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Abstract. The problem whether a given permutation group contains a
permutation with a given cycle type is studied. This problem is known to
be NP-complete. In this paper it is shown that the problem can be solved
in logspace for a cyclic permutation group and that it is NP-complete
for a 2-generated abelian permutation group. In addition it is shown
that it is NP-complete whether a 2-generated abelian permutation group
contains a fixpoint-free permutation.
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1 Introduction

Permutations are ubiquitous objects in combinatorics [4] and group theory [6].
The set of all permutations on a set Ω forms a group Sym(Ω) (the symmetric
group on Ω) under composition. A subgroup of a symmetric group is called a
permutation group. Cayley’s famous theorem states that every group is isomor-
phic to a permutation group via the right regular representation. Here, we only
deal with the case that Ω is finite and write Sym(n) for Sym(Ω) if |Ω| = n.

Having group elements represented as permutations can be often exploited
algorithmically. For instance, the subgroup membership problem for symmetric
groups (Does a given permutation π ∈ Sym(n) belong to the subgroup generated
by given permutations π1, . . . , πk ∈ Sym(n)?) can be solved in polynomial time
[10,15,16] and even in NC [3]. Another problem that has an extremely simple
algorithm in symmetric groups is the conjugacy problem: given permutations
π, ρ ∈ Sym(n), does there exist τ ∈ Sym(n) such that π = τ−1ρτ? This is
equivalent to say that π and ρ have the same cycle type. The cycle type of a
permutation π ∈ Sym(n) specifies for every ℓ ≤ n the number of cycles of length
ℓ when π is written (uniquely) as a product of pairwise disjoint cycles.

In this paper we are interested in the problem whether a given permutation
group G ≤ Sym(n) (specified by a list of generators) contains a permutation of a
given cycle type. Or equivalently: does G contain an element that is conjugated
to a given permutation π? We call this problem CycleType.

Cameron andWu showed in [8] that CycleType is NP-complete. Moreover,NP-
hardness already holds for the case where G is an elementary abelian 2-group



(i.e., an abelian group where every non-identity element has order two). Here
we further pinpoint the borderline between tractability and non-tractability: We
show that if the input permutation group G is cyclic and given by a single
generator then CycleType can be solved in logarithmic space on a deterministic
Turing machine (and hence belongs to the complexity class P). On the other
hand, we show that CycleType is already NP-complete for the case where G
is generated by two commuting permutations, i.e., G = 〈π, τ〉 with πτ = τπ.
Moreover, our proof shows that it is already NP-complete whether for two given
commuting permutations π and τ the coset π〈τ〉 (a coset of a cyclic group)
contains a permutation with a given cycle type.

In the last section of the paper, we consider the problem FixpointFree that asks
whether a given permutation group contains a fixpoint-free permutation, i.e., a
permutation π such that π(a) 6= a for all a. It was shown in [5,8] that FixpointFree
is NP-complete and as for CycleType, NP-hardness holds already for elementary
abelian 2-groups. The restriction of FixpointFree to cyclic permutation groups
is not interesting (〈π〉 contains a fixpoint-free permutation if and only if π is
fixpoint-free). We show that the restriction of FixpointFree to 2-generated abelian
permutation groups 〈π, τ〉 is NP-complete. Moreover, it is also NP-complete to
check whether a coset π〈τ〉 of a cyclic permutation group, where in addition
πτ = τπ, contains a fixpoint-free permutation.

Related work. Fixpoint-free permutations are also known as derangements
and they have received a lot of attention in combinatorics and group theory; see
[7] for a survey. Jordan proved in 1872 that every permutation group G that
acts transitively on a finite set Ω of size at least two contains a derangement
[14]. Arvind proved that in this situation one can compute in polynomial time
a derangement in G [2]. In the same paper, Arvind shows that the problem
whether a given permutation group G contains a permutation with at least k
non-fixpoints is fixed parameter tractable with respect to the parameter k.

2 Preliminaries

2.1 General notations

For integers 1 ≤ i ≤ j we write [i, j] for the set {i, i+ 1, . . . , j} and [j] for [1, j].
For a prime p and an integer n we denote with νp(n) the largest positive integer d
such that pd | n (it is also called the p-adic valuation of n). The greatest common
divisor of integers n1, . . . , nk is denoted by gcd(n1, . . . , nk) and the least common
multiple is denoted by lcm(n1, . . . , nk).

We assume that the reader is familiar with basic concepts of complexity
theory; see [1] for more details. With L (also known as logspace) we denote the
class of all problems that can be solved on a deterministic Turing machine in
logarithmic space. It is a subset of P (deterministic polynomial time).



2.2 Permutations

For n ≥ 1 we denote with Sym(n) the group of all permutations on [n]. The
identity permutation is denoted by id. For π ∈ Sym(n) and a ∈ [n] we also
write aπ for π(a). There are two standard representations for a permutation
π ∈ Sym(n):

– The pointwise representation of π is the tuple [π(1), π(2), . . . , π(n)].
– The cycle representation is a list γ1γ2 · · · γk of pairwise disjoint cycles. Every

cycle γi is written as a list (a0, a1, . . . , aℓ−1) (with ai ∈ [n]) meaning that
akπ = ak+1 mod ℓ. Fixpoints (cycles of the form (i)) are usually omitted in
the cycle representation, but sometimes we will explicitly list them.

Note that every cycle (a0, a1, . . . , aℓ−1) can be replaced by a cyclic rotation.
Moreover since disjoint cycles commute, the order of the cycles γi is not relevant.

Computing the pointwise representation from the cycle representation is pos-
sible in uniform AC0 (this is a very small circuit complexity class contained in
L). On the other hand, the cycle representation can be computed in logspace
from the pointwise representation and no better complexity bound is known [9].
Therefore, as long as one works with complexity classes that contain L (which
will be the case in this paper), there is no reason to specify which of the above
two representations of permutations is chosen.

Let fpf(n) = {π ∈ Sym(n) | aπ 6= a for all a ∈ [n]} be the set of all fixpoint-
free permutations. For π1, . . . , πk ∈ Sym(n) we write 〈π1, . . . , πk〉 ≤ Sym(n)
for the permutation group generated by π1, . . . , πk. The order ord(π) of π ∈
Sym(n) is the smallest integer i ≥ 1 such that πi = id. If γ1 · · · γk is the cycle
representation of π and every cycle γi has length ℓi then the multiset ct(π) :=
{{ℓ1, . . . , ℓk}} is the cycle type of π. Note that in this situation we have

ord(π) = lcm(ℓ1, . . . , ℓk). (1)

The following lemma is well known, see e.g. [6]:

Lemma 1. For π, ρ ∈ Sym(n) we have ct(π) = ct(ρ) if and only if there is a
σ ∈ Sym(n) such that π = σ−1ρσ.

Also the following lemma seems to be folklore. For completeness we give a proof.

Lemma 2. Let x ∈ N and γ be a single cycle of length ℓ. Then the cycle repre-
sentation of γx consists of gcd(x, ℓ) many disjoint cycles of length ℓ/ gcd(x, ℓ).

Proof (Proof of Lemma 2.). Let us first consider the case where gcd(x, ℓ) = 1.
Then there is a y ∈ N with xy ≡ 1 mod ℓ. If γx consists of at least two cycles of
length strictly smaller than ℓ, then the same holds for every power of γx. This
contradicts (γx)y = γxy = γ. This shows the statement of the lemma for the
case gcd(x, ℓ) = 1.

For the general case let m = gcd(x, ℓ), k = ℓ/m and z = x/m. Then we can
write the cycle γ as γ = (a0, . . . , amk−1) for some pairwise different ai ∈ [n].



For all i ∈ [0,m− 1] and d ∈ [0, k − 1] we have adm+iγ
m = a(d+1)m+i where all

arithmetics in the indices is done modulo ℓ = mk. We obtain

γx = (γm)z =

m−1
∏

i=0

(ai, am+i, a2m+i, . . . , a(k−1)m+i)
z.

Since gcd(z, k) = 1 we obtain from the above case gcd(x, ℓ) = 1 that

(ai, am+i, a2m+i, . . . , a(k−1)m+i)
z

is a cycle of length k. Hence, γx splits into m disjoint cycles of length k. ⊓⊔

For integers 1 ≤ i < j ≤ n we denote with ([i, j]) the cycle (i, i + 1, . . . , j) ∈
Sym(n). We also use ([i]) instead of ([1, i]) for 2 ≤ i ≤ n.

We will consider the following two computational problems in this paper:

Problem 1. CycleType is the following problem:
– input: π1, . . . , πm, ρ ∈ Sym(n)
– question: Is there an element π ∈ 〈π1, . . . , πm〉 such that ct(π) = ct(ρ)?

Problem 2. FixpointFree is the following problem:
– input: π1, . . . , πm ∈ Sym(n)
– question: Does fpf(n) ∩ 〈π1, . . . , πm〉 6= ∅ hold?

Note that the unary encoding of n (from Sym(n)) is implicitly part of the inputs
for CycleType and FixpointFree. It is easy to see that CycleType and FixpointFree

are in NP: on input π1, . . . , πm, ρ ∈ Sym(n) we guess a permutation π ∈ Sym(n)
and then check in polynomial time whether (i) π ∈ 〈π1, . . . , πm〉 [3] and (ii)
ct(π) = ct(ρ) (resp., π ∈ fpf(n)).

For a given number k we denote with CycleType(k) the restriction of Cycle-
Type where m ≤ k holds. In other words, the input permutation group is gener-
ated by k permutations. Moreover, if the input permutations π1, . . . , πk pairwise
commute, then we write CycleType(ab, k) (ab stands for “abelian”). Analogous
restrictions are defined for FixpointFree.

3 Cycle type in cyclic permutation groups

In this section, we study the problem CycleType(1), i.e., CycleType for cyclic
permutation groups. Let us fix a symmetric group Sym(n). We assume that n
is given in unary encoding for the following. Note that a brute-force algorithm
that iterates over all elements π ∈ 〈π1〉 and thereby checks whether ct(π) = ct(ρ)
holds, needs exponential time. In [13, Lemma 2.1] it is shown that for every
sufficiently large n ∈ N, there exists a permutation π1 ∈ Sym(⌊2n2 lnn⌋) such
that 〈π1〉 has size greater than 2n.

Let Pn be the set of all primes in [n]. One can easily produce a list p1 < p2 <
· · · < pr of all those primes in logspace. For this, one only needs the fact that
integer division for unary encoded integers can be done in logspace (actually,



integer division of binary encoded integers can be also done in logspace [12] but
this is not needed here). We will only consider numbers where all prime divisors
are from Pn. For such a number a we denote with pe(a) (for prime exponents)
the tuple (e1, . . . , er) such that a =

∏r

i=1 p
ei
i is the prime factorizaton of a. We

will represent the exponents ei in unary notation. From the unary representation
of the number a ∈ [n] one can easily compute in logspace the tuple pe(a). We
need the following fact:

Lemma 3. From a given permutation π ∈ Sym(n) one can compute in logspace
the tuple pe(ord(π)).

Proof. Assume that the cycle representation π = γ1γ2 · · · γk is given. Let ℓi ∈ [n]
be the length of the cycle γi. We then compute in logspace the tuple pe(ℓi) =
(ei,1, . . . , ei,r). Since ord(π) = lcm(ℓ1, ℓ2, . . . , ℓk) we have

pe(ord(π)) = (e1, . . . , er)

with ei = max{e1,i, . . . , ek,i}. Clearly, these exponents ei can be computed in
logspace. ⊓⊔

Lemma 4. For given permutations π, ρ ∈ Sym(n) one can check in logspace,
whether ord(ρ) | ord(π) holds.

Proof. Let pe(ord(ρ)) = (e1, . . . , er) and pe(ord(π)) = (e′1, . . . , e
′
r). Then ord(ρ) |

ord(π) if and only if ei ≤ e′i for all i ∈ [r]. Therefore, the statement of the lemma
follows from Lemma 3. ⊓⊔

Lemma 5. There is a logspace algorithm with the following specification:
– input: π, ρ ∈ Sym(n) such that ord(ρ) | ord(π) and a ∈ [n].
– output: aπd ∈ [n] where d = ord(π)/ ord(ρ)

Proof. By Lemma 3 we can produce in logspace the tuples

pe(ord(ρ)) = (e1, . . . , er) and

pe(ord(π)) = (e′1, . . . , e
′
r).

Since ord(ρ) | ord(π) we have ei ≤ e′i for all i ∈ [r]. We then have pe(d) =
(f1, . . . , fr) with fi = e′i − ei and this tuple can be also produced in logspace.

Let γ1γ2 · · · γk be the cycle representation of π. We then compute in logspace
the length ℓ ∈ [n] of the unique cycle γi that contains a ∈ [n]. We have aπd =
aπd mod ℓ. Since all primes pi and exponents fi are given in unary notation, we
can compute in logspace the value d mod ℓ by going over the prime factorization
∏r

i=1 p
fi
i and making

∑r

i=1 fi many multiplications modulo ℓ. Once d mod ℓ is
computed, we can finally compute aπd mod ℓ in logspace. ⊓⊔

Lemma 6. Let π, ρ ∈ Sym(n). Then the following holds:
– If ct(π) = ct(ρ) then ord(π) = ord(ρ).
– For all i ∈ N we have ord(π) = ord(πi) if and only if ct(π) = ct(πi).



Proof. For the first statement note that if {{ℓ1, ℓ2, . . . , ℓk}} is the common cycle
type of π and ρ then ord(π) = lcm(ℓ1, ℓ1, . . . , ℓk) = ord(ρ) by (1). Therefore
we only have to show that if ord(π) = ord(πi) then ct(π) = ct(πi). Let π =
γ1 · · · γk be the cycle representation of π. Then we have πi = γi

1 · · · γ
i
k. Since

ord(π) = ord(πi) we obtain gcd(ord(π), i) = 1. Because of ord(γj) | ord(π) we
get gcd(ord(γj), i) = 1 for all j ∈ [k]. By Lemma 2, γj and γi

j are cycles of the

same length and thus π and πi have the same cycle type. ⊓⊔

Theorem 1. CycleType(1) is in L.

Proof. Let π, ρ ∈ Sym(n) be the two input permutations of CycleType(1). It is
asked whether there is a q ∈ N such that ct(πq) = ct(ρ). By Lemma 4 we can
check in logspace whether ord(ρ) | ord(π) holds. If this is not the case, then
by the first statement of Lemma 6 there is no q such that ct(πq) = ct(ρ) and
we can immediately reject. Let us now assume that ord(ρ) | ord(π) and let
d = ord(π)/ ord(ρ) in the following. Note that ord(πd) = ord(ρ).

Claim 1. There is a q ∈ N such that ct(πq) = ct(ρ) if and only if ct(πd) = ct(ρ).

Proof of Claim 1. The direction from right to left is trivial. Hence, let us assume
that there is a q such that ct(πq) = ct(ρ). By Lemma 6, we have ord(πq) =
ord(ρ). We get ord(πd) = ord(ρ) = ord(πq). Since 〈π〉 has exactly one subgroup
of order ord(ρ) it follows that 〈πq〉 = 〈πd〉. Let πq = (πd)i for i ∈ N. Since
ord(πd) = ord(πq) = ord((πd)i), the second statement of Lemma 6 implies that
πq and πd (and hence ρ and πd) have the same cycle type. This shows Claim 1.

By Claim 1, it suffices to check in logspace whether ct(πd) = ct(ρ). By Lemma 5
we can compute in logspace the pointwise representation and hence the cycle
representation of πd. From the cycle representation of a permutation we can of
course compute in logspace the cycle type. ⊓⊔

4 Cycle type in the 2-generated abelian case

In this section we show that CycleType becomes NP-complete if the input per-
mutation group is abelian and generated by two elements.

Theorem 2. CycleType(ab, 2) is NP-complete.

Proof. Since CycleType is in NP (see the remark at the end of Section 2.2), it
remains to show NP-hardness. For this we exhibit a logspace reduction from
X3HS (exact 3-hitting set), which is the following problem:
– Input: a finite set S and a set B ⊆ 2S of subsets of S all of size 3.
– Question: Is there a subset T ⊆ S such that |T ∩C| = 1 for all C ∈ B?

Note that X3HS is the same problem as positive 1-in-3-SAT, which is a well-
known NP-complete problem; see [11] for more details.

Let S be a finite set and B ⊆ 2S be a set of subsets of S all of size 3. W.l.o.g.
assume that S = [n] and let B = {C1, . . . , Cm}. Let p1 < · · · < p2n be the first



2n primes with p1 > 3. Moreover let q1 < · · · < qm be the next m primes with
p2n < q1. We associate i ∈ S with the prime pi and Cj ∈ B with the prime qj .
We will work with the group

G =

n
∏

i=1

Sym(pipn+i)×
m
∏

j=1

Sym(p3nqj)
6

which naturally embedds into Sym(N) for

N =
n
∑

i=1

pipn+i + 6
m
∑

j=1

p3nqj .

Let f : G → Sym(N) be this embedding. When we talk of the cycle type of
an element g ∈ G, we always refer to the cycle type of the permutation f(g) ∈
Sym(N). If g = (π1, . . . , πn, ρ1, . . . , ρ6m) ∈ G, then this cycle type is obtained by
taking the disjoint union (of multisets) of the cycle types of all the πi and ρj .

For j ∈ [m] we define rj = qj ·
∏

i∈Cj
pi. Moreover for j ∈ [m] and all d ∈ [6]

we define the number sj,d ∈ [0, rj − 1] as the smallest positive integer satisfying
the following congruences in which we assume Cj = {i1, i2, i3} with i1 < i2 < i3:

sj,1 ≡ −1 mod pi1 sj,2 ≡ 0 mod pi1 sj,3 ≡ 0 mod pi1

sj,1 ≡ 0 mod pi2 sj,2 ≡ −1 mod pi2 sj,3 ≡ 0 mod pi2

sj,1 ≡ 0 mod pi3 sj,2 ≡ 0 mod pi3 sj,3 ≡ −1 mod pi3

sj,1 ≡ 1 mod qj sj,2 ≡ 1 mod qj sj,3 ≡ 1 mod qj

sj,4 ≡ −1 mod pi1 sj,5 ≡ −3 mod pi1 sj,6 ≡ −2 mod pi1

sj,4 ≡ −2 mod pi2 sj,5 ≡ −1 mod pi2 sj,6 ≡ −3 mod pi2

sj,4 ≡ −3 mod pi3 sj,5 ≡ −2 mod pi3 sj,6 ≡ −1 mod pi3

sj,4 ≡ 1 mod qj sj,5 ≡ 1 mod qj sj,6 ≡ 1 mod qj

Moreover, we define the number tj ∈ [0, rj − 1] as the smallest positive integer
satisfying

tj ≡ 1 mod pia for all a ∈ [3] and tj ≡ 0 mod qj .

We define the input group elements ρ, π1, π2 ∈ G as follows, where i ranges over
[n], j ranges over [m] and i1 < i2 < i3 are the elements of Cj (recall that ([m])
denotes the cycle (1, 2, . . . ,m)):

ρ = (ζ1, . . . , ζn, η1, . . . , ηm)

ζi = ([pipn+i])

ηj = (([rj ])
pi1

pi2
pi3 , ([rj ])

pi1 , ([rj ])
pi2 , ([rj ])

pi3 , ([rj ]), ([rj ]))

π1 = (α1, . . . , αn, β1, . . . , βm)

αi = ([pipn+i])

βj = (([rj ])
sj,1 , ([rj ])

sj,2 , ([rj ])
sj,3 , ([rj ])

sj,4 , ([rj ])
sj,5 , ([rj ])

sj,6)



π2 = (γ1, . . . , γn, δ1, . . . , δm)

γi = id

δj = (([rj ])
tj , ([rj ])

tj , ([rj ])
tj , ([rj ])

tj , ([rj ])
tj , ([rj ])

tj )

Note that π1 and π2 commute.
We will show there are x1, x2 ∈ N such that ct(ρ) = ct(πx1

1 πx2

2 ) if and only if
there is a subset T ⊆ S such that |T ∩Cj | = 1 for all j ∈ [m].

First suppose that there are x1, x2 ∈ N with ct(ρ) = ct(πx1

1 πx2

2 ). We define

T = {i ∈ [n] | x2 6≡ 0 mod pi}. (2)

Claim 2. For all i ∈ [n] and j ∈ [m] we have x1 6≡ 0 mod pi, x1 6≡ 0 mod pn+i

and x1 6≡ 0 mod qj .

Proof of Claim 2. The claim follows from Lemma 2 and the following facts:
– ζi and αi are cycles of length pipn+i.
– π2 does not contain any cycle whose length is a multiple of pn+i.
– tj ≡ 0 mod qj and hence π2 also does not contain any cycle whose length is

a multiple of qj .
– ρ and π1 both contain 6 pairwise disjoint permutations of the form ([rj ])

z ,
where z is not a multiple of qj . ⊓⊔

Claim 3. For all Cj = {i1, i2, i3} ∈ B there is a (necessarily unique) a ∈ [3] such
that x2 6≡ 0 mod pia and x2 ≡ 0 mod pib for all b ∈ [3] \ {a}.

Proof of Claim 3. Let j ∈ [m] and assume Cj = {i1, i2, i3} with i1 < i2 < i3.
Consider ηj . By Lemma 2 ([rj ])

pi1
pi2

pi3 consists of pi1pi2pi3 cycles of length qj
and these are the only cycles of length qj in ρ. Hence, βx1

j δx2

j must contain
exactly pi1pi2pi3 cycles of length qj . By Lemma 2 this can only be achieved if
there is a unique a ∈ [6] such that

∀c ∈ [3] : x1sj,a + x2tj ≡ 0 mod pic . (3)

Also note that

∀b ∈ [6] : x1sj,b + x2tj ≡ x1 6≡ 0 mod qj

by Claim 2 and

∀c ∈ [3] : x2tj ≡ x2 mod pic .

We want to show that a ∈ [3]. In order to get a contradiction, suppose that
a ∈ {4, 5, 6}. The congruence x1sj,a + x2tj ≡ 0 mod pic from (3) gives us

∀c ∈ [3] : x2 ≡ −x1sj,a mod pic .

Then, for all b ∈ [3] \ {a− 3} we have

x1sj,b + x2tj ≡ x1sj,b − x1sj,a ≡ x1(−1− sj,a) 6≡ 0 mod pib ,



where x1 6≡ 0 mod pib by Claim 2 and −1−sj,a 6≡ 0 mod pib since sj,a 6≡ −1 mod
pib for b 6= a− 3 (also note that pib > 2). Similarly, for all b ∈ [3]\ {a− 3} we get

x1sj,3+b + x2tj ≡ x1sj,3+b − x1sj,a ≡ x1(sj,3+b − sj,a) 6≡ 0 mod pib ,

where as above x1 6≡ 0 mod pib by Claim 2 and sj,3+b − sj,a 6≡ 0 mod pib since
a 6= 3 + b and sj,a 6≡ sj,3+b mod pic for all c ∈ [3].

Moreover, for all b ∈ [3] \ {a− 3} and all c ∈ [3] \ {b} we have

x1sj,b + x2tj ≡ x1sj,b − x1sj,a ≡ −x1sj,a 6≡ 0 mod pic and

x1sj,3+b + x2tj ≡ x1sj,3+b − x1sj,a ≡ x1(sj,3+b − sj,a) 6≡ 0 mod pic .

Finally, for all b ∈ [6] we have x1sj,b + x2tj 6≡ 0 mod qj as pointed out above.
Taken together, these congruences yield for all b ∈ [3] \ {a− 3}:

gcd(x1sj,b + x2tj , rj) = gcd(x1sj,3+b + x2tj , rj) = 1.

Hence, by Lemma 2, βx1

j δx2

j contains at least 4 cycles of length rj . However ηj
contains only 2 cycles of length rj and ρ does not contain any other cycles of
length rj , which gives us a contradiction. Thus we obtain a ∈ [3] and by this

x2 ≡ −x1sj,a ≡ x1 6≡ 0 mod pia ,

where x1 6≡ 0 mod pia holds by Claim 2. Moreover, for all b ∈ [3] \ {a} we obtain

x2 ≡ −x1sj,a ≡ 0 mod pib .

This shows Claim 3. ⊓⊔

We can now show that |T ∩ Cj | = 1 for all j ∈ [m]. Let j ∈ [m]. By Claim 3
there is a unique i ∈ Cj such that x2 6≡ 0 mod pi. Thus i ∈ T by (2). Moreover
for all h ∈ Cj \ {i} we have x2 ≡ 0 mod ph by Claim 3 and hence h /∈ T . Thus,
we get |T ∩ Cj | = 1.

For the other direction, suppose there is a subset T ⊆ [n] such that |T ∩Cj | =
1 for all j ∈ [m]. We define x1 = 1 and x2 as the smallest positive integer
satisfying the congruences

x2 ≡

{

1 mod pi if i ∈ T

0 mod pi if i 6∈ T

for all i ∈ [n]. Since x1 = 1, ρ and πx1

1 πx2

2 both contain a unique cycle of length
pipn+i for all i ∈ [n]. All other cycles in ρ and πx1

1 πx2

2 result from powers of ([rj ])
for some j ∈ [m]. Consider a j ∈ [m] and let Cj = {i1, i2, i3} with i1 < i2 < i3.
By Lemma 2, ηj consists of
(i) pi1pi2pi3 cycles of length qj ,
(ii) pi1 cycles of length pi2pi3qj ,
(iii) pi2 cycles of length pi1pi3qj ,
(iv) pi3 cycles of length pi1pi2qj and



(v) 2 cycles of length rj .

We have to show that

βjδ
x2

j = (([rj ])
sj,1+x2tj , ([rj ])

sj,2+x2tj , ([rj ])
sj,3+x2tj ,

([rj ])
sj,4+x2tj , ([rj ])

sj,5+x2tj , ([rj ])
sj,6+x2tj )

contains the same cycle lengths with the same multiplicities as in (i)–(v). Note
that sj,d+x2tj ≡ 1 mod qj for all d ∈ [6]. Let a ∈ [3] be the unique element with
ia ∈ T . Then x2 ≡ 1 mod pia and x2 ≡ 0 mod pib for all b ∈ [3] \ {a}. We obtain

sj,a + x2tj ≡ −1 + 1 ≡ 0 mod pia and

sj,a + x2tj ≡ 0 + 0 ≡ 0 mod pib for all b ∈ [3] \ {a}.

By Lemma 2, ([rj ])
sj,a+x2tj consists of pi1pi2pi3 cycles of length qj . Moreover

sj,3+a + x2tj ≡ −1 + 1 ≡ 0 mod pia and

sj,3+a + x2tj ≡ sj,3+a + 0 6≡ 0 mod pib for all b ∈ [3] \ {a}

(for the second point we use the fact that all primes pi are larger than 3). By
Lemma 2, ([rj ])

sj,3+a+x2tj consists of pia cycles of length qj
∏

b∈[3]\{a} pib . For

all b ∈ [3] \ {a} we have

sj,b + x2tj ≡ 0 + 1 ≡ 1 mod pia ,

sj,b + x2tj ≡ sj,b + 0 ≡ −1 mod pib and

sj,b + x2tj ≡ sj,b + 0 ≡ 0 mod pic ,where {c} = [3] \ {a, b}.

By Lemma 2, ([rj ])
sj,b+x2tj consists of pic cycles of length qjpiapib with {c} =

[3] \ {a, b}. Finally, for all b ∈ [3] \ {a} we have

sj,3+b + x2tj ≡ sj,3+b + 1 6≡ 0 mod pia and

sj,3+b + x2tj ≡ sj,3+b + 0 6≡ 0 mod pic for all c ∈ [3] \ {a}.

Hence, ([rj ])
sj,3+b+x2tj is a single cycle of length rj . This shows that ct(ηj) =

ct(βjδ
x2

j ) and concludes the proof of the theorem. ⊓⊔

The construction from the previous proof yields the following additional result:

Corollary 1. The following problem is NP-complete:
– input: ρ, π1, π2 ∈ Sym(n) such that π1 and π2 commute
– question: Is there is a π ∈ π1〈π2〉 such that ct(ρ) = ct(π)?

Proof. The instance ρ, π1, π2 of CycleType(ab, 2) that we constructed in the proof
of Theorem 2 has the property that there are x1, x2 ∈ N such that ρ and πx1

1 πx2

2

have the same cycle type if and only if there is x2 ∈ N such that ρ and π1π
x2

2

have the same cycle type. This yields the corollary. ⊓⊔

Whereas it can be decided in logspace whether a cyclic permutation group 〈π1〉
contains a permutation with a given cycle type (Theorem 1), the same problem
for cosets of cyclic permutation groups is NP-complete (Corollary 1).



5 Fixpoint freeness in the 2-generated abelian case

Our main result for the problem FixpointFree is:

Theorem 3. FixpointFree(ab, 2) is NP-complete.

Proof. We give a logspace reduction from 3-SAT (the satisfiability problem for
conjunctions of clauses, where every clause consists of exactly three literals and
a literal is either a boolean variable x or a negated boolean variable x̄). For
this take a finite set of variables X = {x1, . . . , xn} and a set of clauses C =
{C1, . . . , Cm}. Every Cj ∈ C is a set of three literals. When we write Cj as
Cj = {x̃i1 , x̃i2 , x̃i3}, every x̃ik is either xik or x̄ik and we always assume that
i1 < i2 < i3. A truth assignment σ : X → {0, 1} is implicitly extended to all
literals by setting σ(x̄i) = 1− σ(xi).

Let p1, . . . , pn, p̄1, . . . , p̄n be the first 2n primes. We associate the positive
literal xi with pi and the negative literal x̄i with p̄i and define

p̃i =

{

pi if x̃i = xi,

p̄i if x̃i = x̄i.

For the clause Cj = {x̃i1 , x̃i2 , x̃i3} define rj = p̃i1 p̃i2 p̃i3 . Moreover, for all i ∈
[n], l ∈ [pi − 1] and k ∈ [p̄i − 1] let si,l,k be the unique number in [pip̄i − 1] with

si,l,k ≡ l mod pi and si,l,k ≡ k mod p̄i.

We will work with the group

G =

n
∏

i=1

(

Sym(pi)× Sym(p̄i)× Sym(pip̄i)
(pi−1)(p̄i−1)+1

)

×
m
∏

j=1

Sym(rj).

The group G naturally embeds into Sym(N) for

N =

n
∑

i=1

(pi + p̄i + pip̄i((pi − 1)(p̄i − 1) + 1)) +

m
∑

j=1

rj .

Now we define the input permutations π1 and π2 as follows, where i ranges over
[n], l ranges over [pi − 1], k ranges over [p̄i − 1] and j ranges over [m]:

π1 = (α1, . . . , αn, β1, . . . , βm) with

αi = (αi,1, αi,2, αi,3, αi,1,1, . . . , αi,pi−1,p̄i−1)

αi,1 = ([pi])

αi,2 = ([p̄i])

αi,3 = id

αi,l,k = ([pip̄i])
si,l,k

βj = id



π2 = (γ1, . . . , γn, δ1, . . . , δm) with

γi = (γi,1, γi,2, γi,3, γi,1,1, . . . , γi,pi−1,p̄i−1)

γi,1 = γi,2 = id

γi,3 = γi,l,k = ([pip̄i])

δj = ([rj ])

Note that π1 and π2 commute. We will show that C is satisfiable if and only if
there are z1, z2 ∈ N such that πz1

1 πz2
2 ∈ fpf(N).

First, suppose that there are z1, z2 ∈ N such that πz1
1 πz2

2 ∈ fpf(N).

Claim 4. For all i ∈ [n] we have z1 6≡ 0 mod pi and z1 6≡ 0 mod p̄i.

We have αz1
i,1γ

z2
i,1 = αz1

i,1 = ([pi])
z1 and hence by Lemma 2 we obtain z1 6≡

0 mod pi. Analogously we obtain z1 6≡ 0 mod p̄i. ⊓⊔

Claim 5. For all i ∈ [n] we have z2 ≡ 0 mod pi if and only if z2 6≡ 0 mod p̄i.

Assume that z2 ≡ 0 mod pi and z2 ≡ 0 mod p̄i. Then we obtain by

αz1
i,3γ

z2
i,3 = γz2

i,3 = ([pip̄i])
z2 = id

a contradiction. Now assume that z2 6≡ 0 mod pi and z2 6≡ 0 mod p̄i. Since by
Claim 4 we have z1 6≡ 0 mod pi and z1 6≡ 0 mod p̄i we can define l ∈ [pi − 1] and
k ∈ [p̄i − 1] as the smallest positive integers satisfying the congruences

l ≡ −z2z
−1
1 mod pi and k ≡ −z2z

−1
1 mod p̄i.

From this we obtain si,l,k ≡ −z2z
−1
1 mod pip̄i and hence

αz1
i,l,kγ

z2
i,l,k = ([pip̄i])

si,l,k·z1([pip̄i])
z2 = ([pip̄i])

−z2([pip̄i])
z2 = id,

which is again a contradiction. This shows Claim 5 ⊓⊔

Claim 6. For all j ∈ [m] there is an a ∈ [3] such that z2 6≡ 0 mod p̃ia , where
Cj = {x̃i1 , x̃i2 , x̃i3}.

Since we must have βz1
j δz2j = δz2j = ([rj ])

z2 ∈ fpf(rj) we must have z2 6≡ 0 mod
rj = p̃i1 p̃i2 p̃i3 . Hence, there is an a ∈ [3] such that z2 6≡ 0 mod p̃ia . ⊓⊔

We define the truth assignment σ : X → {0, 1} by

σ(xi) =

{

1 if z2 6≡ 0 mod pi

0 if z2 ≡ 0 mod pi

for all i ∈ [n] and show that every clause in C contains a literal that is mapped
to 1 by σ. Let j ∈ [m] and Cj = {x̃i1 , x̃i2 , x̃i3}. By Claim 6 there is an a ∈ [3]
such that z2 6≡ 0 mod p̃ia . If x̃ia = xia , then p̃ia = pia and 1 = σ(xia ) = σ(x̃ia ).
On the other hand, if x̃ia = x̄ia , then p̃ia = p̄ia and z2 ≡ 0 mod pia by Claim 5.
We obtain 1 = 1− σ(xia ) = σ(x̄ia ) = σ(x̃ia ). Hence, σ(x̃ia ) = 1 in both cases.



Vice versa suppose that there is a truth assignment σ : X → {0, 1} such that
every clause in C contains a literal that is mapped to 1 by σ. We define z1 = 1
and z2 ∈ N as the smallest positive integer satisfying the congruences

z2 ≡ σ(xi) mod pi and z2 ≡ 1− σ(xi) mod p̄i (4)

for all i ∈ [n]. Then πz1
1 πz2

2 ∈ fpf(N) follows from the following points, where
i ∈ [n], l ∈ [pi − 1], k ∈ [p̄i − 1], and j ∈ [m] are arbitrary:
– αz1

i,1γ
z2
i,1 = ([pi]), α

z1
i,2γ

z2
i,2 = ([p̄i]) and αz1

i,3γ
z2
i,3 = γz2

i,3 = ([pip̄i])
z2 are fixpoint-

free.
– αz1

i,l,kγ
z2
i,l,k = ([pip̄i])

si,l,k+z2 is fixpoint-free since si,l,k + z2 ≡ l 6≡ 0 mod pi if
σ(xi) = 0 and si,l,k + z2 ≡ k 6≡ 0 mod p̄i if σ(xi) = 1.

– βz1
j δz2j = δz2j = ([rj ])

z2 is fixpoint-free. To see this let Cj = {x̃i1 , x̃i2 , x̃i3}
and a ∈ [3] be such that σ(x̃ia ) = 1. Then (4) yields z2 ≡ σ(x̃ia ) ≡ 1 mod p̃ia
and hence z2 6≡ 0 mod rj . ⊓⊔

Corollary 2. It is NP-complete to check whether π1〈π2〉 ∩ fpf(n) 6= ∅ holds for
given π1, π2 ∈ Sym(n) with π1π2 = π2π1.

Proof. For π1 and π2 from the proof of Theorem 3, there are z1, z2 ∈ N with
πz1
1 πz2

2 ∈ fpf(n) if and only if there is z ∈ N with π1π
z
2 ∈ fpf(n). ⊓⊔

6 Conclusion

We proved NP-completeness of the following two problem:

– Does a given 2-generated abelian permutation group contain a permutation
with a given cycle type (Theorem 2)?

– Does a given 2-generated abelian permutation group contain a fixpoint-free
permutation (Theorem 3)?

One might consider the problems CycleType and FixpointFree also for other
classes of permutation groups. Whereas FixpointFree is trivial for transitive per-
muation groups (by Jordan’s theorem [14]), the complexity of CycleType for
transitive permuation groups seems to be open.
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