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Abstract
Enumerating the result set of a first-order query over a relational structure of bounded degree can
be done with linear preprocessing and constant delay. In this work, we extend this result towards
the compressed perspective where the structure is given in a potentially highly compressed form by
a straight-line program (SLP). Our main result is an algorithm that enumerates the result set of a
first-order query over a structure of bounded degree that is represented by an SLP satisfying the
so-called apex condition. For a fixed formula, the enumeration algorithm has constant delay and
needs a preprocessing time that is linear in the size of the SLP.
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1 Introduction

First order model checking (i.e., deciding whether an FO-sentence φ holds in a relational
structure U , U |= φ for short) is a classical problem in computer science and its complexity
has been thoroughly investigated; see, e.g., [21, 34, 40]. In database theory, it is of importance
due to its practical relevance for evaluating SQL-like query languages in relational databases.
FO model checking is PSPACE-complete when φ and U are both part of the input, but it
becomes fixed-parameter tractable (even linear fixed-parameter tractable) with respect to
the parameter |φ| when U is restricted to a suitable class of relational structures (see the
paragraph on related work below for details), while for the class of all structures it is not
fixed-parameter tractable modulo certain complexity assumptions. This is relevant, since in
practical scenarios queries are often small, especially in comparison to the data (represented
by the relational structure) that is often huge.

FO model checking (i.e., checking a Boolean query that returns either true or false) reduces
to practical query evaluation tasks and is therefore suitable to transfer lower bounds. However,
from a practical point of view, FO-query enumeration is more relevant. It is the problem
of enumerating without repetitions for an FO-formula φ(x1, . . . , xk) with free variables
x1, . . . , xk the result set φ(U) of all tuples (a1, . . . , ak) ∈ Uk such that U |= φ(a1, . . . , ak).
Since φ(U) can be rather large (exponential in k in general), the total time for enumeration
is not a good measure for the performance of an enumeration algorithm. More realistic
measures are the preprocessing time (used for performing some preprocessing on the input)
and the delay, which is the maximum time needed between the production of two consecutive
output tuples from φ(U). In data complexity (where we consider |φ| to be constant), the best
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we can hope for is linear preprocessing time (i.e., f(|φ|) · |U| for a computable function f) and
constant delay (i.e., the delay is f(|φ|) for some computable function f and therefore does
not depend on |U|). Over the last two decades, many of the linear time (with respect to data
complexity) FO model checking algorithms for various subclasses of structures have been
extended to FO-query enumeration algorithms with linear (or quasi-linear) time preprocessing
and constant delay (see the paragraph on related work below for the relevant literature).

In this work, we extend FO-query enumeration towards the compressed perspective, i.e.,
we wish to enumerate the result set φ(U) in the scenario where U is given in a potentially
highly compressed form, and we want to work directly on this compressed form without
decompressing it. In this regard, we contribute to a recent research effort in database theory
that is concerned with query evaluation over compressed data [48, 54, 62, 63]. Let us now
explain this framework in more detail.

Query evaluation over compressed data. Query evaluation over compressed data combines
the classical task of query evaluation with the paradigm of algorithmics on compressed data
(ACD), i.e., solving computational tasks directly on compressed data objects without prior
decompression. ACD is an established algorithmic paradigm and it works very well in the
context of grammar-based compression with so-called straight-line programs (SLPs). Such
SLPs use grammar-like formalisms in order to specify how a data object is constructed from
small building blocks. For example, if the data object is a finite string w, then an SLP is just
a context-free grammar for the language {w}. For instance, the SLP S → AA, A→ BBC,
B → ba, C → cb (where S,A,B,C are nonterminals and a, b, c are terminals) produces the
string babacbbabacb. While SLPs achieve exponential compression in the best case, there are
also fast heuristic compressors that yield decent compression in practical scenarios. Moreover,
SLPs are very well suited for ACD; see, e.g., [42].

An important point is that the ACD perspective can lead to dramatic running time
improvements: if the same problem can be solved in linear time both in the uncompressed
and in the compressed setting (i.e., linear in the compressed size), then in the case that the
input can be compressed from size n to size O(logn) (which is possible with SLPs in the best
case), the algorithm for the compressed data has a running time of O(logn) (compared to
O(n) for the algorithm working on uncompressed data). An important problem that shows
this behavior is for instance pattern matching in compressed texts [23].

SLPs are most famous for strings (see [5, 10, 23, 24] for some recent publications and [42] for
a survey). What makes them particularly appealing for query evaluation is that their general
approach of compressing data objects by grammars extends from strings to more complex
structures like trees [25, 44, 46, 47] and hypergraphs (i.e., general relational structures) [38,
43, 49, 50], while, at the same time, their good ACD-properties are maintained to some
extend. This is due to the fact that context-free string grammars extend to context-free tree
grammars [61] (see also [27]) and to hyperedge replacement grammars [6, 29] (see also [16]).

In this work, we are concerned with FO-query enumeration for relational structures
that are compressed by SLPs based on hyperedge replacement grammars (also known as
hierarchical graph definitions or SL HR grammars; see the paragraph on related work for
references). An example of such an SLP is shown in Figure 1. It consists of productions
(shown in Figure 1 on the left) that replace nonterminals (S, A, and B in Figure 1) by
their unique right-hand sides. Each right-hand side is a relational structure (a directed
graph in Figure 1) together with occurrences of earlier defined nonterminals and certain
distinguished contact nodes (labelled by 1 and 2 in Figure 1). In this way, every nonterminal
X ∈ {S,A,B} produces a relational structure val(X) (the value of X) with distinguished
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contact nodes. These structures are shown in Figure 1 on the right. When replacing for
instance the occurrence of B in the right hand side of S by val(B), one identifies for every
i ∈ {1, 2} the i-labelled contact node in val(B) with the node that is connected by the
i-labelled dotted edge with the B-occurrence in the right-hand side of S (these are the nodes
labelled with u and v in Figure 1).

Main result. It is known that FO-query enumeration for degree-bounded structures can be
done with linear preprocessing and constant delay [13, 30]. Moreover, FO model checking
for SLP-compressed degree-bounded structures can be done efficiently [43]. We combine
these two results and therefore extend FO-query enumeration for bounded-degree structures
towards the SLP-compressed setting, or, in other words, we extend FO model checking of
SLP-compressed structures to the query-enumeration perspective. A preliminary version of
our main result is stated below. It restricts to so-called apex SLPs. Roughly speaking, the
apex property demands that each graph replacing a nonterminal must not contain other
nonterminals at the “contact nodes” (the nodes the nonterminal was incident with). The
apex property is well known from graph language theory [16, 17, 18] and has been used for
SLPs in [43, 52].

I Theorem 1. Let d ∈ N be a constant. For an FO-formula φ(x1, . . . , xk) and a relational
structure U , whose Gaifman graph has degree at most d, and that is given in compressed
form by an apex SLP D, one can enumerate the result set φ(U) after preprocessing time
f(d, |φ|) · |D| and delay f(d, |φ|) for some computable function f .

Note that the preprocessing is linear in the compressed size |D| instead of the data size |U|.
We prove this result by extending the FO-query enumeration algorithm for uncompressed

structures from [30] to the SLP-compressed setting. For this we have to overcome considerable
technical barriers. The algorithm of [30] exploits the Gaifman locality of FO-queries. In the
preprocessing phase the algorithm computes for each element a ∈ U the r-sphere around a
for a radius r that only depends on the formula φ. This leads to a preprocessing time of
|U| · f(d, φ). For an SLP-compressed structure we cannot afford to iterate over all elements
of the structure. Inspired by a technique from [43], we will expand every nonterminal of
the SLP D locally up to a size that depends only on φ and d. This leads to at most |D|
substructures of size f(d, |φ|). Our enumeration algorithm then enumerates certain paths
in the derivation tree defined by D and for each such path ending in a nonterminal A it
searches in the precomputed local expansion of A for nodes with a certain sphere type.

Related work. In the uncompressed setting, there are several classes of relational structures
for which FO-query enumeration can be solved with linear (or quasi-linear) preprocessing
and constant delay, e.g., relational structures with bounded degree [8, 13, 30], low degree [14],
(locally) bounded expansion [31, 67], and structures that are tree-like [3, 32] or nowhere
dense [64]; see [7, 66] for surveys. Moreover, for conjunctive queries with certain acyclicity
conditions, linear preprocessing and constant delay is also possible for the class of all relational
structures [4, 7]. The algorithm from [30] is the most relevant one for our work.

Concerning other work on query enumeration on SLP-compressed data, we mention [54,
62, 63], which deals with constant delay enumeration for (a fragment of) MSO-queries on
SLP-compressed strings, and [48], which presents a linear preprocessing and constant delay
algorithm for MSO-queries on SLP-compressed unranked forests.

SLPs for (hyper)graphs were introduced as hierarchical graph descriptions by Lengauer
and Wanke [39] and have been further studied, e.g., in [9, 19, 20, 36, 37, 52, 51, 53]. Model
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checking problems for SLP-compressed graphs have been studied in [43] for FO and MSO,
[28] for fixpoint logics, and [1, 2] for the temporal logics LTL and CTL in the context
of hierarchical state machines (which are a particular type of graph SLPs). Particularly
relevant for this paper is a result from [43] stating that for every level ΣP

i of the polynomial
time hierarchy there is a fixed FO-formula for which the model checking problem for SLP-
compressed input graphs is ΣP

i -complete. In contrast, for apex SLPs the model checking
problem for every fixed FO-formula belongs to NL (nondeterministic logspace) [43]. This
(and the fact that FO-query enumeration reduces to FO model checking) partly explains the
restriction to apex SLPs in Theorem 1.

Compression of graphs via graph SLPs has been considered in [60] following a “Sequitur
scheme” [55] and in [50] following a “Repair scheme” [35] (see also [45]); note that both
compressors produce graph SLPs that may not be apex.

Another recent concept in database theory that is concerned with compressed representa-
tions of relational data and query evaluation are factorized databases (see [33, 56, 57, 58, 59]).
Intuitively speaking, in a factorized representation of a relational structure each relation R is
represented as an expression over the relational operators union and product that evaluates
to R. However, SLPs for relational structures and factorized representations cover completely
different aspects of redundancy: A factorized representation is always at least as large as
its active domain (i.e., all elements that occur in some tuple), while an SLP for a relational
structure can be of logarithmic size in the size of the universe of the structure. On the other
hand, small factorized representations do not seem to necessarily translate into small SLPs.

2 General Notations

Let N = {0, 1, 2, . . .}. For every k ∈ N, we set [k] = {1, 2, . . . , k}. For a finite alphabet A, we
denote by A∗ the set of all finite strings over A including the empty string ε. For a partial
f : A→ B let dom(f) = {a ∈ A : f(a) 6= ⊥} ⊆ A (where ⊥ /∈ B stands for undefined) and
ran(f) = {f(a) : a ∈ dom(f)} ⊆ B. For functions f : A→ B and g : B → C we define the
composition g ◦ f : A→ C by (g ◦ f)(a) = g(f(a)) for all a ∈ A.

A partial k-tuple over a set A is a partial function t : [k] → A. If dom(t) = [k], then
we also say that t is a complete k-tuple or just a k-tuple; in this case we also write t in
the conventional form (t(1), t(2), . . . , t(k)). Two partial k-tuples t1 and t2 are disjoint if
dom(t1) ∩ dom(t2) = ∅. In this case, their union t1 t t2 is the partial k-tuple defined by
(t1 t t2)(j) = ti(j) if j ∈ dom(ti) for i ∈ {1, 2} and (t1 t t2)(j) = ⊥ if j /∈ dom(t1)∪ dom(t2).

2.1 Directed acyclic graphs
An ordered dag (directed acyclic graph) is a triple G = (V, γ, ι), where V is a finite set of
nodes, γ : V → V ∗ is the child-function, the relation E := {(u, v) : u, v ∈ V, v occurs in γ(u)}
is acyclic, and ι ∈ V is the initial node. The size of G is |G| =

∑
v∈V (1 + |γ(v)|). A node

v ∈ V with |γ(v)| = 0 is called a leaf.
A path in G (from v0 to vn) is a sequence p = v0i1v1i2 · · · vn−1invn ∈ V (NV )∗ such that

1 ≤ ik ≤ |γ(vk−1)| for all k ∈ [n]. The length of this path p is n (we may have n = 0 in
which case p = v0) and we also call p a v0-to-vn path or v0-path if the end point vn is not
important. An ι-path is also called an initial path. We extend this notation to subsets of V
in the obvious way, e.g., for A,B ⊆ V and v ∈ V we talk about A-to-v paths, A-to-B paths,
A-to-leaf paths (where “leaf” refers to the set of all leaves of the dag), initial-to-leaf paths,
etc. For a v0-to-v1 path p = p′v1 and a v1-to-v2 path q = v1q

′ we define the v0-to-v2 path
pq = p′v1q

′ (note that if we just concatenate p and q as words, then we have to replace the
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double occurrence v1v1 by v1 to obtain pq). We say that the path p is a prefix of the path q
if there is a path r such that q = qr.

Since we consider ordered dags, there is a natural lexicographical ordering on all v-paths
(i.e., all paths that start in the same node v). More precisely, for two different v-paths p
and q we write p < q if either p is a proper prefix of q or we can write p and q as p = rip′,
q = rjq′ for paths r, p′, q′ and i, j ∈ N with i < j.

2.2 Relational structures and first order logic

A signature R is a finite set consisting of relation symbols ri (i ∈ I) and constant symbols cj
(j ∈ J). Each relation symbol ri has an associated arity αi. A structure over the signature
R is a tuple U = (U, (Ri)i∈I , (uj)j∈J), where U is a finite non-empty set (the universe of
U), Ri ⊆ Uαi is the relation associated with the relation symbol ri, and uj ∈ U is the
constant associated with the constant symbol cj . Note that we restrict to finite structures.
If the structure U is clear from the context, we will identify Ri (uj , respectively) with the
relation symbol ri (the constant symbol cj , respectively). Sometimes, when we want to refer
to the universe U , we will refer to U itself. For instance, we write a ∈ U for ua ∈ U , or
f : [n] → U for a function f : [n] → U . The size |U| of U is |U |+

∑
i∈I αi · |Ri|. As usual,

a constant a ∈ U may be replaced by the unary relation {a}. Thus, in the following, we
will only consider signatures without constant symbols, except when we explicitly introduce
constants. Let R = {ri : i ∈ I} be such a signature (we call it a relational signature) and
let U = (U, (Ri)i∈I) be a structure over R (we call it a relational structure). For relational
structures U1 and U2 over the signature R, we write U1 ' U2 to denote that U1 and U2 are
isomorphic. A substructure of U = (U, (Ri)i∈I) is a structure (V, (Si)i∈I) such that V ⊆ U
and Si ⊆ Ri for all i ∈ I. The substructure of U induced by V ⊆ U is (V, (Ri ∩ V αi)i∈I).
We define the undirected graph G(U) = (U,E) (the so-called Gaifman graph of U), where
E contains an edge (a, b) if and only if there is a binary relation Ri (i ∈ I) and a tuple
(a1, . . . , aαi

) ∈ Ri with {a, b} ⊆ {a1, . . . , aαi
}. The degree of U is the maximal degree of a

node in G(U). If U has degree at most d, we also say that U is a degree-d bounded structures.
We use first-order logic (FO) over finite relational structures; see [15] for a detailed

introduction and Appendix A for some standard notations. For an FO-formula ψ(x1, . . . , xk)
over the signature R with free variables x1, . . . , xk and a relational structure U = (U, (Ri)i∈I)
over R and a1, . . . , ak ∈ U , we write U |= ψ(a1, . . . , ak) if ψ is true in U when the variable
xi is set to ai for all i ∈ [k]. Hence, an FO-formula ψ(x1, . . . , xk) can be interpreted as an
FO-query that, for a given structure U , defines a result set

ψ(U) = {(a1, . . . , ak) ∈ Uk : U |= ψ(a1, . . . , ak)}.

The quantifier rank qr(ψ) of an FO-formula ψ is the maximal nesting depth of quantifiers in
ψ.

In the rest of the paper, we assume that the signature only contains relation symbols of
arity at most two. It is folklore that FO model checking and FO-query enumeration over
arbitrary signatures can be reduced to this case; see Appendix A for a possible construction.
This construction can be carried out in linear time (in the size of the formula and the
structure) and it increase the degree of the structure as well as the quantifier rank of the
formula by at most one.
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2.3 Distances, spheres and neighborhoods
Let us fix a relational signature R (containing only relation symbols of arity at most two)
and let U = (U, (Ri)i∈I) be a structure over this signature. We say that U is connected,
if its Gaifman graph G(U) is connected. The distance between elements a, b ∈ U in the
graph G(U) is denoted by distU (a, b) (it can be ∞). For subsets A,B ⊆ U we define
distU (A,B) = min{distU (a, b) : a ∈ A, b ∈ B}. For two partial tuples (of any arity) t, t′ over
U let distU (t, t′) = distU (ran(t), ran(t′)).

Fix a constant d ≥ 2. We will only consider degree-d bounded structures in the following.
Let us fix such a structure U (over the relational signature R). Take additional constant
symbols c1, c2, . . . called sphere center constants. For an r ≥ 1 and a partial k-tuple t : [k]→ U
we define the r-sphere SU,r(t) = {b ∈ U : distU (t, b) ≤ r}. The r-neighborhood NU,r(t) of
t is obtained by taking the substructure of U induced by SU,r(t) and then adding every
node t(i) (i ∈ dom(t)) as the interpretation of the sphere center constant ci. Hence, it is a
structure over the signature R∪ {ci : i ∈ dom(t)}. The r-neighborhood of a k-tuple has at
most k ·

∑r
i=0 d

i ≤ k · dr+1 elements (here, the inequality holds since we assume d ≥ 2).
We use the above definitions also for a single element a ∈ U in place of a tuple t; formally

a is identified with the 1-tuple t such that t(1) = a. We are mainly interested in r-spheres
and r-neighborhoods of complete k-tuples, but the corresponding notions for partial k-tuples
will be convenient later. We also drop the subscript U from the above notations if this does
not cause any confusion.

A (k, r)-neighborhood type is an isomorphism type for the r-neighborhood of a complete
k-tuple in a degree-d bounded structure. More precisely, we can define a (k, r)-neighborhood
type as a degree-d bounded structure B over the signature R∪ {c1, . . . , ck} such that

the universe of B is of the form [`] for some ` ≤ k · dr+1 and
for every j ∈ [`] there is i ∈ [k] such that distB(ai, j) ≤ r, where, for every i ∈ [k], ai is
the interpretation of the sphere center constant ci.

From each isomorphism class of (k, r)-neighborhood types we select a unique representative
and write Tk,r for the set of all selected representatives. Then, for every k-tuple ā ∈ Uk there
is a unique B ∈ Tk,r such that NU,r(ā) ' B; we call it the (k, r)-neighborhood type of ā and
say that ā is a B-tuple. In case k = 1 we speak of B-nodes instead of B-tuples, write Tr for
T1,r and call its elements r-neighborhood types instead of (1, r)-neighborhood types.

For every (k, r)-neighborhood type B ∈ Tk,r there is an FO-formula ψB(x1, . . . , xk) such
that for every degree-d bounded structure U and every k-tuple ā ∈ Uk we have U |= ψB(ā) if
and only if ā is a B-tuple.

2.4 Enumeration algorithms and the machine model
FO-query enumeration is the following problem: Given an FO-formula φ(x1, . . . , xk) over some
signature R and a relational structure U over R, we want to enumerate all tuples from φ(U)
in some order and without repetitions, i.e., we want to produce a sequence (t1, . . . , tn, tn+1)
with {t1, . . . , tn} = φ(U), |φ(U)| = n and tn+1 = EOE is the end-of-enumeration marker. An
algorithm for FO-query enumeration starts with a preprocessing phase in which no output
is produced, followed by an enumeration phase, where the elements t1, t2, . . . , tn, tn+1 are
produced one after the other. The running time of the preprocessing phase is called the
preprocessing time, and the delay measures the maximal time between the computation of
two consecutive outputs ti and ti+1 for every i ∈ [n].

Usually, one restricts the input structure U to some subclass Cd of relational structures that
is defined by some parameter d (in this paper, Cd is the class of degree-d bounded structures).
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We say that an algorithm for FO-query enumeration for Cd has linear preprocessing and
constant delay, if its preprocessing time is O(|U| · f(d, |φ|)) and its delay is O(f(d, |φ|)) for
some computable function f . This complexity measure where the query φ is considered to
be constant and the running time is only measured in terms of the data, i.e., the size of the
relational structure, is also called data complexity. In data complexity, linear preprocessing
and constant delay is considered to be optimal (since we assume that the relational structure
has to be read at least once). As mentioned in the introduction, FO-query enumeration can
be solved with linear preprocessing and constant delay for several classes Cd.

For proving upper bounds in data complexity, we often have to argue that certain
computational tasks can be performed in time f(·) (or |U| ·f(·)) for some function f . In these
cases, without explicitly mentioning this in the remainder, f will always be a computable
function (actually, f will be elementary, i.e., bounded by an exponent tower of fixed height).
The arguments for f will only depend on the parameter d and the formula size |φ|.

The special feature of this work is that we consider FO-query enumeration in the setting
where the relational structure U is not given explicitly, but in a potentially highly compressed
form, and our enumeration algorithm must handle this compressed representation rather than
decompressing it. Then the structure size |U| will be replaced by the size of the compressed
representation of U in all time bounds. This aspect shall be explained in detail in Section 4.

We use the standard RAM model with uniform cost measure as our model of computation.
We will make some further restrictions for the register length tailored to the compressed
setting in Section 4.2.

3 FO-Enumeration over Uncompressed Degree-Bounded Structures

In this section, we fix a relational signature R = {Ri : i ∈ I}, constants d ≥ 2 and ν,
a degree-d bounded structure U = (U, (Ri)i∈I) over the signature R, and an FO-formula
φ(x1, . . . , xk) over the signature R with qr(φ) = ν. Our goal is to enumerate the set φ(U)
after a linear time preprocessing in constant delay. Before we consider the case where the
structure U is given in a compressed form, we will first outline the enumeration algorithm
from [30] for the case where U is given explicitly (with some modifications). In Section 5 we
will extend this algorithm to the compressed setting.

By a standard application of the Gaifman locality of FO (see Appendix B.1), we first
reduce the enumeration of φ(U) to the enumeration of all B-tuples from Uk for a fixed
B ∈ Tk,r (for some r ≤ 7ν). Recall that B contains at most k · dr+1 elements, and this upper
bound only depends on d and the formula φ. To simplify notation, we assume that in B the
sphere center constant ci is interpreted by i ∈ [k]. In particular, the sphere center constants
are interpreted by different elements. This is not a real restriction; see Appendix B.2.

In order to enumerate all B-tuples, we will factorize B into its connected components. In
order to accomplish this, we need the following definitions. We first define the larger radius

ρ = 2rk − r + k − 1. (1)

Every ρ-neighborhood of an element a ∈ U has at most dρ+1 elements. Recall that a
ρ-neighborhood type is a degree-d bounded structure over the signature R1 := R∪{c1} with
a universe [`] for some ` ≤ dρ+1. W.l.o.g. we assume that the sphere center constant c1 is
interpreted by the element 1 in a ρ-neighborhood type. Hence, every j ∈ [`] has distance at
most ρ from 1. Moreover, the ρ-neighborhood types in Tρ are pairwise non-isomorphic.

Assume that our fixed (k, r)-neighborhood type B splits intom ≥ 1 connected components
CB1 , . . . , CBm. Thus, every CBi is a connected induced substructure of B, every node of B belongs
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to exactly one CBi , and there is no edge in the undirected graph G(B) between two different
components CBi . Let Di = CBi ∩ [k] be the set of sphere centers that belong to the connected
component CBi . We must have Di 6= ∅. Let ni = min(Di) (we could also fix any other element
from Di). Every node in CBi has distance at most r from some j ∈ Di. Since CBi is connected,
it follows that every node in CBi has distance at most r+ (k− 1)(2r+ 1) = 2rk− r+k− 1 = ρ

from ni (this is in fact true for every j ∈ Di instead of ni). A consistent factorization of our
(k, r)-neighborhood type B is a tuple

Λ = (B1, σ1,B2, σ2, . . . ,Bm, σm)

with the following properties for all i ∈ [m]:
Bi ∈ Tρ and σi : [k]→ Bi is a partial k-tuple with dom(σi) = Di and σi(ni) = 1 (so, ni
is mapped by σi to the center of Bi) and
NBi,r(σi) ' CBi .

Clearly, the number of possible consistent factorizations of B is bounded by f(d, |φ|).
For a ρ-neighborhood type B′, a B′-node a ∈ U and a partial k-tuple σ : [k] → B′ we

moreover fix an isomorphism πa : B′ → NU,ρ(a) (this isomorphism is not necessarily unique)
and define the partial k-tuple ta,σ : [k]→ U by ta,σ(j) = πa(σ(j)) for all j ∈ dom(σ). Note
that, by definition, πa(1) = a.

Take a consistent factorization Λ = (B1, σ1, . . . ,Bm, σm) of B. We say that an m-tuple
(b1, . . . , bm) ∈ Um is admissible for Λ if the following conditions hold:

for all i ∈ [m], bi is a Bi-node, and
for all i, j ∈ [m] with i 6= j we have

distU (tbi,σi , tbj ,σj ) > 2r + 1. (2)

Finally, with an m-tuple b̄ = (b1, . . . , bm) we associate the k-tuple

Λ(b̄) = tb1,σ1 t tb2,σ2 t · · · t tbm,σm
.

Note that tbi,σi
(ni) = πbi

(σi(ni)) = πbi
(1) = bi.

We claim that in order to enumerate all B-tuples ā ∈ Uk, it suffices to enumerate for
every consistent factorization Λ = (B1, σ1, . . . ,Bm, σm) of B the set of all m-tuples b̄ ∈ Um
that are admissible for Λ. If we can do this, then we replace every output tuple b̄ ∈ Um
by Λ(b̄) ∈ Uk. Note that Λ(b̄) can be easily computed in time O(k) from the tuple b̄, the
isomorphisms πbi , and the partial k-tuples σi : [k]→ Bi. The correctness of this algorithm
follows from the following two lemmas (with full proofs in Appendix B.3):

I Lemma 2. If Λ is a consistent factorization of B and b̄ ∈ Um is admissible for Λ then
Λ(b̄) ∈ Uk is a B-tuple.

I Lemma 3. If ā ∈ Uk is a B-tuple then there are a unique consistent factorization Λ of B
and a unique m-tuple b̄ ∈ Um that is admissible for Λ and such that ā = Λ(b̄).

3.1 Enumeration algorithm for uncompressed structures
Let us fix a (k, r)-neighborhood type B and a consistent factorization Λ = (B1, σ1, . . . ,Bm, σm)
of B. By Lemmas 2 and 3, it suffices to enumerate (with linear preprocessing and constant
delay) the set of all ā ∈ Um that are admissible for Λ. In the preprocessing phase we compute

for every i ∈ [m] a list Li containing all Bi-nodes from U and
for every a ∈ Li an isomorphism πa : Bi → Nρ(a).
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Algorithm 1 extend(s)

1 ` := |s|+ 1;
2 for all a ∈ L` such that sa is admissible do
3 if ` = m then output sa else extend(sa)
4 return

It is straightforward to compute these data in time |U| · f(d, |φ|) (in Section 5, where we deal
with the more general SLP-compressed case, this is more subtle). We classify each list Li as
being short if |Li| ≤ k · d2ρ+2r+2 and as being long otherwise. Without loss of generality, we
assume that, for some 0 ≤ q ≤ m the lists L1, . . . , Lq are short and the lists Lq+1, . . . , Lm
are long (note that this includes the cases that all lists are short or all lists are long).

Our enumeration procedure maintains a stack of the form a1a2 · · · a` with 0 ≤ ` ≤ m and
ai ∈ Li for all i ∈ [`]. Note that if ` = 0, then we have the empty stack ε. Such a stack is
called admissible for Λ (or just admissible), if for all i, i′ ∈ [`] with i 6= i′ and all j ∈ dom(σi)
and j′ ∈ dom(σi′) we have distU (πai

(σi(j)), πai′ (σi′(j
′))) > 2r + 1. Note that the empty

stack as well as every stack a1 with a1 ∈ L1 are admissible.
The general structure of our enumeration algorithm is a depth-first-left-to-right (DFLR)

traversal over all admissible stacks s. For this, it calls the recursive procedure extend (shown
as Algorithm 1) with the initial admissible stack s = ε. Note that whenever extend(s) is
called, |s| < m holds. It is clear that the call extend(ε) triggers the enumeration of all
admissible stacks a1a2 · · · am. In an implementation one would store s as a global variable.

Let us assume that we can check whether a stack s is admissible in time f(d, |φ|) (it is
not hard to see that this is possible, and this aspect will anyway be discussed in detail for the
compressed setting in Section 5). After the initial call extend(ε), the algorithm constructs
an admissible stack s with |s| = q (or terminates) after time bounded in d, k, r and ρ (since
the lists L1, . . . , Lq are short). If some a ∈ Lq+1 is non-admissible, i.e., the stack sa is not
admissible, then distU (tai,σi , ta,σq+1) ≤ 2r+ 1 and therefore dist(ai, a) ≤ 2ρ+ 2r+ 1 for some
i ∈ [q]. Thus, the total number of non-admissible elements from Lq+1 can be bounded by a
function of d, k, r and ρ. Consequently, since Lq+1 is long, the algorithm necessarily finds
some admissible a ∈ Lq+1 (or terminates) after time bounded in d, k, r and ρ. From this
observation, the following lemma can be concluded with moderate effort; see Appendix B.4.

I Lemma 4. The delay of the above enumeration procedure is bounded by f(d, |φ|).

4 Straight-Line Programs for Relational Structures

In this section, we introduce the compression scheme that shall be used to compress relational
structures. We first need the definition of pointed structures.

For n ≥ 0, an n-pointed structure is a pair (U , τ), where U is a structure and τ : [n]→ U is
injective. The elements in ran(τ) (U \ ran(τ), respectively) are called contact nodes (internal
nodes, respectively). The node τ(i) is called the i-th contact node.

A relational straight-line program (r-SLP or just SLP) is a tuple D = (R, N, S, P ), where
R is a relational signature,
N is a finite set of nonterminals, where every A ∈ N has a rank rank(A) ∈ N,
S ∈ N is the initial nonterminal, where rank(S) = 0, and
P is a set of productions that contains for every A ∈ N a unique production A →
(UA, τA, EA) with (UA, τA) a rank(A)-pointed structure over the signature R and EA
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a multiset of references of the form (B, σ), where B ∈ N and σ : [rank(B)] → UA is
injective.
Define the binary relation →D on N as follows: A →D B if and only if EA contains a
reference of the form (B, σ). Then we require that →D is acyclic. Its transitive closure
�D is a partial order that we call the hierarchical order of D.

Let |D| =
∑
A∈N (|UA|+

∑
(B,σ)∈EA

(1 + rank(B))) be the size of D. We define the ordered
dag dag(D) = (N, γ, S), where the child-function γ is defined as follows: Let B ∈ N and
let (B1, σ1), . . . , (Bm, σn) be an enumeration of the references in EB , where every reference
appears in the enumeration as many times as in the multiset EB . The specific order of the
references is not important and assumed to be somehow given by the input encoding of D
We then define γ(B) = B1 · · ·Bn.

We now define for every nonterminal A ∈ N a rank(A)-pointed relational structure
val(A) (the value of A). We do this on an intuitive level, a formal definition can be found in
Appendix C. If EA = ∅, then we define val(A) = (UA, τA). If, on the other hand, EA 6= ∅, then
val(A) is obtained from (UA, τA) by expanding all references in EA. A reference (B, σ) ∈ EA
is expanded by the following steps: (i) create the disjoint union of UA and UB, (ii) merge
node τB(i) ∈ UB with node σ(i) ∈ UA for every i ∈ [rank(B)], (iii) remove (B, σ) from EA,
and (iv) add all references from EB to EA. Due to the fact that →D is acyclic, we can keep
on expanding references (the original ones from EA and the new ones added by the expansion
operation) in any order until there are no references left. The resulting relational structure
is val(A); see Example 5 and Figure 1 for an illustration.

We define val(D) = val(S). Since rank(S) = 0 it can be viewed as an ordinary (0-pointed)
structure. It is not hard to see that |val(D)| ≤ 2O(|D|) and that this upper bound can be
also reached. Thus, D can be seen as a compressed representation of the structure val(D).

In Section 2.2 we claimed that FO-query enumeration can be reduced to the case where
R only contains relation symbols of arity at most two (with the details given in Appendix A).
It is easy to see that this reduction can be also done in the SLP-compressed setting simply
by applying the reduction to all structures UA; see Appendix C for details.

We say that the SLP D = (R, N, S, P ) is apex, if for every A ∈ N and every reference
(B, σ) ∈ EA we have ran(σ) ∩ ran(τA) = ∅. Thus, contact nodes of a right-hand side cannot
be accessed by references. Apex SLPs are called 1-level restricted in [52]. It is easy to
compute the maximal degree of nodes in G(val(D)) for an apex SLP D: for every node v
in a structure UA compute dv as the sum of (i) the degree of v in G(UA) and (ii) for every
reference (B, σ) ∈ EA and every i ∈ [rank(B)] with v = σ(i), the degree of τB(i) in G(UB).
Then the maximum of all these numbers dv is the maximal degree of nodes in G(val(D)).
The apex property implies a certain locality property for val(D) that will be explained in
Section 4.1. In the rest of the paper we will mainly consider apex SLPs.

A simple example of a class of graphs that are exponentially compressible with apex SLPs
is the class of perfect binary trees. The perfect binary tree of height n (with 2n leaves) can
be produced by an apex SLP of size O(n). Here is an explicit example for an apex SLP:

I Example 5. Consider the SLP D = (R, N, S, P ) where R only contains a binary relation
symbol r1 and N = {S,A,B} with rank(S) = 0, rank(A) = 1 and rank(B) = 2. The
productions of these nonterminals are depicted on the left of Figure 1. For instance, the
production S → (US , τS , ES) consists of the 0-pointed structure (US , τS), where the universe of
US consists of the two red nodes u and v, and the reference set ES = {(A, σ1), (A, σ2), (B, σ3)}
with σ1(1) = u, σ2(1) = v, σ3(1) = u and σ3(2) = v (in Figure 1 each σi(j) is connected by
a j-labeled dotted line with the nonterminal). The production for nonterminal B consists of
a 2-pointed structure (and no references), the contact nodes of which are labeled by 1 and 2.
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S →

A

A

u

v

B

1

1

1

2

A → 1 B

1

2

B → 1 2

A

S

B

dag(D)

3
2

1

1

1 2
val(B)

1

val(A)

val(S)

Figure 1 The SLP D of Example 5 together with dag(D) and val(X) for X ∈ {S,A,B}.

The structure val(D) = val(S) is shown on the right of Figure 1. It can be obtained by first
constructing val(A) by replacing the single B-reference in UA by UB = val(B). Note that 1-
and 2-labeled dotted lines identify the two nodes to be merged with the two contact nodes of
UB, and that val(A) has exactly one contact node. Then we replace the B-reference in US
by val(B) and both A-references in US by val(A). This merges u (and v) with the contact
node of the first (and the second) occurrence of val(A). Red (resp., blue, green) edges and
nodes are produced from S (resp., A, B).

Since no contact node is adjacent to any reference, this SLP is apex. The size of val(D)
is 31. The size of D is 26: 9 (for the S-production) + 10 (for the A-production) + 7 (for the
B-production).

4.1 Representation of nodes of an SLP-compressed structure

Let A ∈ N . A node a ∈ val(A) can be uniquely represented by a pair (p, v) such that p is an
A-path in dag(D) and one of the following two cases holds:

p ends in B ∈ N \ {A} and v ∈ UB \ ran(τB) is an internal node.1

p = A and v ∈ UA.
We call this the A-representation of a. The S-representations of the nodes of val(S) = val(D)
are also called D-representations. Note that if (p, v) is the D-representation of a node then
v ∈ UA \ ran(τA) for some A ∈ N (since rank(S) = 0). We will often identify a node of val(A)
with its A-representation; in particular when A = S. One may view a D-representation (p, v)
as a stack pv. In order to construct outgoing (or incoming) edges of (p, v) in the structure
val(D), one only has to modify this stack at its end; see also Appendix D.3.1.

The apex condition implies a kind of locality in val(D) that can be nicely formulated in
terms of D-representations: If two nodes a = (p, u) and b = (q, v) have distance ζ in the
graph G(val(D)) then the prefix distance between p and q (which is the number of edges in p
and q that do not belong to the longest common prefix of p and q) is also at most ζ. This
property is exploited several times in the paper.

Based on A-representations, we can define a natural embedding of val(B) into val(A)
in case A �D B. Assume that p is a non-empty A-to-B path in dag(D) with A 6= B. Let
us write p = p′CiB for some nonterminal C (we may have C = A). Let (B, σ) ∈ EC be
the unique reference that corresponds to the edge (C, i,B) in dag(D). We then define the
embedding ηp : val(B) → val(A) as follows, where (q, v) is a node in val(B) given by its
B-representation so that q is a B-path (recall that the path pq is obtained by concatenating

1 The nodes in ran(τB), i.e., the contact nodes of UB , are excluded here, because they were already
generated by some larger (with respect to the hierarchical order �D) nonterminal.
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the paths p and q; see Section 2.1):

ηp(q, v) =
{

(p′C, σ(i)) if q = B and v = τB(j) for some j ∈ [rank(B)],
(pq, v) otherwise.

We can extend this definition to the case A = B (where p = A) by defining ηp as the identity
map on val(A) = val(B). If U is the substructure of val(B) induced by the set U ⊆ val(B)
then we write ηp(U) for the substructure of val(A) induced by the set ηp(U). Note that in
general we do not have ηp(U) ' U . For instance, if U = val(B) then in val(A) there can be
edges between contact nodes of val(B) that are generated by a nonterminal C with C →D B.

Recall the definition of the lexicographic order on the set of all A-paths of dag(D) for
A ∈ N (see Section 2.1). We define lexA(p) as the position of p in the lexicographically
sorted list of all A-paths of dag(D), where we start with 0 (i.e., lexA(A) = 0; note that A
is the empty path starting in A and hence the lexicographically smallest path among all
A-paths). For lexS(p) we just write lex(p). Later it will be convenient to represent the initial
path component p of a D-representation (p, v) by the number lex(p) and call (lex(p), v) be
the lex-representation of the node a = (p, v) ∈ val(D). The number of initial paths in dag(D)
can be bounded by 2O(|D|): the number of initial-to-leaf paths in dag(D) is bounded by
3|dag(D)|/3 ≤ 3|D|/3 (this is implicitly shown in the proof of [11, Lemma 1]) and the number
of all initial paths in D is bounded by twice the number of initial-to-leaf paths in D. Hence,
the numbers lex(p) have bit length O(|D|).

I Example 6. Recall the SLP D from Example 5 and dag(D) shown to the right of D’s
productions in Figure 1. Then the pairs (S, u) and (S, v) (recall that u and v are the two
nodes of US) represent the two red nodes of val(D) = val(S), and (S3B,w), where w is the
green node in UB, represents the rightmost green node of val(D). Its lex-representation
is (5, w) (there are six initial paths in dag(D)). As another example, the two leftmost
(green) nodes of val(D) are represented by the pairs (S1A1B,w) and (S2A1B,w) with the
lex-representations (2, w) and (4, w), respectively. For the S-to-B path p = S2A1B in dag(D)
we have ηp(B,w) = (S2A1B,w) and ηp(B, τB(1)) = (S2A, σ(1)), where (B, σ) is the only
reference in EA.

4.2 Register length in the compressed setting
In the following sections we will develop an enumeration algorithm for the set of all tuples
in φ(val(D)), where the SLP D is part of the input. Recall that val(D) may contain 2Θ(|D|)

many elements. In order to achieve constant delay, we therefore should set the register
length in our algorithm to Θ(|D|) so that we can store elements of val(D). This is in
fact a standard assumption for algorithms on SLP-compressed objects. For instance, when
dealing with SLP-compressed strings, one usually assumes that registers can store positions
in the decompressed string. We only allow additions, subtractions and comparisons on these
Θ(|D|)-bit registers and these operations take constant time (since we assume the uniform
cost measure). For registers of length O(log |D|) we will also allow pointer operations.

Note that a D-representation (p, v) needs O(|D|) many O(log |D|)-bit registers, whereas
its lex-representation (lex(p), v) fits into two registers (one of length O(log |D|)).

5 FO-Enumeration over SLP-Compressed Degree-Bounded Structures

We now have all definitions available in order to state a more precise version of Theorem 1:
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I Theorem 7. Given an apex SLP D such that val(D) is degree-d bounded and an FO-formula
φ(x1, . . . , xk), we can enumerate the result set φ(U) with preprocessing time f(d, |φ|) · |D|
and delay f(d, |φ|) for some computable function f . All nodes of φ(U) are output in their
lex-representation.

Throughout Section 5 we fix D = (R, N, S, P ) and φ(x1, . . . , xn) as in Theorem 7. Let
qr(φ) = ν. W.l.o.g. we can assume that d ≥ 2.

The general structure of our enumeration algorithm is the same as for the uncompressed
setting. In particular, we also use Gaifman-locality to reduce to the problem of enumerating
for a fixed B ∈ Tk,r the set of all B-tuples ā ∈ val(D)k (see Appendix B.1), which then reduces
to the problem of enumerating for all consistent factorizations Λ = (B1, σ1, . . . ,Bm, σm) of B
the set of all m-tuples b̄ ∈ val(D)m that are admissible for Λ (see the beginning of Section 3).

Here, a first complication occurs: one important component of the above reduction for
the uncompressed setting is that FO model checking on degree-d bounded structures can be
done in time |U| · f(d, |φ|) [65]. For the SLP-compressed setting we do not have a linear time
(i. e., in time |D| · f(d, |φ|)) model checking algorithm. Only an NL-algorithm for apex SLPs
is known [43]. It is not hard to obtain a linear time algorithm from the NL-algorithm in [43],
but there is an easier solution that bypasses model checking. We give all the details of how
to perform the necessary reduction in the compressed setting in Appendix D.1.

Consequently, as in the uncompressed setting, it suffices to consider a fixed consistent
factorization Λ = (B1, σ1, . . . ,Bm, σm) of B and to enumerate the set of all m-tuples in val(D)
that are admissible for Λ. As before we define the larger radius ρ = 2rk − r + k − 1; see (1).

5.1 Expansions of nonterminals
In this section we introduce the concept of ζ-expansions for a constant ζ ≥ 1 (later, ζ will be
a constant of the form f(d, |φ|)), which will be needed to transfer the enumeration algorithm
for the uncompressed setting (Section 3.1) to the SLP-compressed setting. The idea is to
apply the productions from D, starting with a nonterminal A ∈ N , until all nodes of val(A)
that have distance at most ζ from the nodes in the right-hand side of A (except for the
contact nodes of A) are produced. For a nonterminal A ∈ N we define

InA = {(A, v) : v ∈ UA \ ran(τA)} ⊆ val(A).

These are the internal nodes of val(A) (written in A-representation) that are directly produced
with the production A→ (UA, τA, EA). Let a1, . . . , am be a list of all nodes from InA. We
then define the ζ-expansion as the following induced substructure of val(A):

Eζ(A) = Nval(A),ζ(a1, . . . , am).

We always assume that the nodes of Eζ(A) are represented by their A-representations. Let

BdA,ζ = {(A, v) : v ∈ ran(τA)} ∪ {a ∈ val(A) : distval(A)(InA, a) = ζ} ⊆ val(A)

be the boundary of Eζ(A). A valid substructure of Eζ(A) is an induced substructure A
of Eζ(A) with A ∩ BdA,ζ = ∅ 6= A ∩ InA. If A is a valid substructure of Eζ(A) and p is
an S-to-A path in dag(D), then any neighbor of ηp(A) in the graph G(val(D)) belongs to
ηp(Eζ(A)). Moreover, ηp(A) ' A, since all contact nodes (A, τA(i)) are excluded from a valid
substructure of Eζ(A). In the following, we consider the radius ζ = 2ρ+ 1. For a nonterminal
A ∈ N we write E(A) for the expansion E2ρ+1(A) in the rest of the paper.

Fix a ρ-neighborhood type B. A node a ∈ E(A) ⊆ val(A) is called a valid B-node in E(A)
if (i) NE(A),ρ(a) ' B and (ii) NE(A),ρ(a) is a valid substructure of E(A). We say that A is
B-useful if there is a valid B-node in E(A). We consider now the following two sets:
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Algorithm 2 enumeration of all Bi-nodes

1 for all initial paths p in dag(D) that end in a Bi-useful nonterminal A do
2 for all (q, v) ∈ E(A) that are valid Bi-nodes in E(A) do
3 return (lex(p), q, v)

SB1 = {(p, a) : ∃A ∈ N : p is an S-to-A path in dag(D), a is a valid B-node in E(A)}
SB2 = {b ∈ val(D) : b is a B-node}

We define a mapping h : SB1 → val(D) as follows. Let (p, a) ∈ SB1 , where p is an S-to-
A path in dag(D) and let (q, v) be the A-representation of a ∈ E(A). We then define
h(p, a) = ηp(a) = (pq, v) (where the latter is a D-representation that we identify as usual
with a node from val(D)). The proof of the following lemma can be found in Appendix D.2.

I Lemma 8. The mapping h is a bijection from SB1 to SB2 .

5.2 Overview of the enumeration algorithm
Our goal is to carry out the algorithm described in Section 3.1, but in the compressed setting,
i.e., by only using the apex SLP D = (R, N, S, P ) instead of the explicit structure val(D). As
in the uncompressed setting, it suffices to consider a fixed (k, r)-neighborhood type B ∈ Tk,r
together with a fixed consistent factorization

Λ = (B1, σ1, . . . ,Bm, σm) (3)

of B and to enumerate the set of all m-tuples in val(D) that are admissible for Λ. In the
following we sketch the algorithm; details can be found in Appendix D.2.

Enumeration of all Bi-nodes. The algorithm for the uncompressed setting (Section 3)
precomputes for every Bi a list Li of all Bi-nodes of the structure U . This is no longer
possible in the compressed setting since the structure val(D) is too big. However, as shown in
Section 5.1, there is a bijection between the set of Bi-nodes in val(D) and the set of all pairs
(p, a), where p is an S-to-A path in dag(D) for a Bi-useful nonterminal A and a is a valid
Bi-node in E(A) that is written in its A-representation (q, v). Hence, on a high level, instead
of explicitly precomputing the lists Li of all Bi-nodes, we enumerate them with Algorithm 2.

To execute this algorithm we first have to compute in the preprocessing all expansions
E(A) for a nonterminal A. This is easy: using a breath-first-search (BFS), we locally generate
val(A) starting with the nodes in InA until all nodes a ∈ val(A) with distval(A)(InA, a) ≤ 2ρ+1
are generated. The details can be found in Appendix D.3.1. The size of E(A) is bounded
by |UA| · f(d, |φ|) (the size of a (2ρ+ 1)-sphere around a tuple of length at most |UA| in a
degree-d bounded structure) and can be constructed in time |UA| · f(d, |φ|). Summing over
all A ∈ N shows that all (2ρ+ 1)-expansions can be precomputed in time |D| · f(d, |φ|).

With the E(A) available, we can easily precompute brute-force the set of all valid Bi-nodes
in E(A) (needed in Line 2 of Algorithm 2) and then the set of all Bi-useful nonterminals
(needed in Line 1 of Algorithm 2). Recall that A is Bi-useful iff there is a valid Bi-node in
E(A). Moreover, for every valid Bi-node c = (q, v) ∈ E(A) we compute also an isomorphism
πc : Bi → NE(A),ρ(ci). The time for this is bounded by f(d, |ϕ|) for one nonterminal A and
hence by |D| · f(d, |φ|) in total. More details on this part can be found in Appendix D.3.2.

The most challenging part of Algorithm 2 is the enumeration of all initial paths p in
dag(D) that end in a Bi-useful nonterminal (Line 1). Let Pi be the set of these paths. In
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constant delay, we cannot afford to output a path p ∈ Pi as a list of edges (it does not fit into
a constant number of registers in our machine model, see Section 4.2). That is why we return
the number lex(p) (which fits into a single register in our machine model) in Line 3. The idea
for constant-delay path enumeration is to run over all paths p ∈ Pi in lexicographical order
and thereby maintain the number lex(p). The path p is internally stored in a contracted
form. If dag(D) would be a binary dag, then we could use an enumeration algorithm from
[46], where maximal subpaths of left (right, respectively) outgoing edges are contracted to
single edges. In our setting, dag(D) is not a binary dag, therefore we have to adapt the
technique from [46]. Details can be found in Appendix D.3.3 (which deals with the necessary
preprocessing) and Appendix D.3.4 (which deals with the actual path enumeration).

In order to see how Algorithm 2 can be used to replace the precomputed lists Li in
Algorithm 1 for the uncompressed setting, a few additional points have to be clarified.

Producing the final output tuples. Note that for each enumerated Bi-node bi ∈ val(D)
we have to produce the partial k-tuple tbi,σi

(then the final output tuple is tb1,σ1 t tb2,σ2 t
· · · t tbm,σm

). Let us first recall that in the uncompressed setting each partial k-tuple
tbi,σi is defined by tbi,σi(j) = πbi(σi(j)) for all j ∈ dom(σi), where πbi : Bi → NU,ρ(bi)
is a precomputed isomorphism. In the compressed setting, Algorithm 2 outputs every
Bi-node bi ∈ val(D) as a triple (lex(pi), qi, v), where the initial path pi ∈ Pi ends in some
Bi-useful nonterminal Ai ∈ N and ci := (qi, vi) is a valid Bi-node in E(Ai). Moreover, we
have a precomputed isomorphism πci : Bi → NE(Ai),ρ(ci), which yields the isomorphism
πbi

= ηpi
◦ πci

: Bi → Nval(D),ρ(bi). Then, for every j ∈ dom(σi) we can easily compute the
lex-representation of πbi

(σi(j)). We first compute πci
(σi(j)) in its Ai-representation (qi,j , vi,j)

using the precomputed mapping πci . Then the lex-representation of tbi,σi(j) = πbi(σi(j))
is (lex(piqi,j), vi,j), where lex(piqi,j) = lex(pi) + lexAi

(qi,j). Here, lex(pi) is produced by
Algorithm 2. The path qi,j has length at most 2ρ + 1 (this is a consequence of the apex
condition for D). Its lex-number lexAi

(qi,j) can be computed by summing at most 2ρ + 1
many edge weights that were computed in the preprocessing phase (see Appendix D.3.3).

Count total number of ρ-neighborhoods. In Section 3.1 we distinguish between short and
long lists Li. Since in our compressed setting, Algorithm 2 replaces the precomputed list Li
we have to count the number of triples produced by Algorithm 2 (of course, before we run
the algorithm) in the preprocessing phase. This is easy: the number of output triples can
be computed by summing over all Bi-useful nonterminals A the product of (i) the number
of S-to-A paths in dag(D) and (ii) the number of valid Bi-nodes in E(A). The latter can
be computed in the preprocessing phase. Computing the number of S-to-A paths (for all
A ∈ N) involves a top-down pass (starting in S) over dag(D) with |dag(D)| ≤ |D| many
additions on O(|D|)-bit numbers in total. See Appendix D.3.5 for details.

Checking distance constraints. Recall that we fixed the consistent factorization Λ from
(3) of the fixed (k, r)-neighborhood type B and want to enumerate all tuples (b1, . . . , bm) ∈
val(D)m that are admissible for Λ. The definition of an admissible tuple also requires to check
whether distval(D)(tbi,σi , tbj ,σj ) > 2r + 1 for all i 6= j (see (2)). The nodes bi are enumerated
with Algorithm 2, hence the following assumptions hold for all i ∈ [m]:

bi is given by a triple (lex(pi), qi, vi),
pi is an initial-to-Ai path in dag(D) (for some Bi-useful nonterminal Ai), and
ci := (qi, vi) is a node (written in Ai-representation) from E(Ai) such that ci has ρ-
neighborhood type Bi in E(Ai) and NE(Ai),ρ(ci) is a valid substructure of E(Ai).
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In a first step, we show that if distval(D)(tbi,σi , tbj ,σj ) ≤ 2r+ 1 then there is a path q of length
at most 3ρ− r such that pi = pjq or pj = piq. For this, the apex property for D is important,
since it lower bounds the distance between two nodes a = (p, u) and a′ = (p′, v′) of val(D)
by the prefix distance between the paths p and p′ (i.e., the total number of edges that do not
belong to the longest common prefix of p and p′); see Appendix D.3.6 for details.

We then proceed in two steps: We first check in time f(d, |φ|) whether pj = piq or
pi = pjq for some path q of length at most 3ρ− r. For checking pj = piq (the case pi = pjq

is analogous) we check whether pj = pi (by checking lex(pj) = lex(pi)) and if this is not the
case, we repeatedly remove the last edge of pj (for at most 3ρ− r times) and check whether
the resulting path equals pi. However, the whole procedure is complicated by the fact that
pi and pj are given in a contracted form, where some subpaths are contracted to single edges
(see the above paragraph on the path enumeration algorithm for dag(D)).

In the second step we have to check in time f(d, |φ|) whether distval(D)(tbi,σi , tbj ,σj ) ≤ 2r+1,
assuming that pj = piq for some path q of length at most 3ρ− r. This boils down to checking,
for every b ∈ ran(tbi,σi) and b′ ∈ ran(tbj ,σj ), whether distval(D)(b, b′) ≤ 2r + 1, which is the
case iff distval(Ai)(c, ηq(c′)) ≤ 2r+ 1, where c, c′ ∈ val(Ai) correspond to b, b′ in the sense that
ηpi

(c) = b and ηpj
(c′) = b′. For this we locally construct Nval(Ai),2r+1(c) by starting a BFS

in c and then computing all elements of val(Ai) with distance at most 2r + 1 from c just like
we constructed the expansions in Appendix D.3.1. Details can be found in Appendix D.3.6.
This concludes our proof sketch for Theorem 7.

6 Conclusions and Outlook

We presented an enumeration algorithm for FO-queries on structures that are represented
succinctly by apex SLPs. Assuming that the formula is fixed and the degree of the structure
is bounded by a constant, the preprocessing time of our algorithm is linear and the delay is
constant.

There are several possible directions into which our result can be extended. One option
is to use more general formalisms for graph compression. Our SLPs are based on Courcelle’s
HR (hyperedge replacement) algebra, which it tightly related to tree width [12, Section 2.3].
Our SLPs can be viewed as dag-compressed expressions in the HR algebra, where the leaves
can be arbitrary pointed structures; see [43] for more details. Another (and in some sense
more general) graph algebra is the VR algebra, which is tightly related to clique width [12,
Section 2.5]. It is straightforward to define a notion of SLPs based on the VR algebra and
this leads to the question whether our result also holds for the resulting VR-algebra-SLPs.

Another interesting question is to what extend the results on enumeration for conjunctive
queries [4, 7] can be extended to the compressed setting. In this context, it is interesting to
note that model checking for a fixed existential FO-formula on SLP-compressed structures
(without the apex restriction) belongs to NL. It would be interesting to see, whether the
constant delay enumeration algorithm from [4] for free-connex acyclic conjunctive queries
can be extended to SLP-compressed structures.

Finally, one may ask whether in our main result (Theorem 7) the apex restriction is really
needed. More precisely, consider an SLP D such that val(D) has degree d. Is it possible
to construct from D in time |D| · f(d) an equivalent apex SLP D′ of size |D| · f(d) for a
computable function f? If this is true then one could enforce the apex property in the
preprocessing. In [17] it shown that a set of graphs of bounded degree d that can be produced
by a hyperedge replacement grammar (HRG) H can be also produced by an apex HRG, but
the size blow-up is not analyzed with respect to the parameter d and the size of H.
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A Omitted Details from Section 2.2

We give some more details for first order logic. Let us fix a relational signature R = {Ri :
i ∈ I}. Atomic FO-formulas over the signature R are of the form x = y and R(x1, . . . , xn),
where R ∈ R has arity n and x, y, x1, . . . , xn are first-order variables ranging over elements
of the universe. From these atomic FO-formulas we construct arbitrary FO-formulas over
the signature R using Boolean connectives (¬, ∧, ∨) and the (first-order) quantifiers ∃x and
∀x (for a variable x ranging over elements of the universe).

As a general convention, we also write ψ(x1, . . . , xk) to denote that ψ is an FO-formula
with free variables x1, . . . , xk. A sentence is an FO-formula without free variables. The
quantifier rank qr(ψ) of an FO-formula ψ is inductively defined as follows: qr(ψ) = 0 if ψ
contains no quantifiers, qr(¬ψ) = qr(ψ), qr(ψ1 ∧ ψ2) = qr(ψ1 ∨ ψ2) = max{qr(ψ1), qr(ψ2)}
and qr(∀xψ) = qr(∃xψ) = 1 + qr(ψ).

The model checking problem (and also the enumeration problem) for first-order logic
over arbitrary signatures can be reduced to the case, where all arities are at most two as
follows. Let us consider a structure U = (U, (Ri)i∈I) over an arbitrary relational signature
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R = {Ri : i ∈ I}, where the arity of Ri is αi. Let n = max{αi : i ∈ I}. We then define a
new signature R′ consisting of the following relation symbols:

a unary symbol RU ,
all Ri with αi = 1,
a unary symbol R′i for every i ∈ I with αi > 1, and
binary symbols E1, . . . , En.

From U we construct the new structure U ′ over the signature R′ by taking the universe2

U ] {bi,ā : i ∈ I, ā ∈ Ri} (the bi,ā are new elements) and defining the relations as follows:
RU = U ,
Ri is the same relation as in U if αi = 1.
R′i = {bi,ā : ā ∈ Ri} for all i ∈ I with αi > 1, and
Ej = {(bi,ā, aj) : i ∈ I, αi > 1, ā = (a1, . . . , aαi) ∈ Ri} for all j ∈ [n].

Given an FO-formula ψ(x1, . . . , xk) we construct the new FO-formula ψ′(x1, . . . , xk) =∧
1≤j≤k RU (xi) ∧ ψ̃(x1, . . . , xk) where ψ̃(x1, . . . , xk) is obtained from ψ(x1, . . . , xk) by re-

stricting all quantifiers in ψ to elements from U (using the unary predicate RU ) and replacing
every atomic subformula Ri(y1, . . . , yαi) with αi > 1 by ∃x : R′i(x) ∧

∧αi

j=1Ej(x, yi). We
then have ψ(U) = ψ′(U ′). In addition the following facts are important:

qr(ψ′) ≤ qr(ψ) + 1.
The degree of U ′ is bounded by the degree of U .
The structure U ′ can be constructed in linear time from U and the formula ψ′ can be
constructed in linear time from ψ.

B Omitted Details from Section 3

We explain in this section the reduction mentioned at the beginning of Section 3 and start
with Gaifman’s locality theorem.

B.1 Gaifman’s theorem and a corollary for degree-d bounded structures
Clearly, for every r ≥ 0, there is an FO-formula δr(x, y) such that for every relational structure
U and all a, b ∈ U we have: U |= δr(a, b) if and only if distU (a, b) ≤ r. Moreover, define
δk,r(x1, . . . , xk, y) =

∨k
i=1 δr(xi, y). For an FO-formula ψ, a tuple of variables z̄ = (z1, . . . , zk)

and r ≥ 1 let ψz̄,r be the (z̄, r)-relativization of ψ, i.e., the FO-formula obtained from ψ by
restricting all quantifiers to the r-sphere around z̄ in the graph G(U). Let us define this more
formally. For an FO-formula ψ, a tuple of variables z̄ = (z1, . . . , zk) and r ≥ 1 we define the
FO-formula ψz̄,r inductively by

R(x1, . . . , xn)z̄,r = R(x1, . . . , xn) for R ∈ R and (x = y)z̄,r = (x = y),
(¬ψ)z̄,r = ¬(ψz̄,r), (ψ1 ◦ ψ2)z̄,r = ψz̄,r1 ◦ ψz̄,r2 for ◦ ∈ {∧,∨}, and
(∃x : ψ)z̄,r = ∃x : (δk,r(z̄, x) ∧ ψz̄,r) and (∀x : ψ)z̄,r = ∀x : (δk,r(z̄, x)→ ψz̄,r).

Note that the zi are free variables in ψz̄,r.
We can now state Gaifman’s theorem [22]; see also [41, Theorem 4.22].

I Theorem 9. From a given FO-formula φ(x1, . . . , xk) with qr(φ) = ν, one can compute a
logically equivalent Boolean combination of FO-formulas of the following form, where r ≤ 7ν ,
q ≤ k + ν and x̄ = (x1, . . . , xk):
(i) ψx̄,r where only the variables x1, . . . , xk are allowed to occur freely in ψ,

2 For sets A1 and A2 we write their union as A1 ]A2 if A1 and A2 are disjoint.
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(ii) ∃z1 · · · ∃zq :
∧

1≤i<j≤q ¬δ2r(zi, zj) ∧
∧

1≤i≤q θ
zi,r where θ is a sentence.

Gaifman’s theorem is particularly useful for degree-d bounded structures (for some fixed d).
We therefore continue to derive a well-known corollary of Theorem 9 for degree-d bounded
structures.

We first observe that for every formula ψx̄,r from (i) in Theorem 9, whether U |= ψx̄,r(ā)
for some ā ∈ Uk does not depend on the whole structure U , but is completely determined
by the (k, r)-neighborhood type of ā. This is due to the fact that all quantifiers in ψx̄,r are
restricted to the r-sphere around its free variables x̄. Consequently, one can replace every
formula ψx̄,r from (i) in Theorem 9 by the finite disjunction

∨
i∈I ψ

Bi(x̄) where the Bi ∈ Tk,r
for i ∈ I are exactly those (k, r)-neighborhood types such that U |= ψx̄,r(ā) if and only if ā
is a Bi-tuple for some i ∈ I. By going to conjunctive normal form (and using the fact that
a conjunction ψB1(x̄) ∧ ψB2(x̄) for different B1,B2 ∈ Tk,r is always false) we end up with a
disjunction∨

i∈[m]

(ψBi(x̄) ∧ ψi),

where for all i ∈ [m], Bi ∈ Tk,r and ψi is a Boolean combination of sentences of the form (ii)
in Theorem 9 for some r ≤ 7ν . This directly yields the following corollary:

I Corollary 10. From a given d and an FO-formula φ(x1, . . . , xk) with qr(φ) = ν, one
can compute a sequence (B1, ψ1, . . . ,Bm, ψm) for some m = m(d, |φ|) with the following
properties:
(i) For every i ∈ [m] there is an r ≤ 7ν such that Bi ∈ Tk,r and ψi is a Boolean combination

of sentences of the form (ii) in Theorem 9.
(ii) For every degree-d bounded structure U and all ā ∈ Uk we have: U |= φ(ā) if and only

if there is an i ∈ [m] such that U |= ψi and ā is a Bi-tuple.

Based on Gaifman’s locality theorem, Seese [65] proved the following:

I Theorem 11 (degree-bounded model checking). For a given FO-sentence φ and a degree-d
bounded structure U , one can check in time |U| · f(d, |φ|), whether U |= φ.

Recall that we have fixed at the beginning of Section 3 a relational signature R = {Ri : i ∈ I},
constants d ≥ 2 and ν, a degree-d bounded structure U = (U, (Ri)1≤i≤l) over the signature R,
and an FO-formula φ(x1, . . . , xk) over the signature R with qr(φ) = ν. Moreover, our goal is
to enumerate the set φ(U) after a linear time preprocessing in constant delay. By Corollary 10
we can compute a sequence (B1, ψ1, . . . ,Bm, ψm) for some m = m(d, |φ|) with the properties
from point (i) in the corollary and then enumerate all k-tuples ā such that U |= ψi and ā is
a Bi-tuple for some i ∈ [m]. Using Theorem 11 one can check in time |U| · f(d, |φ|) which of
the ψi are true in U . We then keep only those Bi ∈ Tk,r such that U |= ψi. Moreover, w.l.o.g.
the remaining Bi are different and for each of them we enumerate all Bi-tuples. This will not
create duplicates (since each k-tuple has a unique (k, r)-neighborhood type).

B.2 Reduction to tuples with pairwise different components
By the previous discussion, it suffices to enumerate for a fixed B ∈ Tk,r the set of all B-tuples
with delay f(|B|) after preprocessing time |U| · f(|B|). Recall that in Section 3 we assumed
that the sphere center constant ci is interpreted by the element i ∈ [k] in B. But this means
that all B-tuples have pairwise different components.
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We next show that this is not a real restriction. More precisely, we claim that w.l.o.g. we
can replace our initial FO-formula φ(x1, . . . , xk) by

φ′ = φ ∧
∧

i,j∈[k],i6=j

xi 6= xj , (4)

so that the entries ai in each enumerated output tuple (a1, . . . , ak) are pairwise different. For
this, the enumeration algorithm runs in an outermost loop through all equivalence relations ≡
on [k]. For each such equivalence relation ≡ and i ∈ [k] let µ≡(i) = min([i]≡) be the minimal
representative from the equivalence class [i]≡ = {j ∈ [k] : i ≡ j} and let I≡ = µ≡([k]) be the
image of µ≡. Then we define the FO-formula φ≡ by replacing every free occurrence of a
variable xi in φ by xµ≡(i) and start the enumeration of the output tuples for the formula

φ′≡ = φ≡ ∧
∧

i,j∈I≡, i 6=j
xi 6= xj .

From every enumerated |I≡|-tuple we obtain a tuple in φ(U) by duplicating entries suitably
(according to the equivalence relation ≡). This shows that it suffices to consider a formula of
the form φ′ in (4).

We now apply Corollary 10 to the new formula φ′. By the additional disequality constraints
xi 6= xj in φ′ we can assume that in the resulting (k, r)-neighborhood types B1, . . . ,Bm the
elements ai (i ∈ [k]) that interpret the sphere center constants ci are pairwise different. We
can then w.l.o.g. assume that ci is interpreted by the element i ∈ [k] (recall that the universe
of a (k, r)-neighborhood type is of the form [`]).

B.3 Proofs of Lemmas 2 and 3
As in Section 3 we fix a (k, r)-neighborhood type B (with the sphere centers 1, . . . , k) that
splits into the connected components CB1 , . . . , CBm. Moreover, for every B′-node a ∈ U we fix
an isomorphism πa : B′ → NU,ρ(a).

I Lemma 12 (Lemma 2 restated). If Λ = (B1, σ1, . . . ,Bm, σm) is a consistent factorization
of B and b̄ ∈ Um is admissible for Λ then Λ(b̄) is a B-tuple.

Proof. Let Di = CBi ∩ [k] and let b̄ = (b1, . . . , bm). We have NU,ρ(bi) ' Bi. Moreover,
Λ(b̄) = tb1,σ1 t tb2,σ2 t · · · t tbm,σm , where tbi,σi(j) = πbi(σi(j)) for all j ∈ Di. Since
NBi,r(σi) ' CBi we obtain NU,r(tbi,σi

) ' CBi for all i ∈ [m]. Moreover, from (2) it follows that
the NU,r(tbi,σi) are the connected components of NU,r(tb1,σ1 t · · · t tbm,σm) = NU,r(Λ(b̄)).
Hence, Λ(b̄) is a B-tuple. J

I Lemma 13 (Lemma 3 restated). If ā ∈ Uk is a B-tuple then there are a unique consistent
factorization Λ of B and a unique m-tuple b̄ ∈ Um that is admissible for Λ and such that
ā = Λ(b̄).

Proof. Let Di = CBi ∩ [k] and let ni ∈ min(Di). Moreover, let ā = (a1, . . . , ak) and define
the partial k-tuple ti : [k] → U with domain Di by ti(j) = aj for j ∈ Di. Since B is the
(k, r)-neighborhood type of ā, we have CBi ' NU,r(ti) ⊆ NU,ρ(ani

) and distU (ti, tj) > 2r + 1
for all i, j ∈ [m] with i 6= j.

We take b̄ = (b1, . . . , bm) with bi := ani
for i ∈ [m]. Moreover, for every i ∈ [m], let Bi be

the ρ-neighborhood type of bi in U and define the partial k-tuple σi : [k]→ Bi with domain
Di by σi(j) = π−1

bi
(aj) for j ∈ Di. Moreover, define Λ = (B1, σ1, . . . ,Bm, σm). The definition

of σi implies ti = tbi,σi
for all i ∈ [m] and hence ā = Λ(b̄). Note that σi(ni) = π−1

bi
(ani

) =
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π−1
bi

(bi) = 1 and NBi,r(σi) ' NU,r(ti) ' CBi . Hence, Λ is a consistent factorization of
B. Moreover, (b1, . . . , bm) is admissible for Λ: bi is a Bi-node and distU (tbi,σi

, tbj ,σj
) =

distU (ti, tj) > 2r + 1 for all i, j ∈ [m] with i 6= j.
To show uniqueness, assume that Λ′ = (B′1, σ′1, . . . ,B′m, σ′m) is a consistent factorization

of B and b̄′ ∈ Um is admissible for Λ′ such that ā = Λ(b̄′). First, notice that b̄′ =
(an1 , . . . , anm

) = b̄. Moreover, we must have Bi = B′i (both are the (k, r)-neighborhood type
of ani). Finally, for all i ∈ [m] and j ∈ Dj we have σi(j) = π−1

bi
(aj) = π−1

b′
i

(aj) = σ′i(j) for
all j ∈ Di. J

B.4 Proof of Lemma 4

We now formally prove that the enumeration algorithm described in Section 3.1 has a delay
of f(d, |φ|).

Recall from Section 3.1 that we do this under the assumption that we can check whether
a stack s is admissible in time f(d, |φ|). This will be explained in detail for the more general
SLP-compressed setting in Section 5. Hence, in the following, we only count the number of
steps in the DFLR-traversal, i.e., the total number of iterations of the for-loop in Algorithm 1
over all recursion levels. In the following, we use all notations introduced in Section 3.1.

We first make the following general observation: Let s = a1 · · · a` with ` < m be an
admissible stack. If, for some element a`+1 ∈ L`+1, the stack sa`+1 is not admissible, then

distU (tai,σi
, ta`+1,σ`+1) ≤ 2r + 1

for some i ∈ [`]. This implies dist(ai, a`+1) ≤ 2ρ + 2r + 1. The number of elements a ∈ U
such that dist(ai, a) ≤ 2ρ+ 2r + 1 for some i ∈ [`] is bounded by ` · d2ρ+2r+2 ≤ k · d2ρ+2r+2.
Hence, we obtain the following observation:

I Observation 14. For a fixed admissible stack s of length ` < m, the list L`+1 contains at
most ` · d2ρ+2r+2 ≤ k · d2ρ+2r+2 elements a such that sa is not admissible.

In order to bound the delay, let us first consider the time that elapses from the call extend(ε)
to the first output (or the termination of the algorithm). Recall that the lists L1, . . . , Lq
are short. Hence, there are at most c := (k · d2ρ+2r+2)q+1 ≤ kk+1d(2ρ+2r+2)(k+1) many
stacks s with |s| ≤ q. Hence, either the algorithm terminates after at most c many steps
in the DFLR-traversal or it reaches after at most c steps a stack sa where |s| = q and a

is the first element of the list Lq+1. Then, by Observation 14, the algorithm reaches after
(m− q) · k · d2ρ+2r+2 ≤ k2 · d2ρ+2r+2 further steps an admissible stack of length m (which is
then written to the output).

Now, let us assume that we output an admissible stack s of length m. We have to
bound the number of steps of the algorithm until the next output is generated (or until
the termination of the algorithm if no further output is produced). The algorithm will first
reduce the length of the stack s (by doing return-statements in line 4). First assume that the
length of the stack does not go below q+ 1. Then, Observation 14 shows that the next output
happens after at most 2(m− q) · k · d2ρ+2r+2 DFLR-traversal steps, i.e., (m− q) · k · d2ρ+2r+2

steps in the first phase, where the stack shrinks, followed by (m− q) ·k ·d2ρ+2r+2 steps where
the stack grows. On the other hand, if the stack length reaches q (this can only happen after
at most (m− q) · k · d2ρ+2r+2 steps) then either the algorithm terminates after c more steps
or after c+ (m− q) · k · d2ρ+2r+2 more steps the next output occurs. Hence, the delay can
be bounded by f(d, |φ|).
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C Omitted details from Section 4

Consider an SLP D = (R, N, S, P ) and a nonterminal A ∈ N . In Section 4, we have explained
on an intuitive level how the structure val(A) is defined. Let us now define this more formally.
We start with a few general definitions.

Let ≡ be an equivalence relation on a set U . Then, for a ∈ U , [a]≡ = {b ∈ U : a ≡ b}
denotes the equivalence class containing a. With [U ]≡ we denote the set of all equivalence
classes. With π≡ : U → [U ]≡ we denote the function with π≡(a) = [a]≡ for all a ∈ U .

For a relational structure U = (U, (Ri)i∈I) and an equivalence relation ≡ on U we define
the quotient U/≡ = ([U ]≡, (Ri/≡)i∈I), where

Ri/≡ = {(π≡(v1), . . . , π≡(vαi
)) : (v1, . . . , vαi

) ∈ Ri}.

For two structures U1 = (U1, (Ri,1)i∈I) and U1 = (U2, (Ri,2)i∈I) over the same signature R
and with disjoint universes U1 and U2, respectively, we define the disjoint union

U1 ⊕ U2 = (U1 ] U1, (Ri,1 ]Ri,2)i∈I).

With these definitions we can now define the rank(A)-pointed structure val(A) for A ∈ N as
follows. Assume that EA = {(Ai, σi) : i ∈ [n]}. Recall that this is a multiset, i.e., we may
have (Ai, σi) = (Aj , σj) for i 6= j. Assume now that val(Ai) = (Ui, τi) is already defined for
every i ∈ [n]. Then

val(A) = ((UA ⊕ U1 ⊕ · · · ⊕ Un)/≡, π≡ ◦ τA),

where ≡ is the smallest equivalence relation on the universe of UA ⊕ U1 ⊕ · · · ⊕ Un, which
contains {(σi(j), τi(j)) : i ∈ [n], j ∈ [rank(Ai)]}. Note that val(A) = (UA, τA) if EA is empty.

Next, let us take a closer look at our general assumption that the signature R only
contains relation symbols of arity at most two (see the end of Section 2.2). We have seen
in Appendix A how we can transform an FO-formula ψ and a relational structure U over a
signature R (with relation symbols of arbitrary arity) into an FO-formula ψ′ and a relational
structure U ′ over a signature R′ with all relation symbols of arity at most two, such that
ψ(U) = ψ′(U ′) and, furthermore, qr(ψ′) = qr(ψ) + 1.

For the compressed setting, we must argue that this reduction can be performed in linear
time also in the case where U is compressed by an SLP, which is rather simple: From an
SLP D (whose signature R contains relation symbols of arbitrary arity) one can construct a
new SLP D′ (whose signature contains only relation symbols of arity at most two) such that
val(D′) = val(D)′. For this it suffices to replace every structure UA (for A a nonterminal of
D) by U ′A (where U ′A is obtained from UA by the construction described in Appendix A).
Therefore, it is justified also in the compressed setting to consider only SLPs that produce
structures with relations of arity at most two.

D Omitted details from Section 5

D.1 The Gaifman locality reduction in the compressed setting
In this section, we explain why the reduction described in Appendix B.1 is also applicable in
the compressed setting. As in the uncompressed setting we want to reduce the enumeration
of the result set φ(val(D)) for a given FO-formula φ(x1, . . . , xk) and an SLP D to the
enumeration of all B-tuples in val(D)k for some (k, r)-neighborhood type B with r ≤ 7ν
(where ν = qr(φ)).
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In the uncompressed setting, we apply Corollary 10 to the formula φ(x1, . . . , xk) and
obtain the list (B1, ψ1, . . . ,Bm, ψm) with the properties described in Corollary 10. We then
check for each sentence ψi, whether it is true in U (using Theorem 11). We keep only those
neighborhood types Bi such that U |= ψi holds and then run the enumeration algorithm for
those Bi.

For the SLP-compressed setting we have no linear time model checking algorithm (for
a fixed FO-sentence) in the spirit of Theorem 11 available; only an NL-algorithm for apex
SLPs is known [43]. With some effort, one can adapt this NL-algorithm to to obtain a linear
time algorithm, but there is an easier solution that we explain below.

Assume that we have already an algorithm that enumerates after preprocessing time
|D| · f(d, φ) in delay f(d, φ) all B-tuples from val(D)k for a fixed (k, r)-neighborhood type B
(for some r ≤ 7ν). We then use this algorithm for
(i) testing whether val(D) |= ψi for a ψi from Corollary 10 and, in case this holds,
(ii) for enumerating all Bi-tuples from val(D)k.
Let us show how we one achieve (i). Consider one of the sentences ψi from Corollary 10. It
is a Boolean combination of sentences of the form

∃z1 · · · ∃zq :
∧

1≤i<j≤q
¬δ2r(zi, zj) ∧

∧
1≤i≤q

θzi,r (5)

with r ≤ 7ν , q ≤ k + ν and a sentence θ. So, we have to check whether there exist at least
q many disjoint r-neighborhoods (of single nodes) for which the FO-property θz,r holds.
From θz,r one can compute a finite list B′1, . . . ,B′s (for some s = f(d, |φ|)) of r-neighborhood
types such that θz,r(z) is equivalent to the fact that z has one of the r-neighborhood types
B′1, . . . ,B′s. Then, by using the assumed enumeration algorithm, we enumerate the set L′1
of all B′1-nodes in val(D), then the set L′2 of all B′2-nodes in val(D) and so on, until we
either have enumerated q · d2r+1 many nodes in total, or the enumeration of L′s terminates.
Hence, in total, we enumerate at most q · d2r+1 many nodes. The preprocessing for these
enumerations takes time |D| · f(d, φ) and all enumerations take time f(d, |φ|) in total. If
we actually enumerate q · d2r+1 many nodes, then, since val(D) is degree-d bounded, there
must exist q disjoint r-neighborhoods in val(D) with a type from {B′1, . . . ,B′s}. Indeed, if we
have a list of q · d2r+1 enumerated nodes, then we pick the first element a1 and remove from
the list all nodes from the sphere Sval(D),2r(a1). Then we pick the first element a2 from the
remaining list and remove all nodes from the sphere Sval(D),2r(a2). We proceed like this and
pick elements a3, a4, . . . until the list is empty. Obviously, the picked nodes have pairwise
distance of at least 2r+ 1 and have all an r-neighborhood type B′i for some i ∈ [s]. Moreover,
since we remove in each step at most d2r+1 nodes (namely the sphere Sval(D),2r(ai)), it is
guaranteed that we select at least q such nodes (recall that we start with a list of q · d2r+1

nodes). Hence, the sentence (5) holds in val(D).
If, on the other hand, we enumerate strictly fewer than q · d2r+1 nodes, then we can check

for all pairwise distinct enumerated nodes a, b whether the distance in G(val(D)) between a
and b is at most 2r + 1. It is shown in Appendix D.3.6 that this can be done in time f(d, r);
see also Remark 25.

D.2 Omitted details from Section 5.1

D.2.1 Top-level nodes and subsets
In this section we introduce some concepts that are useful for the proof of Lemma 8 in the
next section.
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For a nonterminal A, we say that a node a = (p, v) of val(D) is A-produced, if the path
p contains A. The unique S-to-A prefix of p is then called the A-origin of a. Intuitively
speaking, every A-produced node of val(D) is produced by an occurrence of the nonterminal
A in the derivation tree, and if two such nodes have the same A-origin, then they are
produced by the same occurrence of A. We say that a is top-level A-produced if p ends in A.
By the definition of D-representations (see Section 4.1), this means that v ∈ UA \ ran(τA).
Moreover, for every node a of val(D) there is a unique nonterminal A such that a is a top-level
A-produced.

A subset U of val(D) is an A-subset, if all its nodes are A-produced with the same
A-origin, which is then also called the A-origin of U . If additionally there is at least one
node of U that is top-level A-produced, then we say that U is a top-level A-set. Note that
this is equivalent to the existence of at least one node in U with a D-representation (p, v),
where p ends in A and v is an internal node of UA.

I Lemma 15. If U is a top-level A-subset, then there is no other nonterminal B such that
U is a top-level B-subset.

Proof. Assume that for some nonterminals A,B ∈ N with A 6= B, U is both a top-level
A-subset with A-origin p and a top-level B-subset with B-origin q. This means that p is a
proper prefix of q or the other way around; without loss of generality, we assume that p = qp′,
where p′ is a B-to-A path. This means that every node in U has the A-origin qp′, which
implies that there is no top-level B-produced node in U ; a contradiction to the assumption
that U is a top-level B-structure. J

Note that even though for every subset U of val(D) there is a nonterminal A such that U
is an A-subset (for example, every subset is an S-subset), U is not necessarily a top-level
A-subset for some nonterminal A. If, however, U is a connected subset (in the sense that the
substructure induced by U is a connected set in the graph val(D), then we have the following:

I Lemma 16. Let D be an apex SLP and U be a connected subset of val(D). Then there is
a unique A ∈ N such that U is a top-level A-subset.

Proof. Let (p1, v1), . . . , (pn, vn) be the D-representations of all the elements of U and let p
be the longest common prefix of the initial paths p1, . . . , pn. Assume that the initial path p
is an S-to-A path. Hence, all nodes of U are A-produced with the same A-origin p, which
means that U is an A-subset. We next show that it is also a top-level A-subset, i.e., we show
that U contains a node with D-representation (p, v), where v is an internal node of UA.

In order to get a contradiction, assume that such a node does not exist in U . By the
choice of p as a longest common prefix, there must exist i, j ∈ [n] with i 6= j such that
pi = p kiBi qi and pj = p kj Bj qj with ki 6= kj . Let (Bi, σi) be the kth

i reference in EA and
(Bj , σj) be the kth

j reference in EA. Since U is connected there is a path from (p kiBi qi, vi)
to (p kj Bj qj , vj) in the undirected graph G(val(D)). This path must contain a node (p, σi(`))
from val(A) (as well as a node (p, σj(`)) from val(A)). Since D is an apex SLP, σi(`) is
internal in UA, which gives the desired contradiction.

This means that U is a top-level A-subset and by Lemma 15, U cannot be a top-level
B-subset for some B ∈ N with A 6= B. J

Note that if U is the universe of a valid substructure (see Section 5.1) of Eζ(A), then for
every S-to-A path p, the set of ηp(U) is a top-level A-subset.

Also note that if U is a subset of val(A), p is an S-to-A path in val(D), and ηp(U) is
a top-level A-subset, then the substructure of val(A) induced by U is isomorphic to the
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substructure of val(D) induced by ηp(U). The reason is that U contains none of the contact
nodes of val(A). In particular, if A is a valid substructure of the expansion Eζ(A) then, by
definition, it is an induced substructure, and we obtain A ' ηp(A).

D.2.2 Proof of Lemma 8
Let us recall that

SB1 = {(p, a) : ∃A ∈ N : p is an S-to-A path in dag(D) and a is a valid B-node in E(A)},
SB2 = {b ∈ val(D) : b is a B-node},

and, for all (p, a) ∈ SB1 , h(p, a) = ηp(a) = (pq, v) if p is an S-to-A path in dag(D) and (q, v)
is the A-representation of the valid B-node a ∈ E(A).

We prove that h is a bijection from SB1 to SB2 (i. e., Lemma 8) by proving the following
three lemmas.

I Lemma 17. For every (p, a) ∈ SB1 we have h(p, a) ∈ SB2 .

Proof. Assume that p is an S-to-A path in dag(D). Hence, a is a node of E(A) such that
NE(A),ρ(a) ' B and NE(A),ρ(a) is a valid substructure of E(A). To prove the lemma, we show
that

Nval(D),ρ(ηp(a)) = ηp(NE(A),ρ(a)). (6)

Since ηp(NE(A),ρ(a)) ' NE(A),ρ(a) ' B this yields Nval(D),ρ(h(p, a)) = Nval(D),ρ(ηp(a)) ' B.
Let (q, v) be the A-representation of a. Thus the path q starts with A. The node a = (q, v)

is not of the form (A, τA(i)) for some i ∈ [rank(A)] (otherwise we would have a ∈ BdA,2ρ+1
and NE(A),ρ(a) would not be valid). Therefore, we have ηp(a) = (pq, v) ∈ val(D). Since
both substructures in (6) are induced substructures of val(D), it suffices to show that
ηp(SE(A),ρ(a)) = Sval(D),ρ(ηp(a)). The inclusion ηp(SE(A),ρ(a)) ⊆ Sval(D),ρ(ηp(a)) holds since
every G(E(A))-path (i.e., a path in the undirected graph G(E(A))) is mapped by ηp to a
corresponding G(val(D))-path of the same length.

Assume now that there is a node b′ ∈ Sval(D),ρ(ηp(a)) \ ηp(SE(A),ρ(a)). We will deduce a
contradiction. There is a G(val(D))-path of length at most ρ from ηp(a) to b′. W.l.o.g. we
can assume that all nodes along this path except for the final node b′ belong to the set
ηp(SE(A),ρ(a)). In particular, there is a node ηp(b) ∈ val(D) with b ∈ SE(A),ρ(a) such
that there is a G(val(D))-path Πηp(a),ηp(b) of length at most ρ− 1 from ηp(a) to ηp(b) and
all nodes along this path belong to the set ηp(SE(A),ρ(a)). Moreover, there is an edge in
G(val(D)) between ηp(b) and b′. The G(val(D))-path Πηp(a),ηp(b) yields a corresponding
G(E(A))-path Πa,b of the same length (hence, at most ρ− 1) from a to b.3 We therefore have
distE(A)(a, b) ≤ ρ− 1.

We claim that b′ ∈ ηp(E(A)): We have b ∈ NE(A),ρ(a) and NE(A),ρ(a) is a valid substruc-
ture of E(A). Moreover, if C is any valid substructure of E(A) then all neighbors of ηp(C) in
G(val(D)) belong to ηp(E(A)) (this is the crucial property of valid substructures). Since b′
is a neighbor of ηp(b) in G(val(D)), we obtain b′ ∈ ηp(E(A)). Let b′ = ηp(c) with c ∈ E(A).

3 We use here the following general fact: If we have an edge (a, b) in the graph G(U) for a structure U
such that a and b belong to a subset V of U , then (a, b) is also an edge in the graph G(V), where V is
the substructure induced by V . This statement is true since we restrict to relational structures where
all relations have arity at most two, but it is wrong if we allow relations of arity 3 or larger and G(U)
would be the Gaifman graph of a structure U . Take for instance the structure U with three elements
a, b, c and the ternary relation {(a, b, c)}. In G(U) there is an edge between a and b, but there is no such
edge in G(V), where V is the substructure of U induced by {a, b}.
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Then (b, c) is an edge in G(E(A)) and hence c ∈ SE(A),ρ(a), i.e., b′ = ηp(c) ∈ ηp(SE(A),ρ(a)),
which is a contradiction. J

I Lemma 18. h : SB1 → SB2 is surjective.

Proof. Let b = (p′, v) be a B-node of val(D). Let A be the unique nonterminal A such that
Sval(D),ρ(b) is a top-level A-subset (see Lemma 16), and let p be the A-origin of Sval(D),ρ(b).
We obtain a factorization p′ = pq where p ends in A and q starts in A. Let a = (q, v) ∈ val(A),
which is an A-representation. It remains to show that (p, a) ∈ SB1 .

Since Sval(D),ρ(b) is a top-level A-subset, we have ηp(Nval(A),ρ(a)) = Nval(D),ρ(b) ' B and
hence Nval(A),ρ(a) ' B. We next show that Nval(A),ρ(a) is a valid substructure of E(A), which
implies NE(A),ρ(a) = Nval(A),ρ(a) ' B. This shows that a is a valid B-node in E(A).

In order to show that Nval(A),ρ(a) is a valid substructure of E(A), we first observe that
since Sval(D),ρ(b) is a top-level A-subset, we have

Sval(A),ρ(a) ∩ {(A, v) : v ∈ ran(τA)} = ∅

and there is a node a0 ∈ Sval(A),ρ(a) ∩ InA. We have distval(A)(a0, a) ≤ ρ. Hence, for every
node c ∈ Sval(A),ρ(a) we have distval(A)(a0, c) ≤ 2ρ. Therefore, Nval(A),ρ(a) is a substructure
of E(A) and Nval(A),ρ(a) ∩ {c ∈ val(A) : distval(A)(InA, c) = 2ρ+ 1} = ∅. J

I Lemma 19. h : SB1 → SB2 is injective.

Proof. Let (p1, a1), (p2, a2) ∈ SB1 such that ηp1(a1) = h(p1, a1) = h(p2, a2) = ηp2(a2). We
show that (p1, a1) = (p2, a2). Assume that pi is an S-to-Ai path in dag(D) (i ∈ {1, 2}). Let
(qi, vi) be the Ai-representation of ai. Hence, we have (p1q1, v1) = (p2q2, v2), i.e., v1 = v2
and p1q1 = p2q2. In order to show that p1 = p2 and q1 = q2 it suffices to show that A1 = A2
(then p1 and p2 end in the same nonterminal and therefore must be equal).

Recall that ηpi
(SE(Ai),ρ(ai)) is a top-level Ai-subset of val(D). By (6) we have

ηp1(SE(A1),ρ(a1)) = Sval(D),ρ(ηp1(a1)) = Sval(D),ρ(ηp2(a2)) = ηp2(SE(A2),ρ(a2)).

Lemma 16 yields A1 = A2. J

D.3 Omitted details from Section 5.2

D.3.1 Computing all (2ρ+ 1)-expansions
The general idea to compute E(A) is to start a breadth-first search (BFS) in all nodes from
InA and thereby explore all nodes in val(A) with distance of at most 2ρ+ 1 from any node
in InA. Obviously, this BFS has to be able to jump back and forth from one structure UB
into another structure UC according to the references in the productions of D, which can be
realized as follows.

The BFS visits triples (p, u, `), where (p, u) is a node of val(A), i.e., p is an A-to-B path
in dag(D) for some B ∈ N (this includes the case B = A, for which p = A) and u ∈ UB,
where in addition u /∈ ran(τB) in case B 6= A, and ` with 0 ≤ ` ≤ 2ρ+ 1 indicates that (p, u)
has distance ` from InA. Initially, we visit all (A, u, 0), where u is an internal node of UA.
From the current triple (p, u, `), where p ends in B ∈ N and ` ≤ 2ρ, we can visit unvisited
triples of the following form:

Stay1: (p, v, ` + 1) if v ∈ UB is adjacent to u in the graph G(UB), where in addition
v /∈ ran(τB) in case B 6= A (we stay in the structure UB and move via an edge from UB),
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Stay2: (p, v, `+ 1) if v ∈ UB and there is a reference (C, σ) ∈ EB with u = σ(i), v = σ(j)
(for i, j ∈ [rank(C)]) and in UC there is an edge in G(UC) from τC(i) to τC(j) (we stay in
the structure UB but move via an edge that is produced from a reference),
Move down: (p j C, v, `+ 1) if the jth reference in EB is (C, σ), there is an i ∈ [rank(C)]
such that σ(i) = u and v ∈ UC \ ran(τC) is adjacent to τC(i) in G(UC) (we move into a
structure UC that is produced from a reference).
Move up: (p′C, σ(i), `+ 1) if p = p′CjB, the jth reference in EC is (B, σ), and in G(UB),
u is adjacent to τB(i) for i ∈ [rank(B)]; note that σ(i) /∈ ran(τC) by the apex condition
(via a contact node of UB we move up to the structure from which the current copy of
UB was produced).

This BFS visits exactly those triples (p, u, `) such that (p, u) is a node from val(A) with
distance ` ≤ 2ρ+ 1 from InA. Consequently, we visit exactly the nodes of E(A). The nodes in
BdA,2ρ+1 can be easily detected in the BFS. Note also that for every computed triple (p, v, `)
the path p has length at most ` ≤ 2ρ+ 1.

This construction requires time O(|E(A)|) ≤ |UA| · f(d, |φ|) (the size of a (2ρ+ 1)-sphere
around a tuple of length at most |UA| in a degree-d bounded structure). Summing over all
A ∈ N shows that all (2ρ+ 1)-expansions can be computed in time |D| · f(d, |φ|).

D.3.2 Computing the ρ-neighborhood types and useful nonterminals
For every nonterminal A, every node a ∈ E(A), and every ρ-neighborhood type Bi from (3)
we check whether a is a valid Bi-node. For this, we have to compute NE(A),ρ(a), which can
be done in time f(d, |φ|). If this is the case, we store a in a list Li,A, and we also compute
and store an isomorphism πa : B → NE(A),ρ(a) that satisfies πa(1) = a.

Since the size of every expansion E(A) can be bounded by |UA| · f(d, |φ|), the total time
needed for the above computations is bounded by |D| · f(d, |φ|).

Recall that a nonterminal A is Bi-useful if and only if there is a valid Bi-node in E(A).
Hence, A is Bi-useful if and only if the list Li,A is non-empty. Hence, we have also computed
the set of Bi-useful nonterminals.

D.3.3 Preprocessing for path enumeration
The following preprocessing is needed for our path enumeration algorithm in dag(D) =
(N, γ, S). Recall that we denote with Pi the set of all initial paths in dag(D) that end in a
Bi-useful nonterminal (see Section 5.2), where Bi is from the factorization (3).

We first extend dag(D) to the new dag dag(D)′ = (N ]N ′, γ′, S), where N ′ = {A′ : A ∈
N} is a copy of N , γ′(A) = A′γ(A) and γ′(A′) = ε for every A ∈ N . In other words, we add
for every nonterminal A a new node A′ (a leaf in dag(D)′) that becomes the first child of
A. Recall that if γ(A) = B1 · · ·Bn then we write (A, 1, B1), . . . , (A,n,Bn) for the outgoing
edges of A in dag(D). It is convenient to keep these triples also in dag(D)′ and to write
(A, 0, A′) for the new edge from A to A′. Clearly, dag(D)′ can be constructed in time O(|D|)
from D.

There is a one-to-one correspondence between initial paths in dag(D) and initial-to-leaf
paths in dag(D)′. Formally, if p is an initial-to-A path in dag(D), then p′ := p 0A′ is an
initial-to-leaf path in dag(D)′. Moreover, every initial-to-leaf path in dag(D)′ is of the form
p 0A′ for a unique initial-to-A path p in dag(D). This means that in the following, we can
talk about initial-to-leaf paths of dag(D)′ instead of initial paths of dag(D). Note that in
constant time we can always obtain the initial path from dag(D) that corresponds to some
initial-to-leaf path of dag(D)′.
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Recall the lexicographical ordering of paths with the same starting node from Section 2.1.
For a path p in dag(D) that starts in A, we define lexA(p) as the position of p in the
lexicographically ordered list of all paths in dag(D) that start in A, where lexA(A) = 0 (note
that A is the lexicographically smallest path that starts in A). We write lex(p) for lexS(p).
Note that for an S-to-A path p and an A-to-B path q we have lex(pq) = lex(p) + lexA(q).

For an initial-to-leaf path p′ in dag(D) we write lex′(p′) for the position of p′ in the
lexicographically ordered list of all initial-to-leaf paths in dag(D)′, where we start again with
position 0. For every initial-to-A path p in dag(D) we then have lex(p) = lex′(p0A′). Note
that lex′ always refers to the dag dag(D)′, whereas lex always refers to dag(D).

Next, we add edge-weights to dag(D)′ as follows in order to compute lex′(p′) for an
initial-to-leaf path p′ in dag(D)′. For every node A of dag(D)′, let #paths(A) be the
number of different A-to-leaf paths in dag(D)′. These values can be easily computed in time
O(|dag(D)′|) ≤ O(|D|). Indeed, for every leaf A′, we set #paths(A) = 1. For an inner node
A with γ′(A) = A0A1 · · ·Am (where A0 = A′), we set #paths(A) =

∑m
i=0 #paths(Ai).

Next, we compute the number weight(e) for every edge e of dag(D)′. Let A be an arbitrary
inner node with γ′(A) = A0A1 · · ·Am (where A0 = A′). Then, for every 0 ≤ i ≤ m, we set
weight(A, i, Ai) =

∑i−1
j=0 #paths(Ai). Obviously, these numbers weight(e) for every edge e

can be also computed in time O(|dag(D)′|) ≤ O(|D|).
By definition, #paths(A) is the total number of A-to-leaf paths in dag(D)′. Thus, for every

0 ≤ i ≤ m, there are exactly weight(A, i, Ai) many A-to-leaf paths that are lexicographically
smaller than the smallest A-to-leaf path that starts with the edge (A, i, Ai).

We extend the function weight to paths in dag(D)′ in the obvious way: for a path
p′ = A0j1A1 · · ·An−1jnAn, we set weight(p′) =

∑n
i=1 weight(Ai−1, ji, Ai). It can be verified

by induction that for every initial-to-leaf path p′ in dag(D)′ we have weight(p′) = lex′(p′).
Hence, for p′ = p0A′ we obtain

weight(p0A′) = lex′(p0A′) = lex(p). (7)

Next, for every ρ-neighborhood type Bi from the factorization (3), we create a dag dagi from
dag(D)′ as follows. Initially, let dagi be just a copy of dag(D)′. In a first step, we delete all
nodes in dagi from which no leaf A′ (with A ∈ N) is reachable such that A is Bi-useful in
the SLP D. We can assume that the initial nonterminal S is not removed here, otherwise
D contains no Bi-useful nonterminals and the factorization (3) will not lead to any output
tuples. We normalize the outgoing edges (A, i,B) for every node A such that the middle
indices i form an interval [n] for some n.

The paths from Pi correspond exactly to the initial-to-leaf paths in dagi. Note that
we only delete nodes and edges, but do not change edge-weights when construct dagi from
dag(D)′. This means that if p is an initial-to-leaf path in dagi then p has the same weight in
dag(D)′ and dagi.

For an arbitrary DAG G = (V, γ, ι) and a node v ∈ V we define the outdegree of v as
|γ(v)|.

A maximal non-branching path in dagi is a path p = Aj B1 1B2 1 · · ·Bn−1 1Bn where
n ≥ 1, A has outdegree at least 2, every Bi for i ∈ [n− 1] has outdegree 1 (so Bi+1 is the
unique child of Bi), and Bn has outdegree 0 or at least 2. For technical reasons that shall
become clear later on, we want to contract each such maximal non-branching path p into a
single edge (A, j,Bn) with weight(A, j,Bn) = weight(p). This can be done as follows.

We first determine the set V1 of nodes of outdegree one. Then, for every node A ∈ V1, we
compute the unique pair (ω(A), g(A)), where ω(A) is the unique node with ω(A) /∈ V1 that
is reached from A by the unique path pA consisting of edges (A1, 1, A2) with A1 ∈ V1, and
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g(A) = weight(pA). This can be done bottom-up in time O(|dagi|) as follows: For every edge
(A, 1, B) with A ∈ V1 we set ω(A) = B and g(A) = weight(A, 1, B) if B /∈ V1 (this includes
the case where B is a leaf), and we set ω(A) = ω(B) and g(A) = weight(A, 1, B) + g(B)
if B ∈ V1 has already been processed. We then replace every edge (B, i, A) with A ∈ V1
by the edge (B, i, ω(A)) with weight(B, i, ω(A)) = weight(B, i, A) + g(A). After this step,
there is no edge that ends in a node of outdegree one. In particular, if a node has outdegree
one, then it has no incoming edges. We then remove all nodes of outdegree one and their
outgoing edges from dagi, except the initial node S (which might have outdegree 1 as well).
Now all nodes except possibly S have outdegree 0 or at least 2. If the initial node S has
outdegree at least 2, we are done. If S has outdegree 1, then, by our construction, it has an
edge (S, 1, A) and A has outdegree 0 or at least 2. In this case, we delete S and make A the
new initial node, and we store the information that every initial-to-leaf path of dagi has to
be interpreted as the initial-to-leaf path obtained by prepending the edge (S, 1, A).

Recall that the paths from Pi in dag(D) are in a one-to-one correspondence with the
initial-to-leaf paths of dagi. The only difference is that we added an edge (A, i, A′) at the end
and that the maximal non-branching subpaths of the initial paths of dag(D)′ are contracted
into single edges in dagi. Moreover, the weight of an initial-to-leaf path in dagi is the same
as the weight of the corresponding path from Pi, which is its lex-value.

Every dagi can be computed in time O(|dag(D)′|) ≤ O(|D|) and we have to construct
m ≤ k ≤ |φ| many of them. Hence, the total running time is bounded by |D| · f(d, |φ|).

D.3.4 Enumerating paths from Pi in dag(D)
The general idea is that we enumerate with constant delay the initial-to-leaf paths in dagi in
lexicographic order. As explained in Section D.3.3, these paths correspond to the paths from
Pi in dag(D). In order to be able to go in constant time from an initial-to-leaf path of dagi to
the lexicographical next initial-to-leaf path, we use an idea from [46] (which in turn is based
on [26]). In [46] only binary dags are considered, i.e., dags where every non-leaf node has a
left and and a right outgoing edge. Then the idea is to represent an initial-to-leaf path in a
compact form where every maximal subpath p (going from u to v) that consist only of left
(right, respectively) edges is contracted into a single triple (u, `, v) ((u, r, v), respectively).

In our dags dagi, every non-leaf node can have an arbitrary outdegree larger than one.
We therefore have to adapt the approach from [46] to handle also nodes with more than two
outgoing edges. The idea will be to contract only maximal subpaths consisting of leftmost
(rightmost, respectively) edges into single triples.

We describe the procedure for a general dag G = (V, γ, ι) where, for every v ∈ V , we
have |γ(v)| = 0 or |γ(v)| ≥ 2, and every edge (u, j, v) has an edge-weight weight(u, j, v) ∈ N
(note that the dags dagi have this property). This also means that paths of G have weights.
We call every edge (u, 1, v) a min-edge, every edge (u, |γ(u)|, v) a max-edge, and edges that
are neither min- nor max-edges are called middle-edges. This means that every node is either
a leaf with no outgoing edges, or it is an inner node with one min- and one max-edge and a
(possibly zero) number of middle edges.

Min-max-contracted representations. In this section, it will be convenient to write paths
in G as sequences of edge triples (u, i, v) instead of words from (V N)∗V . Thus the path
v0j1v1j2v2 · · · jnvn will be written (v0, j1, v1)(v1, j2, v2) · · · (vn−1, jn, vn). With this notation,
the concatenation of paths corresponds to the concatenation of sequences of edges.

Let p = (v0, j1, v1) · · · (vn−1, jn, vn) be a path in G. The min-max-contracted repres-
entation of p is obtained by contracting every maximal sequence of min-edges (max-edges,
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respectively) into a single triple. Here, a sequence of min-edges (max-edges, respectively) is
maximal if it cannot be extended to the left or right by min-edges (max-edges, respectively).
More formally, the min-max-contracted representation of p is obtained by replacing each
non-empty sequence (vi, 1, vi+1)(vi+1, 1, vi+2) · · · (vi′−1, 1, vi′) of min-edges that is neither
preceded nor followed by a min-edge with the single triple (vi,min, vi′), and, analogously,
replacing each non-empty sequence (vi, |γ(vi)|, vi+1) · · · (vi′−1, |γ(vi′−1)|, vi′) of max-edges
that is neither preceded nor followed by a max-edge with the single triple (vi,max, vi′).
Intuitively speaking, a triple (vi,min, vi′) ((vi,max, vi′), respectively) means that we go
from vi to vi′ by only taking the first (last, respectively) outgoing edge for every node. For
example, the path

(v0, 1, v1)(v1, 1, v2)(v2, 7, v3)(v3, 4, v4)(v4, 1, v5)(v5, |γ(v5)|, v6)(v6, |γ(v6)|, v7)(v7, 5, v8)

(where |γ(v2)| > 7, |γ(v3)| > 4, and |γ(v7)| > 5) has the min-max-contracted representation

(v0,min, v2)(v2, 7, v3)(v3, 4, v4)(v4,min, v5)(v5,max, v7)(v7, 5, v8) .

For every node v0, there is a one-to-one correspondence between v0-paths and the min-max-
contracted representations of v0-paths.

We extend weight to triples (u,min, v) and (u,max, v), i.e., weight(u,min, v) = weight(p),
where p is the unique min-path from u to v, and weight(u,max, v) = weight(p), where p is
the unique max-path from u to v. If p̃ is the min-max-contracted representation of the path
p then we define weight(p̃) = weight(p). Moreover, we call the values weight(e) for all triples
e in p̃ the weight-values of p̃. Hence, weight(p̃) is the sum of all the weight-values of p̃.

Data structures. We describe next certain data structures for G that need to be computed
in order to enumerate all initial-to-leaf paths. We will see that all these data structures can
be computed in time O(|G|), which means that we can compute them for all dags dagi in
the preprocessing phase of our final enumeration algorithm in time |D| · f(d, |φ|).

The min-path of a node v is the v-to-leaf path obtained by starting in v and only taking
min-edges until we reach a leaf, which we denote by min(v). In particular, min(v) = v if
and only if v is a leaf. The max-path of v and the node max(v) are defined analogously.
We can compute the value min(v) and the corresponding weight weight(v,min,min(v)) as
follows (max(v) and weight(v,max,max(v)) are computed analogously): For every leaf v, we
set min(v) = v and weight(v,min,min(v)) = 0 (actually, the triple weight(v,min, v) does not
appear in a min-max-contracted representation, it is used here only in order to facilitate
the computation of the weights). For every inner node v with min-edge (v, 1, u), we set
min(v) = min(u) and weight(v,min,min(v)) = weight(v, 1, u) + weight(u,min,min(u)).

For a node u on v’s min-path with v 6= u, we denote by ℘min(v, u) the unique parent node
of u on v’s min-path. Observe that if u is the direct successor of v on v’s min-path, then
℘min(v, u) = v. For a node u on v’s max-path with v 6= u, we define ℘max(v, u) analogously.

We will next discuss how to compute in time O(|G|) a data structure that allows us to
retrieve in constant time the value ℘min(v, u) for a node u on v’s min-path and the value
℘max(v, u) for a node u on v’s max-path.

Let us only discuss the min-case, since the max-case can be dealt with analogously. We
first remove from G all edges that are not min-edges and then we reverse all edge directions.
This gives us a forest Fmin. For every node v of G, there is a unique rooted tree T (v) in
Fmin that contains v, and v is the root of T (v) if and only if v is a leaf in G. Moreover, the
path from v to the root of T (v) is exactly the min-path of v in G. This forest Fmin can be
computed in time O(|G|).
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For an arbitrary rooted tree T and nodes u, v ∈ T such that there is a non-empty path
from u to v, we denote by nlT (u, v) the unique child of u that belongs to the unique u-to-v
path in T . A next link data structure for T is a data structure that allows us to retrieve
nlT (u, v) for given u, v ∈ T as above. We call these queries next link queries. The following
result from [26] will be used:

I Theorem 20. For a rooted tree T , one can construct in time O(|T |) a next link data
structure for T that allows to solve next link queries in constant time.

For every v ∈ V and u 6= v on v’s min-path we have that T (v) = T (u), and the node
℘min(v, u) is the unique child of u on the u-to-v path in T (v), i.e., ℘min(v, u) = nlT (v)(u, v).
Consequently, by computing the next link data structure from Theorem 20 for every tree
of the forest Fmin, we can retrieve ℘min(v, u) for given v ∈ V and u 6= v on v’s min-path in
constant time.

Enumeration procedure. Provided we have computed the data structures mentioned above,
we can support the following operation for G. Given the min-max-contracted representation
of an initial-to-leaf path p, all its weight-values and its total weight, we can construct in
constant time the min-max-contracted representation of the lexicographical successor of p
(among all initial-to-leaf paths in G) along with all its weight-values and its total weight.
If this lexicographical successor does not exist then the algorithm will report that p is the
lexicographically largest path.

Let p be the min-max-contracted representation of an initial-to-leaf path. We first show
how to obtain the min-max-contracted representation of the lexicographically next initial-
to-leaf path in constant time. To this end, we consider three different cases depending on
whether p’s last triple is a min-triple, a middle-edge or a max-triple. After that, we discuss
how to update the weight-values and the total weight. Note that in each of the following
cases, p is only modified in a suffix of constant length. Hence, constant time suffices in each
case. In order to avoid some further case distinctions we interpret a triple (v,min, v) by the
empty sequence ε. Recall that min(v) = v if and only if v is a leaf.

Case 1: p ends with a min-triple. Let p = p′(v1,min, v2). This means that v3 := ℘min(v1, v2)
is defined and there is an edge (v3, 2, v4).

Case 1.1: v1 = v3. If (v1, 2, v4) is a middle-edge (i.e., |γ(v1)| > 2) then we set p :=
p′(v1, 2, v4)(v4,min,min(v4)).

If on the other hand (v1, 2, v4) is a max-edge then we have to check whether the last triple of
p′ (if it exists) is a max-triple or not. If not, then we set p := p′(v1,max, v4)(v4,min,min(v4)).
On the other hand, if p′ is of the form p′ = p′′(v5,max, v1) (note that p′ ends with v1) then
we set p := p′′(v5,max, v4)(v4,min,min(v4)).

Case 1.2: v1 6= v3. If (v3, 2, v4) is a middle-edge (i.e., |γ(v3)| > 2) then we set p :=
p′(v1,min, v3)(v3, 2, v4)(v4,min,min(v4)). If (v3, 2, v4) is a max-edge, then we set p :=
p′(v1,min, v3)(v3,max, v4)(v4,min,min(v4)).

Case 2: p ends with middle-edge. Let p = p′(v1, j, v2). Then there exists a middle- or
max-edge (v1, j + 1, v3) in G. If (v1, j + 1, v3) is a middle edge in G, then we set p :=
p′(v1, j + 1, v3)(v3,min,min(v3)).

Now assume that (v1, j+1, v3) is a max-edge. If p′ does not end with a max-triple (this in-
cludes the case that p′ is empty) then we set p := p′(v1,max, v3)(v3,min,min(v3)). Finally, if
p′ = p′′(v4,max, v1) ends with a max-triple then we set p := p′′(v4,max, v3)(v3,min,min(v3)).
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Case 3: p ends with a max-triple. If p = (ι,max, v1), then the algorithm reports that p
is the lexicographically largest path. Assume now that p = p′(v1, j, v2)(v2,max, v3), where
(v1, j, v2) is a middle-edge or a min-triple (in a min-max-contracted representation there do
not exist two consecutive max-triples). We then set p := p′(v1, j, v2) and continue with either
Case 1 (if (v1, j, v2) is a min-triple) or Case 2 (if (v1, j, v2) is a middle-edge).

For obtaining the weight-values of the new min-max-contracted representation, we only have
to compute the weight-values for the new triples (for the old triples the weight-values remain
the same). If a new triple (u, j, v) is a middle edge, then the value weight(u, j, v) has been
explicitly computed in the preprocessing. For triples of the form (u,min, v), we can argue as
follows: Whenever we add a new min-triple (u,min, v) in the above algorithm, then one of
the following three cases holds:

The min-edge (u, 1, v) exists in G: We then set weight(u,min, v) = weight(u, 1, v), where
the latter has been precomputed.
v = min(u): Then weight(u,min,min(u)) has been precomputed.
There is an old min-triple (u,min, v′) such that v = ℘min(u, v′). In this case we set
weight(u,min, v) = weight(u,min, v′)− weight(v, 1, v′). Here (v, 1, v′) is an edge of G for
which the weight is known.

For new max-triples we can compute the weights in a similar way.
Now with all the weight-values of the new p at our disposal, we can easily compute the

total weight weight(p) for the new p in constant time. Indeed, notice that in the above
algorithm, p will be modified by removing a constant number of triples from the end and
then adding a constant number of triples at the end. Hence, weight(p) can be updated by a
constant number of subtractions and additions.

When we speak about the min-max-contracted representation of a path in the following,
we assume that all weight-values as well as the total weight of the path are also computed.

Enumerating the initial-to-leaf paths of dagi. In order to enumerate the initial-to-leaf
paths of dagi, we start with the min-max-contracted representation of the first initial-to-leaf
path of dagi, which can be obtained in constant time, since it is simply (S,min,min(S)). Then,
by the procedure described above, we can obtain the min-max-contracted representation of
the lexicographically next initial-to-leaf path from the min-max-contracted representation of
the previous initial-to-leaf path in constant time, which gives us a constant delay enumeration
algorithm for the min-max-contracted representations of all such paths. Thereby, also the
weight-values and the total weight are correctly updated.

D.3.5 Counting the number of Bi-nodes
For every ρ-neighborhood Bi, we need the total number of Bi-nodes in val(D). In the
uncompressed setting, this number is given by the size of the explicitly computed list Li
(see the algorithm described in Section 3.1). In the compressed setting, it can be computed
(thanks to Lemma 8) as

βi =
∑
A∈Ni

PA · |Li,A|,

where Ni is the set of all nonterminals that are Bi-useful, PA is the number of S-to-A paths
in dag(D), and Li,A is the list of all valid Bi-nodes in E(A). Recall that in Section D.3.2, we
have already computed the sets Ni and the lists Li,A.
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The numbers PA can be computed as follows. We first remove from dag(D) all nonter-
minals A such that there is no S-to-A path in dag(D) (such nonterminals could have
been removed in the very beginning without changing val(D)). This can be done in time
O(|dag(D)|) ≤ O(|D|). Then we can compute all numbers PA inductively top-down in
dag(D) by first setting PS = 1 and then setting PA =

∑
1≤i≤` PAi

for every node A with
incoming edges (A1, i1, A), . . . , (A`, i`, A).

The total number of (binary) additions is bounded by the number of edges of dag(D),
which is bounded by |D|. Moreover, all numbers PA need only O(|D|) many bits (see
Section 4.1). Therefore, on our machine model, every addition needs constant time (see
Section 4.2). Hence, the whole procedure needs time O(|dag(D)|). Therefore, all numbers βi
can be computed in time f(d, |φ|) · |D|.

D.3.6 Checking distance constraints
Recall that we fixed the consistent factorization (B1, σ1, . . . ,Bm, σm) (see (3)) of the fixed
(k, r)-neighborhood type B at the beginning of Section 5.2. We also noticed that during the
enumeration phase we have to check whether distval(D)(tbi,σi

, tbj ,σj
) > 2r+ 1 for a Bi-node bi

and a Bj-node bj . Here, the following assumptions hold for i (and analogously for j):
bi is given by a triple (lex(pi), qi, vi),
pi is an initial-to-Ai path in dag(D) (for some Bi-useful nonterminal Ai) that is given by
the min-max-contracted representation of the corresponding path in dagi.
ci := (qi, vi) is a node (written in Ai-representation) from E(Ai) such that ci has the
ρ-neighborhood type Bi in E(Ai) and NE(Ai),ρ(ci) is a valid substructure of E(Ai).

Moreover, let Γi = {(Ai, v) : v ∈ ran(τAi
)} be the set of contact nodes of val(Ai).

Since (B1, σ1, . . . ,Bm, σm) is a consistent factorization of the (k, r)-neighborhood type B
and NE(Ai),ρ(ci) ' Bi we have for every c ∈ ran(tci,σi

): SE(Ai),r(c) ⊆ SE(Ai),r(tci,σi
) ⊆

SE(Ai),ρ(ci). Since NE(Ai),ρ(ci) is a valid substructure of E(Ai), we obtain Sval(Ai),r(c)∩Γi = ∅,
i.e.,

distval(Ai)(c,Γi) ≥ r + 1 (8)

for all i ∈ [m] and all c ∈ ran(tci,σi
). We next state some sufficient conditions for

distval(D)(tbi,σi , tbj ,σj ) > 2r + 1.

I Lemma 21. If neither pi is a prefix of pj nor the other way around, then we have
distval(D)(tbi,σi , tbj ,σj ) > 2r + 1.

Proof. We have to show that if neither pi is a prefix of pj nor the other way around, then
distval(D)(b, b′) > 2r + 1 for every b ∈ ran(tbi,σi

) and b′ ∈ ran(tbj ,σj
). To this end, let

b ∈ ran(tbi,σi
) and b′ ∈ ran(tbj ,σj

) be arbitrarily chosen. If b and b′ are not connected in
G(val(D)), then distval(D)(b, b′) =∞ > 2r + 1. So, let us assume that b and b′ are connected.
Let c ∈ ran(tci,σi) and c′ ∈ ran(tcj ,σj ) such that ηpi(c) = b and ηpj (c′) = b′.

If neither pi is a prefix of pj nor the other way around, then the intersection of the
(universes of the) substructures ηpi(val(Ai)) and ηpj (val(Aj)) is ηpi(Γi) ∩ ηpj (Γj), which can
be non-empty. Consequently, any path Π from b to b′ has a shortest prefix Π1 that goes from
b = ηpi

(c) to ηpi
(Γi) as well as a shortest suffix Π2 that goes from ηpj

(Γj) to b′ = ηpj
(c′).

The path Π1 must be the ηpi
-image of a path from c to Γi in val(Ai) and the path Π2 must

be the ηpj
-image of a path from Γj to c′ in val(Aj). From (8) it follows that Π1 and Π2 have

both length at least r+ 1. Hence, every path from b to b′ has length at least 2(r+ 1) = 2r+ 2,
i.e., distval(D)(b, b′) > 2r + 1. This shows the lemma. J
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I Lemma 22. Assume that pj = piq for some path q. Let b ∈ ran(tbi,σi) and b′ ∈ ran(tbj ,σj )
and take the unique c ∈ ran(tci,σi

) and c′ ∈ ran(tcj ,σj
) such that ηpi

(c) = b and ηpj
(c′) =

ηpi
(ηq(c′)) = b′. If distval(D)(b, b′) ≤ 2r + 1 then distval(Ai)(c, ηq(c′)) ≤ 2r + 1.

Proof. Since pj = piq, we know that ηq is an embedding of val(Aj) into val(Ai).
There is a path Π between b and b′ of length at most 2r + 1 in the graph G(val(D)). We

first show that Π does not contain a node from ηpi(Γi). If this would not be the case then
we can take the shortest prefix Π1 of Π that goes from b = ηpi

(c) to ηpi
(Γi) and the shortest

suffix Π2 of Π that goes from ηpj (Γj) = ηpi(ηq(Γj)) to b′ = ηpj (c′) = ηpi(ηq(c′)). The path
Π1 is contained in ηpi

(val(Ai)) and visits a node from ηpi
(Γi) only at the very end. Similarly,

the path Π2 is contained in ηpj
(val(Aj)) and visits a node from ηpj

(Γj) only in the beginning.
By (8) we have distval(Ai)(c,Γi) ≥ r + 1 and distval(Aj)(c′,Γj) ≥ r + 1, which implies that
Π1 and Π2 have both lenght at least r + 1. Hence, Π has length at least 2r + 2, which is a
contradiction.

Therefore, Π does not visit a node from ηpi
(Γi), which implies that Π is a path in

ηpi(val(Ai)) and does not contain edges between nodes from ηpi(Γi). Hence, Π arises from a
path between c and ηq(c′) in val(Ai), which finally yields distval(Ai)(c, ηq(c′)) ≤ 2r + 1. J

I Lemma 23. If pj = piq or pi = pjq, and the path q has length at least 3ρ− r + 1, then
distval(D)(tbi,σi

, tbj ,σj
) > 2r + 1.

Proof. Assume that pj = piq for some path q of length at least 3ρ − r + 1. In addition,
assume that distval(D)(tbi,σi

, tbj ,σj
) ≤ 2r + 1, which means that distval(D)(b, b′) ≤ 2r + 1 for

some b ∈ ran(tbi,σi
) and b′ ∈ ran(tbj ,σj

). We will deduce a contradiction. Let c ∈ ran(tci,σi
)

and c′ ∈ ran(tcj ,σj
) such that ηpi

(c) = b and ηpj
(c′) = b′. Since pj = piq, we know that ηq is

an embedding of val(Aj) into val(Ai).
By Lemma 22 we have distval(Ai)(c, ηq(c′)) ≤ 2r+1. Since the neighborhoodsNE(Ai),r(tci,σi)

and NE(Aj),r(tcj ,σj
) are connected, it follows that NE(Ai),r(tci,σi

t ηq ◦ tcj ,σj
) ⊆ val(Ai) is

connected. Since tci,σi t (ηq ◦ tcj ,σj ) is a partial k-tuple, we obtain

distval(Ai)(ci, ηq(cj)) ≤ (2r + 1)(k − 1) = (2rk − r + k − 1)− r = ρ− r.

Since NE(Ai),ρ(ci) ' Bi and NE(Aj),ρ(cj) ' Bj are valid substructures of E(Ai) and E(Aj),
respectively, we know that distval(Ai)(InAi

, ci) ≤ ρ and distval(Aj)(InAj
, cj) ≤ ρ. Consequently,

distval(Ai)(InAi , ηq(InAj )) ≤ 2ρ+ ρ− r = 3ρ− r. This is a contradiction, since the fact that q
has length at least 3ρ− r + 1 means that distval(Ai)(InAi

, ηq(InAj
)) > 3ρ− r due to the apex

condition for D.
We conclude that distval(D)(b, b′) > 2r + 1 for every b ∈ ran(tbi,σi

) and b′ ∈ ran(tbj ,σj
),

which means that distval(D)(tbi,σi
, tbj ,σj

) > 2r + 1. J

By Lemmas 21 and 23 it remains to show the following:
(i) We can check in time f(d, |φ|) whether pj = piq or pi = pjq for some path q of length

at most 3ρ− r.
(ii) Assuming (i) holds we can check in time f(d, |φ|) whether distval(D)(tbi,σi

, tbj ,σj
) > 2r+1.

Let us start with (ii) and assume that pj = piq (the case pi = pjq can be handled analogously)
with q of length at most 3ρ− r. In order to check whether distval(D)(tbi,σi

, tbj ,σj
) > 2r + 1,

we have to check whether distval(D)(b, b′) > 2r + 1 for all b ∈ ran(tbi,σi
) and b′ ∈ ran(tbj ,σj

).
We explain how this can be done for fixed b ∈ ran(tbi,σi

) and b′ ∈ ran(tbj ,σj
). As before, let

c ∈ ran(tci,σi
) and c′ ∈ ran(tcj ,σj

) such that ηpi
(c) = b and ηpj

(c′) = ηpi
(ηq(c′)) = b′. By

Lemma 22, distval(D)(b, b′) ≤ 2r + 1 implies distval(Ai)(c, ηq(c′)) ≤ 2r + 1. Since the other
direction is trivial, it suffices for (ii) to check distval(Ai)(c, ηq(c′)) > 2r + 1. Note that the



38 FO-Query Enumeration over SLP-Compressed Structures of Bounded Degree

Ai-representation of ηq(c′) can be computed in time O(ρ): c′ is given in its Aj-representation
(q′, v′), hence, the Ai-representation of ηq(c′) is (qq′, v′), where q has length at most 3ρ− r.

In order to check distval(Ai)(c, ηq(c′)) > 2r + 1, we construct Nval(Ai),2r+1(c) by starting a
BFS in c and then computing all elements of val(Ai) with distance at most 2r + 1 from c.
This is analogous to the construction of the expansions in Section D.3.1. Then, we check
whether ηq(c′) ∈ Nval(Ai),2r+1(c). Since both c and ηq(c′) are given by Ai-representations of
size f(d, |φ|), this can be done in time f(d, |φ|).

For (i) we show that one can check in time f(d, |φ|) whether pi = pjq for a path q of
length at most 3ρ − r. The general idea is to check whether pi = pj and, if this is not
the case, to remove repeatedly the last edge of pi (for at most 3ρ − r times) and check
whether the resulting path equals pj . Recall that the path pi is stored as the min-max-
contracted representation p̃i (in dagi) of the corresponding path pi0A′i in dag(D)′, where in
addition all maximal non-branching paths in pi0A′i haven been contracted, and analogously
for pj (see Section D.3.3). Checking pi = pj can be done by simply checking whether
lex(pi) = weight(p̃i) = weight(p̃j) = lex(pj); see (7). Hence, it remains to show how we can
obtain from p̃i a min-max-contracted representation shorten(p̃i), which represents the path
obtained from pi by removing the last edge (using this, one can also remove in a first step
the terminal edge (Ai, 0, A′i) that was added to dag(D) in the construction of dag(D)′). Here
we have to consider two aspects:

Maximal non-branching subpaths have been contracted into single edges in the construc-
tion of dagi from dag(D)′.
Maximal subpaths consisting of min-edges (max-edges, respectively) have been contracted.

To address both aspects, we compute shorten(p̃i) in two steps. Let p̃i = q̃(B, `,A) (we assume
that we have already done some shortening steps, so that the A might be no longer A′i).

Step 1: If (u, `, v) is neither a min- nor a max-triple, then (B, `,A) is an edge in dagi and
we pass p̃′ := q̃ together with the removed edge (B, `,A) to Step 2 below. If ` = min and
(B, 1, A) is an edge of dagi then we again pass p̃′ := q̃ and the edge (B, 1, A) to Step 2.
If (B, 1, A) is not an edge of dagi, then (℘min(B,A), 1, A) is an edge in dagi and we pass
p̃′ := q̃(B,min, ℘min(B,A)) and the edge (℘min(B,A), 1, A) to Step 2. Finally, the case
` = max can be handled analogously. Just like described in the enumeration procedure of
Section D.3.4, we can also compute the weight-values and total weight for p̃′.

Step 2: From Step 1 we obtain a min-max-contracted path representation p̃′ together with an
edge (B′, `, A′) from dagi. In general we removed from p̃ not only a single edge in dag(D)′ but
a maximal non-branching subpath that is represented by the dagi-edge (B′, `, A′). Therefore,
we have to add to p̃′ the prefix of this maximal non-branching subpath without the last edge.
To do this, we store in the preprocessing for every edge in dagi the information whether it
is a single edge of dag(D)′ or an edge that represents a contracted maximal non-branching
path of length at least 2. If (B′, `, A′) is a single edge from dagi, then we are done and set
shorten(p̃i) = p̃′. If (B′, `, A′) is an edge of dagi that represents a maximal non-branching
path from B′ to A′ of length at least 2 in dag(D)′, then we set shorten(p̃i) = p̃′(B′, `, A′′),
where A′′ is the parent node of A′ on the maximal non-branching path from B′ to A′ (and
we also store the information whether (B′, `, A′′) represents still a maximal non-branching
path of length at least 2).

This correctly constructs the min-max-contracted representation shorten(p̃i) for the path
pi with the last edge removed. However, it remains to explain how the construction from
Step 2 can be implemented in constant time. This can again be achieved by a next link data
structure; see Theorem 20. In the preprocessing, we compute a forest of all the reversed
maximal non-branching paths of dag(D)′ and then we compute a next link data structures for
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all the trees in this forest. So, in some sense we use a two-level next-link data structure: the
upper level handles contracted sequences of min-edges and max-edges, respectively, whereas
the lower level handles contracted sequences of maximal non-branching edges.
I Remark 24. Note that the above shortening of pi destroys the representation of the path
pi (and similarly for pj). This is a problem, since later in the enumeration phase pi might be
needed again for comparison with other paths (and the number of these comparisons depends
on the structure val(D)). Producing a copy of pi before we start shortening pi is not an
option since the min-max-contracted representation of pi does not fit into a constant number
of registers. Therefore making a copy of pi would flaw the constant delay requirement.
Fortunately, there is a simple solution. Whenever we remove a terminal edge from the
min-max-contracted representation of the path pi we store this edge. In total we have to
store only 3ρ− r many edges. Then, when we want to restore pi we add the removed edges at
the end, which can be easily done with the min-max-contracted representations (it is similar
to the shortening procedure).
I Remark 25. The algorithm from this section also yields the last piece for checking in the
preprocessing phase, whether a sentence of the form (5) holds (see the last paragraph in
Appendix D.1). Recall that (5) expresses that there exists at least q = f(|φ|) many nodes
a1, . . . , aq with the following properties: distval(D)(ai, aj) > 2r and the r-neighborhood type
of each ai is from a fixed set of r-neighborhood types.

D.3.7 Final Remarks
For a fixed consistent factorization Λ = (B1, σ1, . . . ,Bm, σm) of a (k, r)-neighborhood type B,
the algorithm keeps a min-max-contracted initial-to-leaf path in dagi for every i ∈ [m]. We
have seen in Section D.3.4 how all initial-to-leaf paths of dagi can be enumerated by exploiting
the min-max-contracted representation. In Appendix D.3.6, we discussed how the stored
min-max-contracted initial-to-leaf paths can be used in order to check the disjointedness of
the r-neighborhoods of the produced tuples. Consequently, we can perform Algorithm 1 also
in the compressed setting.

Recall from Theorem 7 that nodes of val(D) are output in lex-presentation. Internally,
the algorithm represents a node b ∈ val(D) by a triple (lex(p), q, v), where the initial path
p is given by a min-max-contracted representation, and (q, v) is the A-representation (A
is the nonterminal, where p ends) of a node from the expansion E(A). Hence, q is a
path in dag(D) of length at most 2ρ + 1 (due to the apex condition) We can therefore
compute from the precomputed edge weights also weight(q) with 2ρ binary additions. Since
(pq, v) is the D-representation of the node b, its lex-representation is (lex(pq), v) = (lex(p) +
lexA(q), v) = (weight(p) + weight(q) + 1, v) which can be computed in time O(ρ) from the
internal representation (lex(p), q, v) of b.
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