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Abstract. The problem whether a given permutation group contains a
permutation with a given cycle type is studied. This problem is known to
be NP-complete. In this paper it is shown that the problem can be solved
in logspace for a cyclic permutation group and that it is NP-complete
for a 2-generated abelian permutation group. In addition it is shown
that it is NP-complete whether a 2-generated abelian permutation group
contains a fixpoint-free permutation.
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1 Introduction

Permutations are ubiquitous objects in combinatorics [4] and group theory [6].
The set of all permutations on a set {2 forms a group Sym({2) (the symmetric
group on (2) under composition. A subgroup of a symmetric group is called a
permutation group. Cayley’s famous theorem states that every group is isomor-
phic to a permutation group via the right regular representation. Here, we only
deal with the case that (2 is finite and write Sym(n) for Sym(£2) if |2| = n.

Having group elements represented as permutations can be often exploited
algorithmically. For instance, the subgroup membership problem for symmetric
groups (Does a given permutation = € Sym(n) belong to the subgroup generated
by given permutations 1, ..., € Sym(n)?) can be solved in polynomial time
[TO/T5/T6] and even in NC [3]. Another problem that has an extremely simple
algorithm in symmetric groups is the conjugacy problem: given permutations
m,p € Sym(n), does there exist 7 € Sym(n) such that 7 = 77 !pr? This is
equivalent to say that 7 and p have the same cycle type. The cycle type of a
permutation 7w € Sym(n) specifies for every ¢ < n the number of cycles of length
£ when 7 is written (uniquely) as a product of pairwise disjoint cycles.

In this paper we are interested in the problem whether a given permutation
group G < Sym(n) (specified by a list of generators) contains a permutation of a
given cycle type. Or equivalently: does G contain an element that is conjugated
to a given permutation 77 We call this problem CycleType.

Cameron and Wu showed in [§] that CycleType is NP-complete. Moreover, NP-
hardness already holds for the case where G is an elementary abelian 2-group



(i.e., an abelian group where every non-identity element has order two). Here
we further pinpoint the borderline between tractability and non-tractability: We
show that if the input permutation group G is cyclic and given by a single
generator then CycleType can be solved in logarithmic space on a deterministic
Turing machine (and hence belongs to the complexity class P). On the other
hand, we show that CycleType is already NP-complete for the case where G
is generated by two commuting permutations, i.e., G = (m,7) with 77 = 77.
Moreover, our proof shows that it is already NP-complete whether for two given
commuting permutations © and 7 the coset w(7) (a coset of a cyclic group)
contains a permutation with a given cycle type.

In the last section of the paper, we consider the problem FixpointFree that asks
whether a given permutation group contains a fixpoint-free permutation, i.e., a
permutation 7 such that 7(a) # a for all a. It was shown in [5I8] that FixpointFree
is NP-complete and as for CycleType, NP-hardness holds already for elementary
abelian 2-groups. The restriction of FixpointFree to cyclic permutation groups
is not interesting ((w) contains a fixpoint-free permutation if and only if 7 is
fixpoint-free). We show that the restriction of FixpointFree to 2-generated abelian
permutation groups (m,7) is NP-complete. Moreover, it is also NP-complete to
check whether a coset 7(r) of a cyclic permutation group, where in addition
wT = 77, contains a fixpoint-free permutation.

Related work. Fixpoint-free permutations are also known as derangements
and they have received a lot of attention in combinatorics and group theory; see
[7] for a survey. Jordan proved in 1872 that every permutation group G that
acts transitively on a finite set 2 of size at least two contains a derangement
[14]. Arvind proved that in this situation one can compute in polynomial time
a derangement in G [2]. In the same paper, Arvind shows that the problem
whether a given permutation group G contains a permutation with at least k
non-fixpoints is fixed parameter tractable with respect to the parameter k.

2 Preliminaries

2.1 General notations

For integers 1 < i < j we write [¢, j] for the set {i,i+1,...,} and [j] for [1, j].
For a prime p and an integer n we denote with v,(n) the largest positive integer d
such that p? | n (it is also called the p-adic valuation of n). The greatest common
divisor of integers n1, . .., nk is denoted by ged(ny, ..., ng) and the least common
multiple is denoted by lem(nq, ..., ng).

We assume that the reader is familiar with basic concepts of complexity
theory; see [I] for more details. With L (also known as logspace) we denote the
class of all problems that can be solved on a deterministic Turing machine in
logarithmic space. It is a subset of P (deterministic polynomial time).



2.2 Permutations

For n > 1 we denote with Sym(n) the group of all permutations on [n]. The
identity permutation is denoted by id. For # € Sym(n) and a € [n] we also
write am for m(a). There are two standard representations for a permutation
m € Sym(n):

— The pointwise representation of m is the tuple [(1),7(2),...,7(n)].
— The cycle representation is a list 172 - - - % of pairwise disjoint cycles. Every
cycle ; is written as a list (ag, a1,...,a¢—1) (with a; € [n]) meaning that

kT = Ak+1 mod ¢- Fixpoints (cycles of the form (4)) are usually omitted in
the cycle representation, but sometimes we will explicitly list them.

Note that every cycle (ag,a1,...,as—1) can be replaced by a cyclic rotation.
Moreover since disjoint cycles commute, the order of the cycles «y; is not relevant.

Computing the pointwise representation from the cycle representation is pos-
sible in uniform AC° (this is a very small circuit complexity class contained in
L). On the other hand, the cycle representation can be computed in logspace
from the pointwise representation and no better complexity bound is known [9].
Therefore, as long as one works with complexity classes that contain L (which
will be the case in this paper), there is no reason to specify which of the above
two representations of permutations is chosen.

Let fpf(n) = {m € Sym(n) | ar # a for all a € [n]} be the set of all fixpoint-
free permutations. For m1,...,m € Sym(n) we write (mq,...,m) < Sym(n)
for the permutation group generated by 71,..., 7. The order ord(w) of 7 €
Sym(n) is the smallest integer i > 1 such that 7* = id. If 41 - - -y, is the cycle
representation of m and every cycle 7; has length ¢; then the multiset ct(n) :=
{t4,..., 0} is the cycle type of w. Note that in this situation we have

ord(m) = lem(4y, ..., Lg). (1)
The following lemma is well known, see e.g. [6]:

Lemma 1. For w,p € Sym(n) we have ct(w) = ct(p) if and only if there is a
o € Sym(n) such that m# = o~} po.

Also the following lemma seems to be folklore. For completeness we give a proof.

Lemma 2. Let x € N and v be a single cycle of length £. Then the cycle repre-
sentation of ¥* consists of ged(x, £) many disjoint cycles of length £/ ged(z, £).

Proof (Proof of Lemmal2 ). Let us first consider the case where ged(z, ) = 1.
Then there is a y € N with zy = 1 mod £. If v* consists of at least two cycles of
length strictly smaller than ¢, then the same holds for every power of 4*. This
contradicts (v*)¥ = ~*¥ = 5. This shows the statement of the lemma for the
case ged(z, 0) = 1.

For the general case let m = ged(z,£),k = ¢/m and z = 2/m. Then we can
write the cycle v as v = (ag,...,amkr—1) for some pairwise different a; € [n].



For all i € [0,m — 1] and d € [0,k — 1] we have adgm1iY™ = a(441)m+i Where all
arithmetics in the indices is done modulo ¢ = mk. We obtain

m—1

Y =" = H (Qis Ometis Q2metis > Qk—1)mti) -
1=0

Since ged(z, k) = 1 we obtain from the above case ged(z, ) = 1 that

(@is Gmtiy Q2mtis - - - a(kfl)eri)z
is a cycle of length k. Hence, v splits into m disjoint cycles of length k. a

For integers 1 < i < j < n we denote with ([i,j]) the cycle (i,i 4+ 1,...,7) €
Sym(n). We also use ([i]) instead of ([1,4]) for 2 < i < mn.
We will consider the following two computational problems in this paper:

Problem 1. CycleType is the following problem:
— input: m,...,Tm, p € Sym(n)
— question: Is there an element 7 € (m1,...,my) such that ct(r) = ct(p)?

Problem 2. FixpointFree is the following problem:
— input: m,...,Tm € Sym(n)
— question: Does fpf(n) N (w1, ..., T ) # 0 hold?

Note that the unary encoding of n (from Sym(n)) is implicitly part of the inputs
for CycleType and FixpointFree. It is easy to see that CycleType and FixpointFree
are in NP: on input 71, ..., 7, p € Sym(n) we guess a permutation m € Sym(n)
and then check in polynomial time whether (i) # € (m,...,my) [3] and (ii)
ct(m) = ct(p) (resp., w € fpf(n)).

For a given number k we denote with CycleType(k) the restriction of Cycle-
Type where m < k holds. In other words, the input permutation group is gener-
ated by k permutations. Moreover, if the input permutations 71, ..., 7y pairwise
commute, then we write CycleType(ab, k) (ab stands for “abelian”). Analogous
restrictions are defined for FixpointFree.

3 Cycle type in cyclic permutation groups

In this section, we study the problem CycleType(1), i.e., CycleType for cyclic
permutation groups. Let us fix a symmetric group Sym(n). We assume that n
is given in unary encoding for the following. Note that a brute-force algorithm
that iterates over all elements = € (m1) and thereby checks whether ct(w) = ct(p)
holds, needs exponential time. In [I3] Lemma 2.1] it is shown that for every
sufficiently large n € N, there exists a permutation m; € Sym(|2n?Inn]) such
that (m) has size greater than 2".

Let P,, be the set of all primes in [n]. One can easily produce a list p; < ps <
-+ < p, of all those primes in logspace. For this, one only needs the fact that
integer division for unary encoded integers can be done in logspace (actually,



integer division of binary encoded integers can be also done in logspace [12] but
this is not needed here). We will only consider numbers where all prime divisors
are from P,,. For such a number a we denote with pe(a) (for prime exponents)
the tuple (e1,...,e,) such that a = []\_, pi* is the prime factorizaton of a. We
will represent the exponents e; in unary notation. From the unary representation
of the number a € [n] one can easily compute in logspace the tuple pe(a). We
need the following fact:

Lemma 3. From a given permutation © € Sym(n) one can compute in logspace
the tuple pe(ord(r)).

Proof. Assume that the cycle representation m = y17y2 - - - %, is given. Let ¢; € [n]
be the length of the cycle ;. We then compute in logspace the tuple pe(¢;) =
(€i1y---,€iyr). Since ord(m) = lem(¢y, £a, ..., L) we have

pe(ord(m)) = (e1,...,er)

with e; = max{ey ;,...,ex }. Clearly, these exponents e; can be computed in
logspace. a

Lemma 4. For given permutations 7,p € Sym(n) one can check in logspace,
whether ord(p) | ord(w) holds.

Proof. Let pe(ord(p)) = (e1,...,e) and pe(ord(m)) = (e}, ..., el.). Then ord(p) |
ord(n) if and only if e; < ¢} for all ¢ € [r]. Therefore, the statement of the lemma
follows from Lemma Bl O

Lemma 5. There is a logspace algorithm with the following specification:
— anput: m, p € Sym(n) such that ord(p) | ord(w) and a € [n].
— output: ar? € [n] where d = ord(r)/ ord(p)

Proof. By Lemma [3l we can produce in logspace the tuples

Since ord(p) | ord(w) we have e; < e for all i € [r]. We then have pe(d) =
(f1,..., fr) with f; = e, — e; and this tuple can be also produced in logspace.
Let 12 - - - % be the cycle representation of 7. We then compute in logspace
the length ¢ € [n] of the unique cycle ; that contains a € [n]. We have ar? =
an®™°d ¢ Since all primes p; and exponents f; are given in unary notation, we
can compute in logspace the value d mod ¢ by going over the prime factorization
[T, p/" and making 37_, f; many multiplications modulo £. Once d mod ¢ is

computed, we can finally compute ar?™°4 ¢ in logspace. O

Lemma 6. Let 7,p € Sym(n). Then the following holds:
— Ifct(m) = ct(p) then ord(w) = ord(p).
— For all i € N we have ord(r) = ord(w?) if and only if ct(n) = ct(n?).



Proof. For the first statement note that if {¢1,¢s,...,¢} is the common cycle
type of m and p then ord(w) = lem(¢q,41,...,¢,) = ord(p) by (). Therefore
we only have to show that if ord(m) = ord(r?) then ct(r) = ct(n?). Let 7 =
y1 - be the cycle representation of m. Then we have ¢ = ~i .. 7}@ Since
ord(m) = ord(n?) we obtain ged(ord(n),i) = 1. Because of ord(vy;) | ord(m) we
get ged(ord(y;),4) = 1 for all j € [k]. By Lemma[2], v; and *y;- are cycles of the
same length and thus 7 and 7% have the same cycle type. ad

Theorem 1. CycleType(1) is in L.

Proof. Let m,p € Sym(n) be the two input permutations of CycleType(1). It is
asked whether there is a ¢ € N such that ct(7?) = ct(p). By Lemma @] we can
check in logspace whether ord(p) | ord(w) holds. If this is not the case, then
by the first statement of Lemma [6] there is no ¢ such that ct(n?) = ct(p) and
we can immediately reject. Let us now assume that ord(p) | ord(w) and let
d = ord(m)/ ord(p) in the following. Note that ord(n?) = ord(p).

Claim 1. There is a ¢ € N such that ct(7?) = ct(p) if and only if ct(7?) = ct(p).

Proof of Claim [ The direction from right to left is trivial. Hence, let us assume
that there is a ¢ such that ct(n?) = ct(p). By Lemma [l we have ord(n?) =
ord(p). We get ord(7?) = ord(p) = ord(w?). Since () has exactly one subgroup
of order ord(p) it follows that (79) = (n9). Let 79 = (7)? for i € N. Since
ord(7?) = ord(7?) = ord((n%)?), the second statement of Lemma [ implies that
7% and 7 (and hence p and 7¢) have the same cycle type. This shows Claim [

By Claim[] it suffices to check in logspace whether ct(7?) = ct(p). By Lemma[f]
we can compute in logspace the pointwise representation and hence the cycle
representation of 7. From the cycle representation of a permutation we can of
course compute in logspace the cycle type. a

4 Cycle type in the 2-generated abelian case

In this section we show that CycleType becomes NP-complete if the input per-
mutation group is abelian and generated by two elements.

Theorem 2. CycleType(ab, 2) is NP-complete.

Proof. Since CycleType is in NP (see the remark at the end of Section 2.2), it
remains to show NP-hardness. For this we exhibit a logspace reduction from
X3HS (exact 3-hitting set), which is the following problem:

— Input: a finite set S and a set B C 2% of subsets of S all of size 3.

— Question: Is there a subset T C S such that |TNC| =1 for all C € B?
Note that X3HS is the same problem as positive 1-in-3-SAT, which is a well-
known NP-complete problem; see [I1] for more details.

Let S be a finite set and B C 2° be a set of subsets of S all of size 3. W.lo.g.
assume that S = [n] and let B = {C4,...,Cp}. Let p1 < -+ < pa, be the first



2n primes with p; > 3. Moreover let ¢; < --- < gy, be the next m primes with
DPan < q1. We associate ¢ € S with the prime p; and C; € B with the prime g;.
We will work with the group

G = H Sym(pipn+i) X H Sym(p;,q;)°

i=1 j=1

which naturally embedds into Sym(N) for

n m
N =Y piputi+6Y_ p)a;.
i=1 j=1

Let f : G — Sym(N) be this embedding. When we talk of the cycle type of
an element g € G, we always refer to the cycle type of the permutation f(g) €
Sym(N).If g = (w1,...,Tn, P1,- -, Pem) € G, then this cycle type is obtained by
taking the disjoint union (of multisets) of the cycle types of all the m; and p;.
For j € [m] we define r; = q; - [];c, pi- Moreover for j € [m] and all d € [6]
we define the number s; 4 € [0,7; — 1] as the smallest positive integer satisfying
the following congruences in which we assume C; = {i1, 92,43} with i1 < iy < is:

s;1 = —1 mod p;, 552 = 0 mod p;, 55,3 = 0 mod p;,
55,1 = 0 mod p;, 552 = —1 mod p;, 55,3 = 0 mod p;,
55,1 = 0 mod p;, 55,2 = 0 mod p;, 55,3 = —1 mod p;,
551 = 1 mod g 552 =1 mod g; 553 = 1 mod g;
54 = —1 mod p;, 555 = —3 mod p;, 556 = —2 mod p;,
554 = —2 mod p;, 55 = —1 mod p;, 55,6 = —3 mod p;,
55,4 = —3 mod p;, 555 = —2 mod p;, 55,6 = —1 mod p;,
554 = 1 mod g 555 = 1 mod g 556 = 1 mod g;

Moreover, we define the number ¢; € [0,r; — 1] as the smallest positive integer
satisfying

t; = 1 mod p;, for all a € [3] and ¢; = 0 mod g;.
We define the input group elements p, 71,7 € G as follows, where ¢ ranges over

[n], j ranges over [m] and i1 < ia < i3 are the elements of C; (recall that ([m])
denotes the cycle (1,2,...,m)):



g = (71,...,~yn,51,...,5m)
vi = id
85 = (gD ([ ([ D)™ (D)™ ([ D™ ([rs D)

Note that 7 and m» commute.

We will show there are 1,2 € N such that ct(p) = ct(n]*73?) if and only if
there is a subset T' C S such that [T NC;| =1 for all j € [m)].

First suppose that there are z1,22 € N with ct(p) = ct(n]'752). We define

T'={i€[n] |22 # 0mod p;}. (2)

Claim 2. For all i € [n] and j € [m] we have 21 Z 0 mod p;, x1 Z 0 mod py,4;
and z; # 0 mod g;.

Proof of Claim[Z The claim follows from Lemma 2] and the following facts:
— (; and «; are cycles of length p;p, 4.
— o does not contain any cycle whose length is a multiple of pj,4;.
— t; = 0 mod ¢; and hence 72 also does not contain any cycle whose length is
a multiple of g;.
— p and m both contain 6 pairwise disjoint permutations of the form ([r;])?,
where z is not a multiple of g;. a

Claim 3. For all C; = {i1, 12,43} € B there is a (necessarily unique) a € [3] such
that zo2 #Z 0 mod p;, and zo = 0 mod p;, for all b € [3]\ {a}.

Proof of Claim[3. Let j € [m] and assume C; = {i1,42,43} with i1 < ia < is.
Consider n;. By Lemma [2] ([r;])Pi1P#2Pis consists of p;, p;,pi, cycles of length g;
and these are the only cycles of length ¢; in p. Hence, ﬁ;“é;@ must contain
exactly p;, pi,pi; cycles of length ¢;. By Lemma [2] this can only be achieved if
there is a unique a € [6] such that

Ve € [3] : 18,4 + x2t; = 0 mod p;, . (3)

Also note that
Vb € [6] : 1855 + x2t; = 21 # 0 mod ¢,

by Claim 2] and
Ve € [3] : xot; = 2 mod p;,.

We want to show that a € [3]. In order to get a contradiction, suppose that
a € {4,5,6}. The congruence 15, + z2t; = 0 mod p;, from (3) gives us

Ve € [3] : x2 = —x18;,4 mod p;, .
Then, for all b € [3] \ {a — 3} we have

T154,b + IQtj = T1S55,b — T1S5j,0a = 1171(—1 - Sjﬁa) ?é 0 mod Diy»



where z1 # 0 mod p;, by Claim[2and —1—s;,, # 0 mod p;, since s;, # —1 mod
p;, for b # a — 3 (also note that p;, > 2). Similarly, for all b € [3]\ {a — 3} we get

T154,3+b + IQtj = X155,34+b — L1Sj,a = T1 (Sj13+b — Sj,a) ?é 0 mod Piy s

where as above 21 # 0 mod p;, by Claim 2l and s; 344 — 55, # 0 mod p;, since
a#3+band sj, # s;34p mod p;, for all ¢ € [3].
Moreover, for all b € [3]\ {a — 3} and all ¢ € [3] \ {b} we have

1856 + Tatj = T155p — T15j,4 = —2155,¢ Z 0 mod p;, and

T15;34b + Totj = 15346 — 1550 = T1(5j,31b — Sj,a) Z 0 mod p;, .

Finally, for all b € [6] we have 15,5 + z2t; # 0 mod ¢; as pointed out above.
Taken together, these congruences yield for all b € [3] \ {a — 3}:

ng(:ElSj,b + .Igtj,Tj) = ng(.IlSj’gij + {Egtj, ’I”j) =1.

Hence, by Lemma [2, 57" 07* contains at least 4 cycles of length r;. However 7;
contains only 2 cycles of length r; and p does not contain any other cycles of
length r;, which gives us a contradiction. Thus we obtain a € [3] and by this

To = —215j,a = 21 Z 0 mod p;,,
where x1 # 0 mod p;, holds by Claim 2l Moreover, for all b € [3]\ {a} we obtain
To = =155, = 0 mod p;, .

This shows Claim ad

We can now show that |T'N C;| = 1 for all j € [m]. Let j € [m]. By Claim
there is a unique ¢ € C; such that x2 # 0 mod p;. Thus ¢ € T by (2]). Moreover
for all h € C; \ {i} we have z3 = 0 mod p;, by Claim [l and hence h ¢ T'. Thus,
we get |[TNC;| = 1.

For the other direction, suppose there is a subset 7' C [n] such that |[TNC;| =
1 for all j € [m]. We define 1 = 1 and z2 as the smallest positive integer
satisfying the congruences

_ J1modp, ifieT
To =
2 Omodp; ifigT

for all ¢ € [n]. Since z1 =1, p and 7n7'75? both contain a unique cycle of length

PiPn+i for all i € [n]. All other cycles in p and 77 752 result from powers of ([r;])
for some j € [m]. Consider a j € [m] and let C; = {i1, 42,43} with i1 < i2 < is.
By Lemma 2, 7; consists of

(1) pi,piypis cycles of length g¢;,
(ii) psi, cycles of length pi,pi,q;,
(iii) ps, cycles of length p;, pi,q;,
(iv) pi, cycles of length p;, pi,q; and



(v) 2 cycles of length r;.
We have to show that

81577 = (sl 72, () o3, (s
(e, (gt ) oot
contains the same cycle lengths with the same multiplicities as in (i)—(v). Note
that s;,4+22t; = 1 mod g; for all d € [6]. Let a € [3] be the unique element with
iq € T. Then z2 =1 mod p;, and 22 = 0 mod p;, for all b € [3]\ {a}. We obtain
Sja+ T2t; = —1+1=0mod p;, and
Sj.a + x2t; =04 0= 0mod p;, for all b € [3]\ {a}.

By Lemma [ ([r;])%="*2% consists of p;, pi,pi, cycles of length ;. Moreover

5j3+a +x2t; = —1+1=0mod p;, and
$j,3+a T CCQtj = S8j,3+a T+ 0 ?é 0 mod Di, for all b € [3] \ {CL}

(for the second point we use the fact that all primes p; are larger than 3). By
Lemma [ ([r;])®2+=**2% consists of p;, cycles of length q; [Ty () ay Piy- For
all b € [3]\ {a} we have

S5+ 22t; =0+ 1=1mod p;,,
$5b + 22t; = 55 + 0= —1mod p;, and
Sjb + xat; = s;p + 0 = 0mod p;,, where {c} = [3] \ {a, b}.

By Lemma 2 ([r;])%++*2% consists of p;. cycles of length g¢;p;,pi, with {c} =
[3] \ {a,b}. Finally, for all b € [3] \ {a} we have

85,34b + xat; = 85346 + 1 5_'5 0 mod Pi, and
Sj3+b + Tat; = Sj3+6 + 0 F 0 mod p;, for all ¢ € [3]\ {a}.

Hence, ([r;])%3+¢F224 is a single cycle of length r;. This shows that ct(n;) =
ct(B;67*) and concludes the proof of the theorem. O

The construction from the previous proof yields the following additional result:

Corollary 1. The following problem is NP-complete:
— input: p, 71,2 € Sym(n) such that w1 and mo commute
— question: Is there is a w € w1 (m2) such that ct(p) = ct(m)?

Proof. The instance p, w1, w2 of CycleType(ab, 2) that we constructed in the proof
of Theorem 2l has the property that there are 1, z2 € N such that p and #7752
have the same cycle type if and only if there is o € N such that p and w732

have the same cycle type. This yields the corollary. a

Whereas it can be decided in logspace whether a cyclic permutation group ()
contains a permutation with a given cycle type (Theorem [I]), the same problem
for cosets of cyclic permutation groups is NP-complete (Corollary [).



5 Fixpoint freeness in the 2-generated abelian case

Our main result for the problem FixpointFree is:

Theorem 3. FixpointFree(ab,2) is NP-complete.

Proof. We give a logspace reduction from 3-SAT (the satisfiability problem for
conjunctions of clauses, where every clause consists of exactly three literals and
a literal is either a boolean variable = or a negated boolean variable Z). For
this take a finite set of variables X = {z1,...,z,} and a set of clauses C =
{C1,...,Cn}. Every C; € C is a set of three literals. When we write C; as
Cj = {Z4y, Tiy, Tiy }, every Z;, is either z;, or Z;, and we always assume that
i1 < i3 < i3. A truth assignment o : X — {0,1} is implicitly extended to all
literals by setting o(Z;) = 1 — o(z;).

Let p1,...,Pn,P1,--.,Dn be the first 2n primes. We associate the positive
literal z; with p; and the negative literal Z; with p; and define

. pi if Ty = x4,
pi = _

For the clause C; = {%;,,%i,, %, } define r; = P;, DiyDiy. Moreover, for all i €
[n],1 € [p; — 1] and k € [p; — 1] let s;,;,, be the unique number in [p;p; — 1] with

sitk =lmodp; and s;;, =k modp;.

We will work with the group

n

G=]] (Sym(pi) x Sym(pi) x Sym(piﬁi)(’”‘”@‘”“) x [ Sym(ry).

i=1 j=1

The group G naturally embeds into Sym(N) for

n

N = Z(Pi +0i+pipi((pi— D)@ — 1)+ 1)) + er'
i=1 =

Now we define the input permutations 7, and 7o as follows, where ¢ ranges over
[n], I ranges over [p; — 1], k ranges over [p; — 1] and j ranges over [m]:

m = (a1, ., Qn, P1,. .., Bm) With

Qg = (041',17 Qj2, .3, X115+, O‘i,pifl,ﬁifl)
i1 = ([pi])
;2 = ([pi])
;3 =id

ik = ([pipi])*ot*
B, =id



T2 = (715-'-;771751,-.-,5”1) with
Vi = (Vi 1y Vi,25 Vi3> Vi, 1,1y - -+ s Vispi—1,p5—1)

Vi1 = iz = id
Vi3 = Vik = ([piDi])
6 = ([rs])
Note that m; and 7wy commute. We will show that C is satisfiable if and only if

21,22

there are z1, 2o € N such that n7'75> € fpf(N).
First, suppose that there are z1, 22 € N such that 77732 € fpf(V).

Claim 4. For all i € [n] we have z; #Z 0 mod p; and z; #Z 0 mod p;.

We have o7/ = aj} = ([pi])** and hence by Lemma [ we obtain 21 #
0 mod p;. Analogously we obtain z; # 0 mod p;. O

Claim 5. For all i € [n] we have z5 = 0 mod p; if and only if 2o #Z 0 mod p;.
Assume that zo = 0 mod p; and z3 = 0 mod p;. Then we obtain by
a7y =% = (pipi))™ = id

a contradiction. Now assume that zo Z 0 mod p; and z3 #Z 0 mod p;. Since by
Claim [ we have z; Z 0 mod p; and z; #Z 0 mod p; we can define [ € [p; — 1] and
k € [p; — 1] as the smallest positive integers satisfying the congruences

= —222f1 mod p; and k= —222f1 mod p;.
From this we obtain s;;; = —zzzl_l mod p;p; and hence
@y Vite = (pipi])* 0 2 (pipi])* = (pipi]) ™ ([pipi])** = id,
which is again a contradiction. This shows Claim ad

Claim 6. For all j € [m] there is an a € [3] such that zo #Z 0 mod p;,, where
C; = {Zirs Zig, Ti }-

Since we must have ;167 = 0% = ([r;])** € fpf(r;) we must have 22 # 0 mod

Tj = Di, Di,Dis- Hence, there is an a € [3] such that z; # 0 mod p;, . O
We define the truth assignment o : X — {0,1} by

() 1 if 29 #Z 0 mod p;
o\xr;) =
0 if zo =0 mod p;

for all ¢ € [n] and show that every clause in C contains a literal that is mapped
to 1 by 0. Let j € [m] and C; = {&;,, &i,, &i, ;- By Claim [0l there is an a € [3]
such that zo £ 0 mod p;,. If &;, = x;,, then p;, = p;, and 1 = o(x;,) = o(&;, ).
On the other hand, if Z;, = Z;_, then p;, = p;, and 22 = 0 mod p;, by Claim [l
We obtain 1 =1 —o(z;,) = 0(Z;,) = 0(Z;, ). Hence, o(Z;,) = 1 in both cases.



Vice versa suppose that there is a truth assignment o : X — {0, 1} such that
every clause in C contains a literal that is mapped to 1 by 0. We define z; =1
and z2 € N as the smallest positive integer satisfying the congruences

29 =0o(x;) mod p; and 20 =1-—o(z;) mod p; (4)

for all i € [n]. Then ni*n3? € fpf(N) follows from the following points, where
i€n),le€lp;—1], k € [p; — 1], and j € [m] are arbitrary:
~ 0177 = (i), 072 = ([pi) and afi =17 = ([pipi])* are fixpoint-
free.
— a7y it e = ([papi])*ov 72 s fixpoint-free since ;1 x + 22 = 1 # 0 mod p; if
o(z;) =0and s, 1+ 22 =k # 0mod p; if o(x;) = 1.
— B;roz? =67 = ([rj])* is fixpoint-free. To see this let C; = {¥;,, T, Tiy }
and a € [3] be such that o(Z;,) = 1. Then ) yields zo = 0(#;,) = 1 mod p;,
and hence zp # 0 mod 7;. O

Corollary 2. It is NP-complete to check whether mi{ms) Nfpf(n) # O holds for
given my,m € Sym(n) with mwy = Tam.

Proof. For ;1 and 7o from the proof of Theorem [B] there are z1,2z, € N with
mitmy? € fpf(n) if and only if there is z € N with my75 € fpf(n). O

6 Conclusion

We proved NP-completeness of the following two problem:

— Does a given 2-generated abelian permutation group contain a permutation
with a given cycle type (Theorem [2])?

— Does a given 2-generated abelian permutation group contain a fixpoint-free
permutation (Theorem [B])?

One might consider the problems CycleType and FixpointFree also for other
classes of permutation groups. Whereas FixpointFree is trivial for transitive per-
muation groups (by Jordan’s theorem [I4]), the complexity of CycleType for
transitive permuation groups seems to be open.
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