider (possibly unordered) trees, where the edges

are labelled with weights from a monoid𝑀 . We then add to the description of the tree a function

𝛾 : 𝐸 → 𝑀 that assigns weights to edges. In our specific application,𝑀 will be the monoid (N, +).
But there are further applications, where a different choice of𝑀 is needed. Since𝑀 = (N, +) in our

application, we write the monoid additively, i.e., we use + for the monoid operation and 0 for the

neutral element. But let us emphasize that we do not use that𝑀 is commutative. The weights can

be lifted from edges to paths in the natural way: let (𝑣1, 𝑣2, 𝑣3, · · · , 𝑣𝑑−1, 𝑣𝑑) be the unique path from

𝑣1 to a descendant 𝑣𝑑 in the tree, i.e., (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 𝑖 ∈ [1, 𝑑 − 1]. We then define 𝛾 (𝑣1, 𝑣𝑑) as

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

Enumeration for MSO-Queries on Compressed Trees 78:5

the sum

∑𝑑−1
𝑖=1 𝛾 (𝑣𝑖 , 𝑣𝑖+1). For a leaf 𝑣 of the tree 𝑇 we define 𝛾 (𝑣) = 𝛾 (𝑟, 𝑣), where 𝑟 is the root of 𝑇 ,

and for a set of leaves 𝑆 we define 𝛾 (𝑆) = {𝛾 (𝑣) : 𝑣 ∈ 𝑆}.

2.2 Monadic Second Order Logic Over Forests
We consider MSO-formulas that are interpreted over forests 𝐹 = (𝑉 , 𝐸, 𝑅, 𝜆). Since any first-order

variable 𝑥 (that takes elements from𝑉 as values) can be replaced by a set variable𝑋 (anMSO-formula

can express that 𝑋 is a singleton set), we can restrict to MSO-formulas where all free variables are

set variables. If Ψ is an MSO-formula with free set variables 𝑋1, . . . , 𝑋𝑘 and 𝑆1, . . . , 𝑆𝑘 ⊆ 𝑉 are node

sets, then we write (𝐹, 𝑆1, . . . , 𝑆𝑘) |= Ψ if the formula Ψ holds in the forest 𝐹 if the variable 𝑋𝑖 is set

to 𝑆𝑖 . To make the exposition less technical, we further restrict to MSO-formulas with a single free

set variable 𝑋 . This is actually no restriction. The restriction to MSO-formulas with a single free

set variable is a common one that can be found elsewhere in the literature; see, e. g., [3, 16].

2.3 Tree Automata
We consider two types of tree automata: deterministic bottom-up tree automata that work on

binary trees and nondeterministic stepwise tree automata that work on general trees. Since they

should implement queries on trees, they will be interpreted as selecting nodes from trees (this

aspect is explained in more detail later on).

A deterministic bottom-up tree automaton (over the alphabets Σ0, Σ2) is represented by a tuple

B = (𝑄, Σ0, Σ2, 𝛿0, 𝛿2, 𝑄 𝑓), where 𝑄 is a finite set of states, Σ0 is the set of leaf node labels, Σ2 is the

set of labels for internal nodes,𝑄 𝑓 ⊆ 𝑄 is the set of final states, 𝛿0 : Σ0 → 𝑄 assigns states to leaves

of a tree, and 𝛿2 : 𝑄 ×𝑄 × Σ2 → 𝑄 assigns states to internal nodes depending on the node label

and the states of the two children. For a given binary tree𝑇 we define the state B(𝑇) as the unique
state to which B evaluates the tree 𝑇 . It is inductively defined as follows, where 𝑎 ∈ Σ0 and 𝑓 ∈ Σ2:

• B(𝑎) = 𝛿0 (𝑎) and
• B(𝑓 (𝑇1,𝑇2)) = 𝛿2 (B(𝑇1),B(𝑇2), 𝑓) for trees 𝑇1 and 𝑇2.

The binary tree𝑇 is accepted by B if and only if B(𝑇) ∈ 𝑄 𝑓 . With 𝐿(B) we denote the set of binary
trees accepted by B. We use the abbreviation dBUTA for deterministic bottom-up tree automaton.

Stepwise tree automata (nSTAs for short) are an automaton model for forests that is equivalent

to MSO-logic [11]. In fact, we only use known results for nSTAs (Theorems 2.1 and 4.2 below).

Therefore we skip the definition of nSTAs. With 𝐿(A) ⊆ F (Σ) we denote the set of forests accepted
by A.

Tree automata can represent queries on trees and forests as follows. For a forest 𝐹 (note that

this includes trees) and a subset 𝑆 of its nodes, we identify the pair (𝐹, 𝑆) with the forest that is

obtained from 𝐹 by relabelling every 𝑎-labelled node 𝑣 of 𝐹 (𝑎 ∈ Σ) with (𝑎, 𝛽) ∈ Σ × {0, 1}, where
𝛽 = 1 if and only if 𝑣 ∈ 𝑆 . Intuitively, (𝐹, 𝑆) represents the forest 𝐹 from which the nodes in 𝑆

have been selected (or the forest 𝐹 together with a possible query result 𝑆). Our nSTAs become

node-selecting, by taking Σ × {0, 1} as the set of node labels. Such an nSTA A selects the node set

𝑆 from a forest 𝐹 ∈ F (Σ) if and only if (𝐹, 𝑆) ∈ 𝐿(A).
Our dBUTAs only need the ability to select leaves of binary trees, which means that we define

them over the alphabets Σ0 × {0, 1} (for leaf nodes) and Σ2 (for internal nodes), i. e., we run them

on pairs (𝑇, 𝑆), where 𝑇 is a binary tree and 𝑆 is a subset of its leaves.

In the following, we assume that all nSTAs and dBUTAs are node-selecting in the above sense.

For the forest 𝐹 = (𝑉 , 𝐸, 𝑅, 𝜆) and an nSTA A we write

select(A, 𝐹) = {𝑆 ⊆ 𝑉 : (𝐹, 𝑆) ∈ 𝐿(A)}

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

78:6 M. Lohrey and M. L. Schmid

for the node set selected by the nSTA A. Similarly, for a binary tree 𝑇 and a dBUTA B we define

select(B,𝑇) = {𝑆 ⊆ leaves(𝑇) : (𝑇, 𝑆) ∈ 𝐿(B)}.

It is known that MSO-formulas (that are interpreted over forests) can be translated into equivalent

automata (and vice versa). More precisely, we use the following well-known fact:

Theorem 2.1 (c.f. [11]). From an MSO-formula Ψ(𝑋) one can construct an nSTA A such that for
every forest 𝐹 ∈ F (Σ) with node set 𝑉 we have select(A, 𝐹) = {𝑆 ⊆ 𝑉 : (𝐹, 𝑆) |= Ψ(𝑋)}.

Our main goal is to enumerate all sets 𝑆 ⊆ 𝑉 such that (𝐹, 𝑆) |= Ψ(𝑋) holds. By Theorem 2.1 this

is equivalent to enumerate all 𝑆 such that (𝐹, 𝑆) is accepted by an nSTA. We will therefore ignore

MSO logic in the following and directly start from an nSTA.

2.4 Enumeration Algorithms
We use the standard RAM model (with two restrictions for the register length; see the end of

this section and the end of Section 3.2). An enumeration algorithm 𝐴 produces on input 𝐼 an

output sequence (𝑠1, 𝑠2, . . . , 𝑠𝑚, EOE), where EOE is the end-of-enumeration marker. We say that 𝐴

on input 𝐼 enumerates a set 𝑆 if and only if the output sequence is (𝑠1, 𝑠2, . . . , 𝑠𝑚, EOE), |𝑆 | = 𝑚

and 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑚}. The preprocessing time (of 𝐴 on input 𝐼) is the time that elapses between

starting 𝐴(𝐼) and the output of the first element, and the delay is the time that elapses between any

two elements of the output sequence. The preprocessing time and the delay of 𝐴 is the maximum

preprocessing time and delay, respectively, over all possible inputs of length at most 𝑛 (viewed as a

function of 𝑛).

The gold standard in the area of enumeration algorithms is (i) linear preprocessing and (ii)

output-linear delay. Linear preprocessing means that the preprocessing phase needs time O(|𝐼 |)
and output-linear delay means that for every output 𝑠𝑖 the delay is O(|𝑠𝑖 |). If every output 𝑠𝑖 has

constant size (which for the RAM model means that it occupies a constant number of registers),

then output-linear delay is the same as constant delay.

We are interested in enumeration algorithms that enumerate the set select(A, 𝐹) for a fixed
nSTA A and a forest 𝐹 . The input is 𝐹 , while A is fixed and not part of the input, i. e., we measure

data complexity. Theorem 4.1 below also addresses the dependence in the size of A, but we made

no effort to optimize the latter.

The special feature of this work is that the input forest 𝐹 is not given explicitly, but in a potentially

highly compressed form, and the enumeration algorithm must be able to handle this compressed

representation rather than decompressing it. This aspect shall be explained in detail in the next

section.

Recall that we deal with weights from a monoid 𝑀 (written in additive notation). We assume

that an element of𝑀 can be stored in a single register of our RAM and that for given 𝛾1, 𝛾2 ∈ 𝑀 ,

𝛾1 + 𝛾2 can be computed in constant time on the RAM. In our application,𝑀 is the monoid (N, +),
for which this assumption clearly holds (in Section 3.2 we say more about the bit lengths of the

integers).

3 TREE COMPRESSION
We are interested in enumerating the result of MSO-queries on compressed forests. For compression,

we use the well-established grammar-based framework that has been investigated in the context of

trees and forests before [5, 20, 22, 27, 28]. For this, we first need to introduce the representation of

trees by directed acyclic graphs.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

Enumeration for MSO-Queries on Compressed Trees 78:7

�
�

�
�

�
c
16

b
15

�
c
14

b
13

�
�

c
12

b
11

�
c
10

b
9

�
�

�
b
8

a∗
7

�
b
6

a∗
5

�
�

b
4

a∗
3

�
b
2

a∗
1

a∗
0

Fig. 1. A forest algebra expression.

3.1 Representing Trees by DAGs
An unordered DAG (with edge weights from the monoid𝑀) is a triple 𝐷 = (𝑉 , 𝐸,𝛾), where 𝑉 is a

finite set of vertices, 𝐸 ⊆ 𝑉 × 𝐼 ×𝑉 is the set of edges and the function 𝛾 : 𝐸 → 𝑀 assigns weights

to edges. Here, 𝐼 is a finite (unordered) index set, whose elements are used in order to distinguish

multiple edges between the same endpoints. For 𝐷 being a DAG, we require that the binary relation

{(𝑢, 𝑣) ∈ 𝑉 ×𝑉 : ∃𝑖 ∈ 𝐼 : (𝑢, 𝑖, 𝑣) ∈ 𝐸} is acyclic. The size |𝐷 | of 𝐷 is defined as |𝐸 |. The outdegree
(resp., indegree) of a vertex 𝑣 is the number of edges of the form (𝑣, 𝑖,𝑢) (resp., (𝑢, 𝑖, 𝑣)).

A path (from 𝑣1 to 𝑣𝑛) is a word 𝜋 = 𝑣1𝑖1 · · · 𝑣𝑛−1𝑖𝑛−1𝑣𝑛 such that 𝑛 ≥ 1 and (𝑣𝑘 , 𝑖𝑘 , 𝑣𝑘+1) ∈ 𝐸 for all

1 ≤ 𝑘 ≤ 𝑛− 1. The length of this path 𝜋 is 𝑛− 1 and its weight is the sum 𝛾 (𝜋) = ∑𝑛−1
𝑘=1

𝛾 (𝑣𝑘 , 𝑖𝑘 , 𝑣𝑘+1).
If 𝑛 = 1 (in which case we have 𝜋 = 𝑣1) we speak of an empty path. To define the (unordered)

tree unfold𝐷 (𝑣) for a vertex 𝑣 we take for the node set all paths 𝑣1𝑑1 · · · 𝑣𝑛−1𝑑𝑛−1𝑣𝑛 with 𝑣1 = 𝑣 and

𝑛 ≥ 1. There is an edge from a path 𝜋 = 𝑣1𝑖1 · · · 𝑣𝑛−1𝑖𝑛−1𝑣𝑛 to every path of the form 𝜋 ′ = 𝜋 𝑗𝑣 ′

(𝑗 ∈ 𝐼 , 𝑣 ′ ∈ 𝑉) and the weight of this edge is 𝛾 (𝑣𝑛, 𝑗, 𝑣 ′). For 𝑣 ∈ 𝑉 and 𝑈 ⊆ 𝑉 let path𝐷 (𝑣,𝑈) be
the set of all paths from 𝑣 to some vertex in𝑈 .

A (node-labelled) binary DAG (with edge weights) is a tuple 𝐷 = (𝑉 , 𝐸, 𝜆,𝛾, 𝑣0), where (𝑉 , 𝐸,𝛾)
is a DAG as above with the index set 𝐼 = {ℓ, 𝑟 }, 𝑣0 is the root vertex and 𝜆 : 𝑉 → Σ0 ∪ Σ2 is the

vertex-labelling function. Moreover, for every 𝑣 ∈ 𝑉 , if 𝑣 is a leaf in 𝐷 (i.e., has outdegree zero), then

𝜆(𝑣) ∈ Σ0, and if 𝑣 has non-zero outdegree, then 𝜆(𝑣) ∈ Σ2 and 𝑣 has exactly two outgoing edges of

the form (𝑣, ℓ, 𝑣1) (a left edge) and (𝑣, 𝑟, 𝑣2) (a right edge). We also omit the edge weight function 𝛾

from the description of the binary DAG 𝐷 if it is not important and write 𝐷 = (𝑉 , 𝐸, 𝜆, 𝑣0) in this

case.

We define the tree unfold𝐷 (𝑣) for a binary DAG 𝐷 as above. It becomes a binary node-labelled

tree if we define the node labelling function 𝜆 as follows: for a path 𝜋 = 𝑣1𝑖1 · · · 𝑖𝑛−1𝑖𝑛−1𝑣𝑛 we set

𝜆(𝜋) = 𝜆(𝑣𝑛). Moreover, the edge from a path 𝜋 to a path 𝜋 𝑗𝑣 ′ (𝑗 ∈ {ℓ, 𝑟 }, 𝑣 ′ ∈ 𝑉) is a left (resp.,

right) edge if 𝑗 = ℓ (resp., 𝑗 = 𝑟). Finally, we define the binary tree unfold(𝐷) as unfold𝐷 (𝑣0).

3.2 Forest Straight-Line Programs
Wenext define the concept of forest straight-line programs, which combines the DAG-representation

of trees with forest algebras.

Forest algebras: Recall that F (Σ) is the set of all forests with node labels from Σ. Let us fix a

distinguished symbol ∗ ∉ Σ. The set of forests 𝐹 ∈ F (Σ ∪ {∗}) such that ∗ has a unique occurrence
in 𝐹 and this occurrence is at a leaf node is denoted by F∗ (Σ). Elements of F∗ (Σ) are called forest
contexts. Note that F (Σ) ∩ F∗ (Σ) = ∅. Following [6], we define the forest algebra as the 2-sorted
algebra F(Σ) = (F (Σ) ∪ F∗ (Σ),�,�, 𝜀, ∗), where 𝜀 ∈ F (Σ) is the empty forest, ∗ ∈ F∗ (Σ) is the

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

78:8 M. Lohrey and M. L. Schmid

�

�

� �

� �

� �
a∗ b c

0 8

0 4 0 4

0 2 0 2

0 1 0 1

1

0

b
9

c
10

b
11

c
12

b
13

c
14

b
15

c
16

a7 b 8

a5 b 6

a3 b 4

a1 b 2

a0

Fig. 2. An example FSLP𝐷 (left side) that describes the tree J𝐷K on the right side. The forest algebra expression
that corresponds to 𝐷’s unfolding is shown in Figure 1.

empty forest context, and � (horizontal concatenation) and � (vertical concatenation) are partially
defined binary operations on F (Σ) ∪ F∗ (Σ) that are defined as follows:

• For 𝐹1, 𝐹2 ∈ F (Σ) ∪ F∗ (Σ) such that 𝐹1 ∈ F (Σ) or 𝐹2 ∈ F (Σ), we set 𝐹1 � 𝐹2 = 𝐹1𝐹2 (i.e., we

concatenate the corresponding sequences of trees).

• For 𝐹1 ∈ F∗ (Σ) and 𝐹2 ∈ F (Σ) ∪ F∗ (Σ), 𝐹1 � 𝐹2 is obtained by replacing in 𝐹1 the unique

occurrence of ∗ by 𝐹2.

Note that (F (Σ),�, 𝜀) and (F∗ (Σ),�, ∗) are monoids. For 𝑎 ∈ Σ, we write 𝑎∗ for the forest context
𝑎(∗) which consists of an 𝑎-labelled root with a single child labelled with ∗. Note that 𝑎 = 𝑎∗ � 𝜀.

In [6] the forest algebra is introduced as a two sorted algebra with the two sorts F (Σ) and F∗ (Σ).
Our approach with partially defined concatenation operators is equivalent.

A forest algebra expression is an expression over the algebra F(Σ) with atomic subexpressions of

the form 𝑎 and 𝑎∗ for 𝑎 ∈ Σ. Such an expression can be identified with a node-labelled binary tree,

where every internal node is labelled with the operator � or � and every leaf is labelled with a

symbol 𝑎 or 𝑎∗ for 𝑎 ∈ Σ. Not all such trees are valid forest algebra expressions. For instance 𝑎∗ �𝑎∗
is not valid, since it would produce a forest with two occurrences of ∗. It is easy to check with a

dBUTA B0 with three states, whether a binary tree is a valid forest algebra expression. We will only

consider valid forest algebra expressions in the following. We write E(Σ) for the set of all valid
forest algebra expressions. Elements of E(Σ) will be denoted with 𝑇𝑒 . With J𝑇𝑒K ∈ F (Σ) ∪ F∗ (Σ)
we denote the forest or forest context obtained by evaluating 𝑇𝑒 in the forest algebra. The empty

forest 𝜀 and the empty forest context ∗ are not allowed in forest algebra expressions, which is not

a restriction as long as we only want to produce non-empty forests and forest contexts; see [19,

Lemma 3.27].

The leaves of 𝑇𝑒 ∈ E(Σ) are in a one-to-one correspondence with the nodes of the forest J𝑇𝑒K.
The 𝑇𝑒 -number of a node of J𝑇𝑒K is defined as the leaf number of the corresponding leaf of 𝑇𝑒 . Note

that every node of J𝑇𝑒K is uniquely identified by its 𝑇𝑒-number. Figure 1 shows a forest algebra

expression. The forest produced by this expression is shown on the right of Figure 2. Every node is

labelled with its 𝑇𝑒 -number in blue.

A forest straight-line program (over Σ), FSLP for short, is a binary DAG𝐷 = (𝑉 , 𝐸, 𝜆, 𝑣0) (without
edge weights for the moment) such that unfold(𝐷) ∈ E(Σ) and 𝐹 := Junfold(𝐷)K ∈ F (Σ). We also

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

Enumeration for MSO-Queries on Compressed Trees 78:9

write J𝐷K for this forest 𝐹 . FSLPs were introduced in [30] in a more grammar-like but equivalent

way. An FSLP where all internal vertices are labelled with � is just a string straight-line program.

We now add edge weights to an FSLP. Consider an FSLP 𝐷 = (𝑉 , 𝐸, 𝜆, 𝑣0) with 𝑇𝑒 = unfold(𝐷).
Recall that we refer to the nodes of 𝐹 := J𝐷K = J𝑇𝑒K by their𝑇𝑒 -numbers. We will call these numbers

also the 𝐷-numbers. Another representation of the nodes of J𝐷K is given by paths from the root

vertex 𝑣0 to the leaves of the DAG 𝐷 . These paths correspond to the leaves of the expression 𝑇𝑒
and hence to the nodes of the forest 𝐹 . The 𝐷-number of a node of 𝐹 can be easily computed when

walking down a path 𝜋 from the root 𝑣0 to a leaf of 𝐷 if we assign to every edge (𝑢,𝑑, 𝑣) ∈ 𝐸

an integer weight 𝛾 (𝑢,𝑑, 𝑣), called the offset of the edge. For left edges we set 𝛾 (𝑢, ℓ, 𝑣) = 0. Now

consider a right edge (𝑢, 𝑟, 𝑣2) and let (𝑢, ℓ, 𝑣1) be the corresponding left edge for 𝑢. Then we

define 𝛾 (𝑢, 𝑟, 𝑣2) as the number of leaves in the tree unfold𝐷 (𝑣1). With this weight function 𝛾 , the

𝐷-number of the node of 𝐹 that corresponds to the path 𝜋 is exactly the weight 𝛾 (𝜋). Note that the
𝐷-number of a node 𝑣 is not the same as the preorder number of 𝑣 .

Figure 2 shows an FSLP 𝐷 on the left with the corresponding forest J𝐷K (actually, a tree) on the

right. Every edge of 𝐷 is labelled with its offset. The red path in 𝐷 determines the red 𝑐-labelled

node in the tree J𝐷K. The 𝐷-number of this node is 14, which is the sum of edge weights of the red

path.

We make the assumption that RAM-algorithms for an FSLP-compressed forest 𝐹 have registers

of word length O(log |𝐹 |). This is a standard assumption in the area of algorithms for compressed

data. It allows to store the 𝐷-number of a node of 𝐹 in a register.

4 MAIN RESULT AND ITS PROOF OUTLINE
In this section we outline our enumeration algorithm for MSO-queries on FSLP-compressed forests.

As explained before, we can directly start with an nSTA A. The main result of the paper is:

Theorem 4.1. From an nSTAA with𝑚 states and an FSLP𝐷 one can compute in preprocessing time
O(|𝐷 |) · 2O(𝑚4) a data structure that allows to enumerate the set select(A, J𝐷K) with output-linear
delay. In the enumeration, nodes of J𝐷K are represented by their 𝐷-numbers.

The first step in our proof of Theorem 4.1 is a reduction to binary trees. We use the following

result that is implicitly shown in [25]. Let Σ0 = {𝑎, 𝑎∗ : 𝑎 ∈ Σ} and Σ2 = {�,�}:

Theorem 4.2 (c.f. [25]). From an nSTA A over Σ with𝑚 states one can construct a dBUTA B over
Σ0, Σ2 with 2

𝑚2 + 2
𝑚4 + 1 states such that 𝐿(B) = {𝑇𝑒 ∈ E(Σ) : J𝑇𝑒K ∈ 𝐿(A)}.

Theorem 4.2 is stated in [25] (except for the size bound) using the concept of finite transition

algebras, which is equivalent to nSTAs.

Proof sketch for Theorem 4.1. We can apply Theorem 4.2 to the nSTA A from Theorem 4.1.

First recall that the leaves of 𝑇𝑒 ∈ E(Σ) (with J𝑇𝑒K ∈ F (Σ)) can be identified with the nodes of

the forest J𝑇𝑒K. Hence, for a subset 𝑆 ⊆ leaves(𝑇𝑒), we can view (𝑇𝑒 , 𝑆) (i. e., the tree 𝑇𝑒 with the

leaves from 𝑆 selected; see Section 2.3) as a forest algebra expression from E(Σ × {0, 1}) such that

J(𝑇𝑒 , 𝑆)K = (J𝑇𝑒K, 𝑆) (for this, we identify (𝑎, 𝑖)∗ with (𝑎∗, 𝑖) for 𝑖 ∈ {0, 1}).
With Theorem 4.2 we obtain from the nSTA A in Theorem 4.1 a dBUTA B such that for

every forest algebra expression 𝑇𝑒 and every subset 𝑆 ⊆ leaves(𝑇𝑒) we have: (J𝑇𝑒K, 𝑆) ∈ 𝐿(A) iff
(𝑇𝑒 , 𝑆) ∈ 𝐿(B).
If the forest algebra expression 𝑇𝑒 would be given explicitly (say, by a pointer structure) then

we could use Bagan’s algorithm from [2] in order to enumerate all sets 𝑆 with (𝑇𝑒 , 𝑆) ∈ 𝐿(B). But
in the situation of Theorem 4.1 the expression 𝑇𝑒 is not given explicitly but it is the unfolding

𝑇𝑒 = unfold(𝐷) of the input FSLP 𝐷 , which is a binary DAG. Let 𝐹 := J𝐷K = J𝑇𝑒K be the forest

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

78:10 M. Lohrey and M. L. Schmid

p1v1 p1

r1
u1

r1 r2r2
u2

r3r3
u3

p3v3

q3 q4

p2v2

q1 q2

r3u3

q2

s1w1

s2w2

s3w3

s4w4

s5w5

Fig. 3. A witness tree: automaton states are in green, node names (if written) are in blue. The path from 𝑞2 to
𝑟3 is shown on the right with the nodes that branch off from the path.

produced by the FSLP 𝐷 . The nodes of 𝐹 correspond to paths from the root to a leaf in the DAG

𝐷 . We built an edge-labelled DAG from 𝐷 by labelling every edge of the DAG 𝐷 by its offset. The

offsets are positive integers. All offsets can be easily computed in time O(|𝐷 |) by computing in a

bottom-up parse for every node 𝑣 of the DAG 𝐷 the number of leaves of the tree unfold𝐷 (𝑣). Recall
that the sum of the offsets on a path 𝜋 from the root to a leaf in 𝐷 is exactly the 𝐷-number of the

node of 𝐹 that corresponds to the path 𝜋 . It therefore suffices to prove the following theorem:

Theorem 4.3. From a dBUTA B with𝑚 states and a node-labelled binary DAG 𝐷 = (𝑉 , 𝐸, 𝜆,𝛾, 𝑣0)
with edge weights from the monoid 𝑀 , one can compute in preprocessing time O(|𝐷 | ·𝑚2) a data
structure that allows to enumerate the set {𝛾 (𝑆) : 𝑆 ∈ select(B, unfold(𝐷))} with output-linear
delay.2

We obtain Theorem 4.1 by specializing 𝑀 to (N, +) and taking for 𝐷 an FSLP, whose edge

weights are the offsets. By choosing for 𝑀 a different, more complicated, monoid consisting of

affine transformations on N, one can also prove a variant of Theorem 4.1, where every node of

J𝐷K is represented by its preorder number (which is a more canonical representative of the node

compared to the 𝐷-number).

We will prove Theorem 4.3 (and hence Theorem 4.1) in Section 6 with the last missing piece

moved to Section 7. The proof builds on Bagan’s enumeration algorithm from [2], which solves

the problem from Theorem 4.3 (without the weight function 𝛾) for the case of a binary tree that is

given explicitly and not as the unfolding of a DAG. In the following, we explain Bagan’s original

algorithm. Then, in Section 7 we explain the main algorithmic tool that allows us to extend Bagan’s

algorithm to DAGs. □

5 BAGAN’S ALGORITHM FOR BINARY TREES
Let 𝑇 = (𝑉 , 𝐸ℓ , 𝐸𝑟 , 𝜆,𝛾) be a node-labelled binary tree with edge weights as described in Section 2.1.

The weights are from a monoid𝑀 . For a node 𝑣 ∈ 𝑉 we denote with 𝑇𝑣 the subtree rooted in 𝑣 . For

𝑆 ⊆ leaves(𝑇) and 𝑣 ∈ 𝑉 we define 𝑆𝑣 = 𝑆 ∩ leaves(𝑇𝑣).
2
For a general weight function 𝛾 , there may exist different sets 𝑆1, 𝑆2 ∈ select(B, unfold(𝐷)) such that 𝛾 (𝑆1) = 𝛾 (𝑆2) . In
this case, our enumeration algorithm will enumerate the set 𝛾 (𝑆1) twice. On the other hand, for the above weight function

defined by offsets, we have 𝛾 (𝑆1) ≠ 𝛾 (𝑆2) whenever 𝑆1 ≠ 𝑆2.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

Enumeration for MSO-Queries on Compressed Trees 78:11

Let B = (𝑄, Σ0 × {0, 1}, Σ2, 𝛿0, 𝛿2, 𝑄 𝑓) be a dBUTA. We will first ignore the weights from the

monoid𝑀 . Hence, we are interested in the non-empty sets in select(B,𝑇) (whether ∅ ∈ select(B,𝑇)
can be checked in the preprocessing). Bagan [2] was the first who presented an algorithm with

output-linear delay for enumerating these sets. In the following we explain Bagan’s algorithm in a

slightly different way that will be convenient for our extension to DAG-compressed binary trees,

which will be the main building block for our enumeration algorithm for FSLP-compressed forests.

Our discussion will be informal.

The goal of Bagan’s algorithm is to enumerate all non-empty sets 𝑆 ∈ select(B,𝑇) together with
a witness that (𝑇, 𝑆) ∈ 𝐿(B) holds. A first step towards such a witness is to replace in 𝑇 every

node 𝑣 ∈ 𝑉 by the pair (𝑣, 𝑞) (a so-called configuration), where 𝑞 is the unique state 𝑞 = B(𝑇𝑣, 𝑆𝑣) at
which B arrives in node 𝑣 . Let us call this tree the configuration tree.

The delay for producing a solution 𝑆 must be in O(|𝑆 |) (i. e., we need output-linear delay), but

the configuration tree has size |𝑇 | and is therefore too big. A next step towards a solution is to

prune the configuration tree by keeping only those nodes that are on a path from the root to a leaf

from 𝑆 . This yields a tree with only |𝑆 | many leaves that we call the pruned configuration tree. It is
shown in Figure 3 for an example, where 𝑆 = {𝑢1, 𝑢2, 𝑢3}. The old node names of 𝑇 are written in

blue, automaton states are written in green. All tree nodes of the new pruned configuration tree

are from the following set of so-called active configurations:

Conf𝑎 (𝑇) = {(𝑣, 𝑞) : ∃𝑆 ⊆ leaves(𝑇𝑣) : 𝑆 ≠ ∅, 𝑞 = B(𝑇𝑣, 𝑆)}.

But the pruned configuration tree is still too big because it may contain long paths of unary nodes

(nodes with a single child except for the last node on the path). In Figure 3 these are the red paths.

The edges on these paths can be described as follows. The configurations that were removed in the

pruning are from the set

Conf∅ (𝑇) = {(𝑣, 𝑞) ∈ 𝑉 ×𝑄 : 𝑞 = B(𝑇𝑣, ∅)}.

The configurations (𝑤1, 𝑠1), . . . , (𝑤5, 𝑠5) in Figure 3 on the right are from this set. On the set

of active configurations Conf𝑎 (𝑇) we define a weighted edge relation → as follows: For active

configurations (𝑢, 𝑝), (𝑣, 𝑞) ∈ Conf𝑎 (𝑇) with 𝑢 internal in 𝑇 and labelled with 𝑓 ∈ Σ2, there is an

edge (𝑢, 𝑝) → (𝑣, 𝑞) with weight 𝛾 ((𝑢, 𝑝), (𝑣, 𝑞)) = 𝛾 (𝑢, 𝑣) if there is (𝑣 ′, 𝑞′) ∈ Conf∅ (𝑇) such that

one of the following two cases holds:

• (𝑢, 𝑣) ∈ 𝐸ℓ , (𝑢, 𝑣 ′) ∈ 𝐸𝑟 and 𝛿2 (𝑞, 𝑞′, 𝑓) = 𝑝 ,

• (𝑢, 𝑣) ∈ 𝐸𝑟 , (𝑢, 𝑣 ′) ∈ 𝐸ℓ and 𝛿2 (𝑞′, 𝑞, 𝑓) = 𝑝 .

Then all the edges of the unary paths in the pruned configuration tree (the red paths in Figure 3)

are of the above form (𝑢, 𝑝) → (𝑣, 𝑞). The configuration (𝑣 ′, 𝑞′) ∈ Conf∅ (𝑇) is a configuration to

which an additional edge branches off from the red unary paths (configurations (𝑤1, 𝑠1), . . . , (𝑤5, 𝑠5)
in Figure 3). We define the edge weighted graph𝑇 ⊗B = (Conf𝑎 (𝑇),→, 𝛾). Since B is deterministic

and 𝑇 is a tree, 𝑇 ⊗ B is an unordered forest.

The final idea is to contract the red paths in Figure 3 to single edges; this results in a tree of

size O(|𝑆 |), which is called a witness tree𝑊 . To define (and construct) witness trees it is useful to

define a further set of configurations, the so-called useful configurations: An active configuration

(𝑣, 𝑞) ∈ Conf𝑎 (𝑇) is useful if either 𝑣 is a leaf in 𝑇 or 𝑣 has the children 𝑣1, 𝑣2 in 𝑇 and there exist

states 𝑞1, 𝑞2 ∈ 𝑄 such that 𝛿2 (𝑞1, 𝑞2, 𝜆(𝑣)) = 𝑞 and (𝑣1, 𝑞1), (𝑣2, 𝑞2) ∈ Conf𝑎 (𝑇). We denote the set of

useful configurations with Conf𝑢 (𝑇). Note that Conf𝑢 (𝑇) ⊆ Conf𝑎 (𝑇). The useful configurations
are the leaves and the binary nodes in witness trees. In Figure 3 these are the configurations

(𝑢1, 𝑟1), (𝑢2, 𝑟2), (𝑢3, 𝑟3) and (𝑣2, 𝑝2), (𝑣3, 𝑝3).
Let us now give a the formal definition of witness trees:

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

78:12 M. Lohrey and M. L. Schmid

Definition 5.1. A witness tree𝑊 for a configuration (𝑣, 𝑞) ∈ Conf𝑎 (𝑇) is a tree with root (𝑣, 𝑞).
It is constructed recursively: If 𝑣 ∈ leaves(𝑇) then (𝑣, 𝑞) is the only node of𝑊 . Assume now that

𝑣 ∉ leaves(𝑇). Then (𝑣, 𝑞) has a single child, which is a configuration from (𝑣 ′, 𝑞′) ∈ Conf𝑢 (𝑇)
such that (𝑣, 𝑞) →∗ (𝑣 ′, 𝑞′) (we may have (𝑣 ′, 𝑞′) = (𝑣, 𝑞) in which case we introduce a copy of

(𝑣, 𝑞)).3 If 𝑣 ′ ∈ leaves(𝑇) then (𝑣 ′, 𝑞′) is a leaf of𝑊 . Otherwise, let (𝑣 ′, 𝑣1) ∈ 𝐸ℓ and (𝑣 ′, 𝑣2) ∈ 𝐸𝑟 .

Then there exist states 𝑞1, 𝑞2 such that 𝛿2 (𝑞1, 𝑞2, 𝜆(𝑣 ′)) = 𝑞′, (𝑣1, 𝑞1), (𝑣2, 𝑞2) ∈ Conf𝑎 (𝑇) and the

two children of (𝑣 ′, 𝑞′) are (𝑣1, 𝑞1) and (𝑣2, 𝑞2). The node (𝑣𝑖 , 𝑞𝑖) (𝑖 ∈ {1, 2}) is the root for a witness
tree for (𝑣𝑖 , 𝑞𝑖).

For a witness tree𝑊 , let 𝑆 (𝑊) be the set of all 𝑣 ∈ leaves(𝑇) such that some (𝑣, 𝑞) is a leaf of𝑊 .

Lemma 5.2. The following holds for every (𝑣, 𝑞) ∈ Conf𝑎 (𝑇):
• Every witness tree𝑊 contains at most 4|𝑆 (𝑊) | many nodes.
• If B(𝑇𝑣, 𝑆) = 𝑞 for some non-empty 𝑆 ⊆ leaves(𝑇𝑣) then there is a unique witness tree𝑊 for
(𝑣, 𝑞) with 𝑆 = 𝑆 (𝑊).

• If there is a witness𝑊 for (𝑣, 𝑞) then B(𝑇𝑣, 𝑆 (𝑊)) = 𝑞.

By this lemma, it suffices to enumerate all witness trees𝑊 for (𝑟, 𝑞𝑓) where 𝑟 is the root of 𝑇
and 𝑞𝑓 goes over all final states. Fix one 𝑞𝑓 . The construction of witness trees for (𝑟, 𝑞𝑓) follows
the recursive definition of Definition 5.1. In order to systematically enumerate all witness trees, we

have to fix a linear order on all witness trees such that from a witness tree𝑊 we can construct the

next witness tree𝑊 ′
. One option is to list the nodes of a witness tree in preorder, say𝑤1,𝑤2, . . . ,𝑤𝑛 .

When we construct for a node 𝑤 = (𝑣, 𝑞) of a witness tree the children of 𝑤 , there are several

choices according to Definition 5.1. We can order those choices linearly and assign to node𝑤 the

choice number 𝑐 (𝑤) if we took for 𝑤 the 𝑐 (𝑤)-th choice during the construction of the witness

tree (for a leaf𝑤 we may set 𝑐 (𝑤) = 0). The choice sequence 𝑐 (𝑤1), 𝑐 (𝑤2), . . . , 𝑐 (𝑤𝑛) then uniquely

encodes the witness tree (since it can be constructed from the choice sequence). Moreover, we can

order choice sequences lexicographically. It is then easy to construct from a given witness tree𝑊

the lexicographically next witness tree𝑊 ′
in time O(|𝑊 ′ |).

One can also show that all precomputations can be done in linear time.

Lemma 5.3. The sets Conf𝑎 (𝑇), Conf𝑢 (𝑇), Conf∅ (𝑇), and the forest 𝑇 ⊗ B can be computed
bottom-up on the tree 𝑇 in time O(|𝑇 | · |𝑄 |2).

6 BAGAN’S ALGORITHM FOR DAGS
Assume now that the binary tree 𝑇 is given by a node-labelled binary DAG 𝐷 = (𝑉 , 𝐸, 𝜆,𝛾, 𝑣0)
with edge weights from the monoid𝑀 . Thus, we have 𝑇 = unfold(𝐷). Then, the forest 𝑇 ⊗ B can

also be represented by a small DAG. To see this, first recall that the sets Conf𝑎 (𝑇), Conf𝑢 (𝑇), and
Conf∅ (𝑇) can be computed bottom-up for 𝑇 ; see Lemma 5.3. In particular, if the subtrees 𝑇𝑣 and

𝑇𝑤 are isomorphic (𝑇𝑣 � 𝑇𝑤 for short) then for every state 𝑞 ∈ 𝑄 and every 𝑥 ∈ {𝑎,𝑢, ∅} we have
(𝑣, 𝑞) ∈ Conf𝑥 (𝑇) if and only if (𝑤,𝑞) ∈ Conf𝑥 (𝑇). We can therefore define sets Conf𝑥 (𝐷) ⊆ 𝑉 ×𝑄
by saying that (𝑣, 𝑞) ∈ Conf𝑥 (𝐷) if and only if (𝑣, 𝑞) ∈ Conf𝑥 (𝑇), where 𝑣 is any one of the

tree nodes represented by the DAG node 𝑣 (formally, 𝑣 is a path in 𝐷 from 𝑣0 to 𝑣). The sets

Conf𝑎 (𝐷), Conf𝑢 (𝐷), and Conf∅ (𝐷) can be precomputed in time O(|𝐷 | · |𝑄 |2) using exactly the

same bottom-up computation as for Lemma 5.3.

We then define, analogously to 𝑇 ⊗ B, the unordered DAG 𝐷 ⊗ B = (Conf𝑎 (𝐷), 𝐸 ′, 𝛾 ′) with
edge weights and index set 𝐼 = {ℓ, 𝑟 }. To define the edge set 𝐸 ′ ⊆ Conf𝑎 (𝐷) × {ℓ, 𝑟 } × Conf𝑎 (𝐷),
let 𝑑 ∈ {ℓ, 𝑟 } and (𝑣, 𝑞), (𝑣 ′, 𝑞′) ∈ Conf𝑎 (𝐷) such that 𝜆(𝑣) = 𝑓 ∈ Σ2. Then, there is an edge

3
Here, ‘→∗

’ is the reflexive-transitive closure of ‘→’.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

Enumeration for MSO-Queries on Compressed Trees 78:13

((𝑣, 𝑞), 𝑑, (𝑣 ′, 𝑞′)) ∈ 𝐸 ′
of weight 𝛾 (𝑣, 𝑑, 𝑣 ′) iff there is (𝑣 ′′, 𝑞′′) ∈ Conf∅ (𝐷) such that one of the

following cases holds:

• 𝑑 = ℓ , (𝑣, ℓ, 𝑣 ′), (𝑣, 𝑟, 𝑣 ′′) ∈ 𝐸 and 𝛿2 (𝑞′, 𝑞′′, 𝑓) = 𝑞.

• 𝑑 = 𝑟 , (𝑣, 𝑟, 𝑣 ′), (𝑣, ℓ, 𝑣 ′′) ∈ 𝐸 and 𝛿2 (𝑞′′, 𝑞′, 𝑓) = 𝑞.

By a bottom-up computation along 𝐷 , we can compute 𝐷 ⊗ B in time O(|𝐷 | · |𝑄 |2) analogously to

𝑇 ⊗ B.

If 𝑇𝑣 � 𝑇𝑤 then 𝑇𝑣 ⊗ B � 𝑇𝑤 ⊗ B. More precisely, if 𝜄 is the isomorphism from 𝑇𝑣 to 𝑇𝑤 , then the

mapping (𝑥, 𝑞) ↦→ (𝜄 (𝑥), 𝑞) is an isomorphism from 𝑇𝑣 ⊗ B to 𝑇𝑤 ⊗ B. We therefore obtain:

Lemma 6.1. 𝑇 ⊗ B � unfold(𝐷 ⊗ B).
Our goal is to run the enumeration algorithm from Section 5 for the tree 𝑇 = unfold(𝐷). Of

course, we cannot afford to construct 𝑇 explicitly; it can be of exponential size. The solution is the

following: we enumerate witness trees𝑊 in the same way as we did before, but we want to work

with the DAG 𝐷 ⊗ B instead of the forest 𝑇 ⊗ B. More precisely, the algorithm should produce all

witness trees𝑊 for 𝑇 = unfold(𝐷). There is only one step, which is problematic. In Definition 5.1

one has to choose a configuration (𝑣 ′, 𝑞′) ∈ Conf𝑢 (𝑇) that can be reached from a configuration

(𝑣, 𝑞) ∈ Conf𝑎 (𝑇) in the forest 𝑇 ⊗ B. The original variant of the algorithm of [2] precomputes a

fixed linear order on the set of these (𝑣 ′, 𝑞′). In the DAG-version of the witness tree construction

we have a configuration (𝑣, 𝑞) ∈ Conf𝑎 (𝐷) and we want to extend the witness tree𝑊 below (𝑣, 𝑞).
It is clearly not sufficient to merely enumerate all (𝑣 ′, 𝑞′) ∈ Conf𝑢 (𝐷) that are reachable from (𝑣, 𝑞)
in 𝐷 ⊗ B and continue the witness tree construction in (𝑣 ′, 𝑞′). What we have to do is to enumerate

all paths from path𝐷⊗B ((𝑣, 𝑞),Conf𝑢 (𝐷)), i. e., all paths 𝜋 from (𝑣, 𝑞) to some configuration in

Conf𝑢 (𝐷). These paths correspond to the configurations in Conf𝑢 (𝑇) that are reachable from (𝑣, 𝑞)
in 𝑇 ⊗ B, where 𝑣 is any one of the tree nodes represented by the DAG node 𝑣 . In fact, it is not

necessary to print out the actual paths 𝜋 ∈ path𝐷⊗B ((𝑣, 𝑞),Conf𝑢 (𝐷)). We only need to keep from

the path 𝜋 its endpoint that we denote with 𝜔 (𝜋) and its weight 𝛾 (𝜋). Hence, our new goal is to

proof the following result:

Theorem 6.2. Let 𝐷 = (𝑉 , 𝐸,𝛾) be an unordered DAG with edge weights from the monoid
𝑀 and let 𝑉0 ⊆ 𝑉 be a distinguished set of target vertices. In time O(|𝐷 |) one can compute a
data structure that allows to enumerate for a given start node 𝑠 ∈ 𝑉 in constant delay all pairs
⟨𝜔 (𝜋1), 𝛾 (𝜋1)⟩, . . . , ⟨𝜔 (𝜋𝑘), 𝛾 (𝜋𝑘)⟩ where path𝐷 (𝑠,𝑉0) = {𝜋1, . . . , 𝜋𝑘 }.4

Note that the data structure that is computed in the preprocessing phase from 𝐷 and 𝑉0 can be

used for every start vertex 𝑠 .

Once we have shown Theorem 6.2, it is easy to complete Bagan’s algorithm for DAGs and thus

prove Theorem 4.3. We build in the preprocessing phase the data structure from Theorem 6.2 for

the DAG 𝐷 ⊗ B and take for 𝑉0 the set Conf𝑢 (𝐷). If during the construction of a witness tree𝑊 ,

we want to extend the current partial witness tree at a copy of configuration (𝑣, 𝑞) ∈ Conf𝑎 (𝐷),5
we have to start the enumeration algorithm from Theorem 6.2 with 𝑠 = (𝑣, 𝑞). Each time a pair

⟨(𝑣 ′, 𝑞′), 𝛾 ′⟩ is produced by the algorithm, we extend the current partial witness tree with an edge

from (𝑣, 𝑞) to (𝑣 ′, 𝑞′) of weight 𝛾 (𝑣 ′). Then we continue the extension of the witness tree in (𝑣 ′, 𝑞′).
As in Section 5, the size of the witness tree𝑊 is 4|𝑆 (𝑊) | (see Lemma 5.2), and we spend constant

time for each node of𝑊 . For the latter, it is important that the algorithm from Theorem 6.2 works

in constant delay. During the construction of the witness tree𝑊 we store for every node𝑤 = (𝑞, 𝑣)
4
In general, we might have ⟨𝜔 (𝜋𝑖), 𝛾 (𝜋𝑖) ⟩ = ⟨𝜔 (𝜋 𝑗), 𝛾 (𝜋 𝑗) ⟩ for 𝑖 ≠ 𝑗 , although this does not happen in our specific

application, where the edge weights are offsets.

5
In contrast to Section 5 the witness tree𝑊 may contain many copies of the same configuration (𝑣,𝑞) , i.e., several nodes
that are labelled with the same configuration (𝑣,𝑞) ∈ Conf𝑎 (𝐷) .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

78:14 M. Lohrey and M. L. Schmid

Algorithm 1: path_enumeration(𝑠)
variables: 𝑣 ∈ 𝑉 , 𝛾 ∈ 𝑀 , stack 𝑆 ∈ (𝑉2 ×𝑀)∗, flag ∈ {0, 1}

1 𝑣 := 𝑠 ; 𝛾 := 0 ; stack := 𝜀 ; flag := 1 ;

2 while true do
3 if flag = 1 then print ⟨𝜔𝑟 [𝑣], 𝛾 + 𝛾𝑟 [𝑣]⟩ end;
4 flag := 1;

5 if 𝑣 ∈ 𝑉2 then
6 if 𝑣 [𝑟] ∈ 𝑉2 then 𝑆.push⟨𝑣 [𝑟], 𝛾 + 𝛾 (𝑣, 𝑟, 𝑣 [𝑟])⟩ end;
7 𝑣 := 𝑣 [ℓ]; 𝛾 := 𝛾 + 𝛾 (𝑣, ℓ, 𝑣 [ℓ]);
8 else if stack ≠ 𝜀 then
9 ⟨𝑣 ′, 𝛾 ′⟩ := 𝑆.pop; 𝑣 := 𝑣 ′; 𝛾 := 𝛾 ′

; flag := 0;

10 else
11 print EOE; stop;

of𝑊 the sum of the edge weights from the root of𝑊 to𝑤 . For every leaf𝑤 = (𝑞, 𝑣) of the witness
tree we then print the weight stored for𝑤 ; this yields the sets 𝛾 (𝑆) in Theorem 4.3.

7 PATH ENUMERTION IN DAGS
In this section we sketch the proof of Theorem 6.2. In a preprocessing phase, taking time O(|𝐷 |), we
reduce to the simpler case, where (i) the DAG 𝐷 = (𝑉 , 𝐸,𝛾) is binary (every vertex 𝑣 has outdegree

zero or two) and (ii) 𝑉0 is the set of leaves of 𝐷 . For a vertex 𝑣 ∈ 𝑉2 := 𝑉 \𝑉0 we write 𝑣 [ℓ] (resp.,
𝑣 [𝑟]) for the left (resp., right) child of 𝑣 . For a vertex 𝑣 we denote by 𝜔𝑟 [𝑣] ∈ 𝑉0 the unique leaf

that is reached from 𝑣 by only following right edges, and we define 𝛾𝑟 [𝑣] to be the sum of the

weights along this path of right edges. This data can be easily computed in time O(|𝐷 |). Now,
the task is to enumerate for a given vertex 𝑠 all pairs ⟨𝜔 (𝜋1), 𝛾 (𝜋1)⟩, . . . , ⟨𝜔 (𝜋𝑘), 𝛾 (𝜋𝑘)⟩, where
{𝜋1, . . . , 𝜋𝑘 } = path𝐷 (𝑠,𝑉0). We assume for simplicity that 𝛾 (𝜋𝑖) ≠ 𝛾 (𝜋 𝑗) whenever 𝑖 ≠ 𝑗 (which

holds in our application; see the footnote in Theorem 6.2).

We will now explain our path enumeration algorithm (Algorithm 1). We ignore Lines 3 and 4,

and the flag variable for the moment. Let𝑇𝑠 be the tree obtained from unfolding the DAG 𝐷 starting

from 𝑠 . By the assumption from the previous paragraph, the nodes of 𝑇𝑠 can be identified with the

pairs ⟨𝑣,𝛾⟩, where 𝛾 is the weight of a path from 𝑠 to 𝑣 ∈ 𝑉 . Such a pair is stored by the algorithm.

The current pair ⟨𝑣,𝛾⟩ is updated according to a preorder traversal of 𝑇𝑠 : If 𝑣 is an inner vertex

(Line 5), then we move on to its left child (Line 7) and store its right child on the stack (Line 6).

When we reach a leaf (Line 8), we pop the topmost stack element (Line 9) and continue the traversal

there, unless the stack is empty, in which case the algorithm terminates (Line 11). The weight 𝛾 is

correctly updated in Lines 6, 7 and 9.

We also print all pairs ⟨𝜔 (𝜋1), 𝛾 (𝜋1)⟩, . . . , ⟨𝜔 (𝜋𝑘), 𝛾 (𝜋𝑘)⟩ from Theorem 6.2, which are exactly

the pairs ⟨𝑣,𝛾⟩ where 𝑣 is a leaf of 𝐷 and 𝛾 is the weight of a path from 𝑠 to 𝑣 . However, printing

these pairs when we see them during the preorder traversal would not result in a constant delay.

Instead, whenever we visit a pair ⟨𝑣,𝛾⟩, we print the pair ⟨𝜔𝑟 [𝑣], 𝛾 + 𝛾𝑟 [𝑣]⟩, i. e., the leaf reached
from 𝑣 by only moving along right edges together with the weight of the corresponding path (note

that this pair is among those pairs that have to be enumerated). This is done in Line 3 (assume

for now that the flag is 1). This, however, leads to duplicates whenever the variable 𝑣 is updated

in Line 9 due to a pop of the stack, since then ⟨𝜔𝑟 [𝑣], 𝛾 + 𝛾𝑟 [𝑣]⟩ has already been produced in an

earlier iteration where we have visited an ancestor of ⟨𝑣,𝛾⟩ (this was the reason why ⟨𝑣,𝛾⟩ ended
up on the stack in the first place). Consequently, we use the flag to avoid this: whenever the new

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

Enumeration for MSO-Queries on Compressed Trees 78:15

pair ⟨𝑣,𝛾⟩ is obtained by popping from the stack (Line 9), we set the flag to 0 to avoid that we output

⟨𝜔𝑟 [𝑣], 𝛾 + 𝛾𝑟 [𝑣]⟩ in the next iteration of Line 3. Moreover, since 𝑣 is an inner vertex (otherwise

⟨𝑣,𝛾⟩ would not be on the stack), we know that we will next descend from ⟨𝑣,𝛾⟩ to its left child

in Line 7, which corresponds to visiting a new node of 𝑇𝑠 . Thus, we know that ⟨𝜔𝑟 [𝑣], 𝛾 + 𝛾𝑟 [𝑣]⟩
has not been produced before, and therefore it is now correct to output ⟨𝜔𝑟 [𝑣], 𝛾 + 𝛾𝑟 [𝑣]⟩ when we

reach Line 3 the next time. This explains why we set the flag back to 1 every time we reach Line 3

with the flag being 0.

Let ⟨𝑢, 𝜁 ⟩ be a leaf of𝑇𝑠 . If ⟨𝑢, 𝜁 ⟩ is a left child, then it is produced when 𝑣 = 𝑢 and 𝛾 = 𝜁 (because

𝜔𝑟 [𝑢] = 𝑢 and 𝛾𝑟 [𝜁] = 0), which happens at some point. If ⟨𝑢, 𝜁 ⟩ is a right child then it is not

explicitly visited, since only right children that are inner nodes are pushed on the stack (Line 6).

We nevertheless print ⟨𝑢, 𝜁 ⟩ when we visit the highest ancestor (in the sense of being closest to

the root) of ⟨𝑢, 𝜁 ⟩ in 𝑇𝑠 from which only right edges lead to ⟨𝑢, 𝜁 ⟩. Hence, we produce exactly

⟨𝜔 (𝜋1), 𝛾 (𝜋1)⟩, . . . , ⟨𝜔 (𝜋𝑘), 𝛾 (𝜋𝑘)⟩ where {𝜋1, . . . , 𝜋𝑘 } = path𝐷 (𝑠,𝑉0).
The delay of Algorithm 1 is constant since there cannot be two consecutive iterations of the

while loop where the flag is 0.

8 CONCLUSIONS
We conclude with a brief discussion of related aspects of our result. It is possible to support in time

O(log |𝐹 |) relabelling updates, i. e., updates that change the current label of a given node 𝑣 to a

given label 𝑎 ∈ Σ. By updating the path in the FSLP that represents 𝑣 , such an update can be carried

out in time linear in the depth of the FSLP. By using the linear time balancing theorem from [19,

Corollary 3.28], the depth can be assumed to be O(log |𝐹 |). We conjecture that the deletion and

insertion updates from [25] can be also implemented in time O(log |𝐹 |) when 𝐹 is given by an FSLP.

However, [25] uses a quite technical notion of balancedness for forest algebra parse trees and it is

not clear how to preserve this notion of balancedness when the parse tree is compressed as a DAG.

For the case that𝑀 is a group, Theorem 6.2 can also be proven by using a known technique for

the real-time traversal of SLP-compressed strings (see [21, 30]). However, if we want to represent

the nodes of the solution sets in Theorem 4.1 by their preorder numbers (the arguably more

intuitive representation) instead of their 𝐷-numbers we need for𝑀 a monoid, which is not a group.

Another disadvantage is that the real-time traversal of SLP-compressed strings needs a tree data

structure that provides so-called next link queries. While such data structures can be constructed

in linear time, this is not straightforward and would significantly complicate an implementation of

our algorithm. In general, we believe that our approach is simple to implement, which makes an

experimental analysis in the vein of [28] possible.

ACKNOWLEDGMENTS
The second author is supported by the German Research Foundation (Deutsche Forschungsgemein-

schaft, DFG) – project number 522576760 (gefördert durch die Deutsche Forschungsgemeinschaft

(DFG) – Projektnummer 522576760).

REFERENCES
[1] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. 2019. Enumeration on Trees with Tractable

Combined Complexity and Efficient Updates. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2019. ACM, 89–103. https://doi.org/10.1145/3294052.3319702

[2] Guillaume Bagan. 2006. MSO Queries on Tree Decomposable Structures Are Computable with Linear Delay. In

Proceedings of the 20th International Workshop on Computer Science Logic, CSL 2006 (Lecture Notes in Computer Science,
Vol. 4207). Springer, 167–181. https://doi.org/10.1007/11874683_11

[3] Guillaume Bagan. 2009. Algorithmes et complexité des problèmes d’énumération pour l’évaluation de requêtes logiques.
(Algorithms and complexity of enumeration problems for the evaluation of logical queries). Ph.D. Dissertation. University

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

https://doi.org/10.1145/3294052.3319702
https://doi.org/10.1007/11874683_11

78:16 M. Lohrey and M. L. Schmid

of Caen Normandy, France. https://tel.archives-ouvertes.fr/tel-00424232

[4] Hideo Bannai, Momoko Hirayama, Danny Hucke, Shunsuke Inenaga, Artur Jez, Markus Lohrey, and Carl Philipp

Reh. 2021. The Smallest Grammar Problem Revisited. IEEE Transactions on Information Theory 67, 1 (2021), 317–328.

https://doi.org/10.1109/TIT.2020.3038147

[5] Philip Bille, Inge Li Gørtz, Gad M. Landau, and Oren Weimann. 2015. Tree compression with top trees. Information
and Computation 243 (2015), 166–177. https://doi.org/10.1016/J.IC.2014.12.012

[6] Mikołaj Bojańczyk and Igor Walukiewicz. 2008. Forest algebras. In Proceedings of Logic and Automata: History and
Perspectives [in Honor of Wolfgang Thomas]. (Texts in Logic and Games, Vol. 2). Amsterdam University Press, 107–132.

[7] Stefan Böttcher, Rita Hartel, and Christoph Krislin. 2010. CluX - Clustering XML Sub-trees. In Proceedings of the 12th
International Conference on Enterprise Information Systems, ICEIS 2010, Volume 1, DISI. SciTePress, 142–150.

[8] Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric Nöth. 2015. XML Compression via Directed

Acyclic Graphs. Theory of Computing Systems 57, 4 (2015), 1322–1371. https://doi.org/10.1007/s00224-014-9544-x

[9] Peter Buneman, Martin Grohe, and Christoph Koch. 2003. Path Queries on Compressed XML. In Proceedings of 29th
International Conference on Very Large Data Bases, VLDB 2003. Morgan Kaufmann, 141–152. https://doi.org/10.1016/

B978-012722442-8/50021-5

[10] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. 2008. Efficient memory representation of XML document

trees. Information Systems 33, 4-5 (2008), 456–474. https://doi.org/10.1016/j.is.2008.01.004

[11] Julien Carme, Joachim Niehren, and Marc Tommasi. 2004. Querying Unranked Trees with Stepwise Tree Automata. In

Proceedings of the 15th International Conference on Rewriting Techniques and Applications, RTA 2004 (Lecture Notes in
Computer Science, Vol. 3091), Vincent van Oostrom (Ed.). Springer, 105–118. https://doi.org/10.1007/978-3-540-25979-

4_8

[12] Katrin Casel, Henning Fernau, Serge Gaspers, Benjamin Gras, and Markus L. Schmid. 2021. On the Complexity of

the Smallest Grammar Problem over Fixed Alphabets. Theory of Computing Systems 65, 2 (2021), 344–409. https:

//doi.org/10.1007/s00224-020-10013-w

[13] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi Shelat. 2005. The

smallest grammar problem. IEEE Transactions on Information Theory 51, 7 (2005), 2554–2576. https://doi.org/10.1109/

TIT.2005.850116

[14] Bruno Courcelle. 2009. Linear delay enumeration and monadic second-order logic. Discrete Applied Mathematics 157,
12 (2009), 2675–2700. https://doi.org/10.1016/J.DAM.2008.08.021

[15] Bartlomiej Dudek and Pawel Gawrychowski. 2018. Slowing Down Top Trees for Better Worst-Case Compression. In

Proceedings of the Annual Symposium on Combinatorial Pattern Matching, CPM 2018 (LIPIcs, Vol. 105). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 16:1–16:8. https://doi.org/10.4230/LIPIcs.CPM.2018.16

[16] Markus Frick, Martin Grohe, and Christoph Koch. 2003. Query Evaluation on Compressed Trees (Extended Abstract).

In Proceedings of the 18th IEEE Symposium on Logic in Computer Science LICS 2003. IEEE Computer Society, 188.

https://doi.org/10.1109/LICS.2003.1210058

[17] Moses Ganardi and Pawel Gawrychowski. 2022. Pattern Matching on Grammar-Compressed Strings in Linear Time.

In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022. SIAM, 2833–2846. https:

//doi.org/10.1137/1.9781611977073.110

[18] Moses Ganardi, Danny Hucke, Artur Jez, Markus Lohrey, and Eric Noeth. 2017. Constructing small tree grammars and

small circuits for formulas. J. Comput. System Sci. 86 (2017), 136–158. https://doi.org/10.1016/j.jcss.2016.12.007

[19] Moses Ganardi, Artur Jez, and Markus Lohrey. 2021. Balancing Straight-line Programs. Journal of the ACM 68, 4 (2021),

27:1–27:40. https://doi.org/10.1145/3457389

[20] Adrià Gascón, Markus Lohrey, Sebastian Maneth, Carl Philipp Reh, and Kurt Sieber. 2020. Grammar-Based Compression

of Unranked Trees. Theory of Computing Systems 64, 1 (2020), 141–176. https://doi.org/10.1007/s00224-019-09942-y

[21] Leszek Gasieniec, Roman M. Kolpakov, Igor Potapov, and Paul Sant. 2005. Real-Time Traversal in Grammar-Based

Compressed Files. In Proceedings of the 2005 Data Compression Conference, DCC 2005. IEEE Computer Society, 458.

https://doi.org/10.1109/DCC.2005.78

[22] Pawel Gawrychowski and Artur Jez. 2016. LZ77 Factorisation of Trees. In Proceedings of the 36th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016 (LIPIcs, Vol. 65).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 35:1–35:15. https://doi.org/10.4230/LIPIcs.FSTTCS.2016.35

[23] Lorenz Hübschle-Schneider and Rajeev Raman. 2015. Tree Compression with Top Trees Revisited. In Proceedings of
the 14th International Symposium on Experimental Algorithms, SEA 2015 (Lecture Notes in Computer Science, Vol. 9125).
Springer, 15–27. https://doi.org/10.1007/978-3-319-20086-6_2

[24] Wojciech Kazana and Luc Segoufin. 2013. Enumeration of monadic second-order queries on trees. ACM Transaction on
Computational Logic 14, 4 (2013), 25:1–25:12. https://doi.org/10.1145/2528928

[25] Sarah Kleest-Meißner, Jonas Marasus, and Matthias Niewerth. 2023. MSO Queries on Trees: Enumerating Answers

under Updates Using Forest Algebras. https://doi.org/10.48550/ARXIV.2208.04180 arXiv:2208.04180 [cs.LO]

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

https://tel.archives-ouvertes.fr/tel-00424232
https://doi.org/10.1109/TIT.2020.3038147
https://doi.org/10.1016/J.IC.2014.12.012
https://doi.org/10.1007/s00224-014-9544-x
https://doi.org/10.1016/B978-012722442-8/50021-5
https://doi.org/10.1016/B978-012722442-8/50021-5
https://doi.org/10.1016/j.is.2008.01.004
https://doi.org/10.1007/978-3-540-25979-4_8
https://doi.org/10.1007/978-3-540-25979-4_8
https://doi.org/10.1007/s00224-020-10013-w
https://doi.org/10.1007/s00224-020-10013-w
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1016/J.DAM.2008.08.021
https://doi.org/10.4230/LIPIcs.CPM.2018.16
https://doi.org/10.1109/LICS.2003.1210058
https://doi.org/10.1137/1.9781611977073.110
https://doi.org/10.1137/1.9781611977073.110
https://doi.org/10.1016/j.jcss.2016.12.007
https://doi.org/10.1145/3457389
https://doi.org/10.1007/s00224-019-09942-y
https://doi.org/10.1109/DCC.2005.78
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.35
https://doi.org/10.1007/978-3-319-20086-6_2
https://doi.org/10.1145/2528928
https://doi.org/10.48550/ARXIV.2208.04180
https://arxiv.org/abs/2208.04180

Enumeration for MSO-Queries on Compressed Trees 78:17

[26] Markus Lohrey. 2012. Algorithmics on SLP-Compressed Strings: A Survey. Groups Complexity Cryptology 4, 2 (2012),

241–299. https://doi.org/10.1515/GCC-2012-0016

[27] Markus Lohrey. 2015. Grammar-based tree compression. In Proceedings of the 19th International Conference on
Developments in Language Theory, DLT 2015 (Lecture Notes in Computer Science, Vol. 9168). Springer, 46–57. https:

//doi.org/10.1007/978-3-319-21500-6_3

[28] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. 2013. XML tree structure compression using RePair. Information
Systems 38, 8 (2013), 1150–1167. https://doi.org/10.1016/j.is.2013.06.006

[29] Markus Lohrey, Sebastian Maneth, and Carl Philipp Reh. 2017. Compression of Unordered XML Trees. In Proceedings
of the 20th International Conference on Database Theory, ICDT 2017 (LIPIcs, Vol. 68). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 18:1–18:17. https://doi.org/10.4230/LIPIcs.ICDT.2017.18

[30] Markus Lohrey, Sebastian Maneth, and Carl Philipp Reh. 2018. Constant-Time Tree Traversal and Subtree Equality

Check for Grammar-Compressed Trees. Algorithmica 80, 7 (2018), 2082–2105. https://doi.org/10.1007/S00453-017-

0331-3

[31] Markus Lohrey, Sebastian Maneth, and Manfred Schmidt-Schauß. 2012. Parameter reduction and automata evaluation

for grammar-compressed trees. J. Comput. System Sci. 78, 5 (2012), 1651–1669. https://doi.org/10.1016/j.jcss.2012.03.003
[32] MartinMuñoz and Cristian Riveros. 2023. Constant-Delay Enumeration for SLP-Compressed Documents. In Proceedings

of the 26th International Conference on Database Theory, ICDT 2023 (LIPIcs, Vol. 255). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 7:1–7:17. https://doi.org/10.4230/LIPIcs.ICDT.2023.7

[33] Matthias Niewerth. 2018. MSO Queries on Trees: Enumerating Answers under Updates Using Forest Algebras.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018. ACM, 769–778.

https://doi.org/10.1145/3209108.3209144

[34] W. Rytter. 2003. Application of Lempel-Ziv factorization to the approximation of grammar-based compression.

Theoretical Computer Science 302, 1–3 (2003), 211–222. https://doi.org/10.1016/S0304-3975(02)00777-6

[35] Markus L. Schmid and Nicole Schweikardt. 2021. Spanner Evaluation over SLP-Compressed Documents. In Proceedings
of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2021. ACM, 153–165.

https://doi.org/10.1145/3452021.3458325

[36] Markus L. Schmid and Nicole Schweikardt. 2022. Query Evaluation over SLP-Represented Document Databases with

Complex Document Editing. In Proceedings of 41st Symposium on Principles of Database Systems, PODS 2022. ACM,

79–89. https://doi.org/10.1145/3517804.3524158

Received June 2023; revised August 2023; accepted September 2023

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 78. Publication date: May 2024.

https://doi.org/10.1515/GCC-2012-0016
https://doi.org/10.1007/978-3-319-21500-6_3
https://doi.org/10.1007/978-3-319-21500-6_3
https://doi.org/10.1016/j.is.2013.06.006
https://doi.org/10.4230/LIPIcs.ICDT.2017.18
https://doi.org/10.1007/S00453-017-0331-3
https://doi.org/10.1007/S00453-017-0331-3
https://doi.org/10.1016/j.jcss.2012.03.003
https://doi.org/10.4230/LIPIcs.ICDT.2023.7
https://doi.org/10.1145/3209108.3209144
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1145/3452021.3458325
https://doi.org/10.1145/3517804.3524158

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Trees and Forests
	2.2 Monadic Second Order Logic Over Forests
	2.3 Tree Automata
	2.4 Enumeration Algorithms

	3 Tree compression
	3.1 Representing Trees by DAGs
	3.2 Forest Straight-Line Programs

	4 Main result and its proof outline
	5 Bagan's algorithm for binary trees
	6 Bagan's algorithm for DAGs
	7 Path enumertion in DAGs
	8 Conclusions
	References

