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One of the outstanding results for CCS [30] is Milner’s complete proof system for regular
expressions modulo observational congruence [31]. The task of proving completeness is
divided into three parts. First, only guarded recursive expressions are considered where
guards are visible actions. This means that divergent expressions (that perform an infinite
number of silent steps) are excluded. The core of this part is to show that two congruent
expressions satisfy the same set of recursive equations. The second important property is
that every set of recursive defining equations has a unique solution. Divergent expressions
cannot be handled in this way, since, for instance, the recursive equation X = 7.X has
infinitely many solutions. Therefore completeness is obtained by adding further axioms.
In particular, a divergent expression can be equated to a non-divergent expressions by
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Abstract

During the last decade, CCS has been extended in different directions, among
them priority and real time. One of the most satisfactory results for CCS is Milner’s
complete proof system for observational congruence [31]. Observational congruence
is fair in the sense that it is possible to escape divergence, reflected by the axiom
recX.(1.X + P) =recX.7.P. In this paper we discuss observational congruence in
the context of a simple stochastic timed CCS with maximal progress. This property
implies that observational congruence becomes unfair, i.e. it is not always possible
to escape divergence. This problem also arises in calculi with priority. Therefore,
completeness results for such calculi modulo observational congruence have been
unknown until now. We obtain a complete proof system by replacing the above axiom
by a set of axioms allowing to escape divergence by means of a silent alternative. This
treatment can be profitably adapted to other calculi.

Introduction

applying essentially the axiom

recX.(7.X + P) = recX.7.P.



Walker [41] studies divergence in the context of CCS and observational congruence.
The possibility of escaping from divergence is known as fairness. Koomen [29] was the first
to define a fair abstraction rule (KFAR) similar to the one above.

Fairness is mostly regarded as a desirable feature. Therefore, the issue of obtaining
fairness has been extensively studied in the literature. Baeten et al. [6] discusses fairness
in the context of failure semantics. In [7], Bergstra et al. introduce a weaker version of
fair abstraction (WFAR) that allows to escape divergence only if a silent alternative exists.
Fair testing equivalences have been developed in [33, 9].

In recent years, CCS has been extended in different directions, among them priority
and real time. Different prioritised process algebras have been developed [5, 11, 16, 34, 10,
38, 13]. Investigations of observational congruence in the presence of priority have been
restricted to finite, i.e. recursion free processes [34]. In that approach priority is nicely
reflected by the following axiom, where a has a lower priority than b:

7.P+a.Q =r71.P.

A variety of timed process algebras has also been proposed [40, 21, 32, 4, 43, 36, 2, 12].
A thorough overview of the basic ingredients is given in [35]. Complete proof systems for
regular expressions have been obtained for some of these calculi [23, 1, 15]. One of the
typical features of CCS based timed process algebras is a notion of maximal progress, also
called minimal delay or 7-urgency. This property says that a system cannot wait if it has
something internal to do. It is characterised by the following law, where delay(T') usually
stands for a fixed time delay of length 7"

7.P + delay(T).QQ = 7.P.

The concepts of priority and maximal progress arose at different corners in concurrency
theory. Weak bisimulation semantics incorporating one of these ingredients, however, have
a common feature: Divergence implies unfairness. In particular, the above KFAR axiom is
not sound!. Thus, KFAR cannot be used to equate divergent expressions to non-divergent
expressions. So, completeness is not attainable in this way. But the equation X = 7..X still
has infinitely many solutions. As a consequence, to the best of our knowledge, no complete
proof system for observational congruence for regular CCS including either priority or
maximal progress has been given until now.

In recent years also stochastic timed calculi have emerged, where delays are not fixed
but given by continuous probability distribution functions. This fits neatly to interleaving
semantics, if only exponential distributions are considered. Then delay(T) stands for a
delay, say ¢, with mean duration T and distribution Prob(delay < 1) =1 — e, where the
parameter X is the reciprocal value of T'. We mention TIPP of Gétz et al. [20], Hillston’s
PEPA [26], and Bernardo& Gorrieri’s EMPA [8] as representatives of this approach. Their

In the timed case, a counterexample is recX.(7.X + delay(T).Q). KFAR equates this expression to
recX.7.delay(T).Q) while maximal progress leads to recX.7.X. Since the latter (using KFAR) can be
equated to termination, both expressions obviously describe distinct behaviours.



unifying feature is that their semantics can be transformed into a continuous time Markov
chain, a stochastic model widely used for performance evaluation purposes, see e.g. [39].
The issue of weak bisimulation and observational congruence in stochastic timed calculi
has been addressed in [24].

The contribution of this paper is threefold. Concerning ordinary CCS we present a
slight modification of Milner’s observational congruence that permits to escape divergence
only if a silent alternative exists. This is exactly the effect of WFAR in the style of [7]. Our
notion of observational congruence is truly contained in Milner’s observational congruence.
This compares favourably to the treatment of divergence in [41] that is incomparable with
the original definition.

We exploit this feature in order to develop a sound and complete proof system for
observational congruence in a stochastic timed extension of CCS with maximal progress.
This is achieved by replacing KFAR by a set of axioms allowing to escape divergence by
means of a silent alternative.

As a side result we obtain a sound and complete proof system for observational congru-
ence with WFAR on CCS. Since our treatment of divergence is orthogonal to the stochastic
timing aspects we highlight that this treatment can be adapted to other calculi with either
maximal progress or priority for which similar completeness results have been unknown
until now.

The stochastic timed calculi of [20, 26, 8] all attach exponentially distributed delays to
actions. Their subtle differences are mainly based on different interpretations of the delay
of synchronised actions. We deviate from these calculi and split delays and actions into
two orthogonal parts. This separation rules out any ambiguity in the timing of synchroni-
sation. It has been pointed out e.g. in [32] and [35] that such a separation is conceptionally
favourable for timed process algebras.

An extension of our basic stochastic timed calculus has been developed to study per-
formance properties of parallel and distributed systems. In [25] it is applied to specify a
CSMA/CD protocol stack. The whole system turns out to have 37136 reachable states. It
can be proven to be observational congruent to a system with 411 states which can be di-
rectly transformed into a Markov Chain to study temporal properties of the protocol stack.
That case study has indeed initiated our study of equational properties of observational
congruence. With the results presented in this paper we have a complete proof system for
establishing observational congruence of such systems on the language level.

The paper is organised as follows. Section 2 briefly describes the calculus and defines
congruence relations on it. Section 3 presents a set of equational laws that are sound for
observational congruence. The proof of completeness requires some degree of detail, it
is sketched in Section 4. Section 5 discusses the relation to WFAR, ordinary CCS and
extensions thereof. Section 6 contains some concluding remarks.



2 A Simple Stochastic Timed Calculus

In this section we introduce the basic definitions and properties of the calculus we inves-
tigate. It includes a distinct type of prefixing to specify exponentially distributed delays.
Instead of a broad introduction into their theory we briefly summarise some important
properties enjoyed by exponential distributions. Details can be found in various textbooks,

e.g. [14].

(A) An exponential distribution Prob{delay <t} =1 — e™* is characterised by a single
parameter X, a positive real value, usually referred to as the rate of the distribution.

(B) Exponential distributions possess the so called Markov property. The remaining delay
after some time tg has elapsed is a random variable with the same distribution as the
whole delay: Prob{delay <t+tq | delay > to} = Prob{delay < t}.

(C) The class of exponential distributions is closed under minimum, which is expo-
nentially distributed with the sum of the rates: Prob{min(delay,,delay,) < t} =
1 —e~t2)t5f delay, (delay,, respectively) is exponentially distributed with rate A,

(A2).

While property (A) allows a compact syntactic representation of delays in our calculus,
the Markov property (B) is important to employ an interleaving semantics. It ensures that
distributions of delays do not have to be recalculated after some (causally independent)
delay has elapsed. Therefore, the usual expansion law can be applied straightforwardly.
This substantially simplifies the definition of parallel composition. Property (C) is decisive
for our interpretation of the choice operator in the presence of delays: If all alternatives
of a choice involve an exponentially distributed delay the decision is taken as soon as the
first of these delays elapses. This finishing delay determines the subsequent behaviour.
The time instant of this decision is obviously given by the minimum of distributions. As a
consequence of property (C), the overall delay until the decision is taken is exponentially
distributed.

After these preliminaries we introduce the calculus we investigate. We assume a set of
process variables Var, a set of actions Act containing a distinguished silent action 7 and
let IR denote the set of positive reals. We use A, p, ... to range over IR and a, b, ... for
elements of Act. The basic calculus does not contain parallel composition, we defer the
discussion of this operator to Section 5.

Definition 2.1 Let A € IR, a € Act and X € Var. We define the language STC as the set
of expressions given by the following grammar.

Ex=0 | N).E | a& | E€+& | X | recX.E

The expression (A).P describes a behaviour that will delay its subsequent behaviour P
for an exponentially distributed time with a mean duration of 1/A. The meaning of the
other operators is as usual. We use £, F, ... to range over expressions of STC. With the
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usual notion of free variables and free and closed expressions we let STP denote the set of
closed expressions, ranged over by P, @), ..., called processes. Var(E) denotes the set of
free variables of F.

A variable X is strongly guarded in an expression F if every occurrence of X in F is
strongly guarded, i.e. guarded by a prefix “a.” (with a # 7) or “(X).”. Weak guardedness
is the same, but includes the prefix “7.”. A variable is said to be fully unguarded if it is
not weakly guarded. An expression F is said to be strongly (weakly) guarded, if, for every
subexpression of the form recX.FE’, the variable X is strongly (weakly) guarded in F'.

Definition 2.2 We define the set of well-defined expressions STC; as the smallest subset
of STC such that

e Var C STC;| and 0 € STC,
e if £/ €SIC| and F € SIC| then F + F € SIC|,
o if F{recX.E/X} € SIC, then recX.FE € STC,.

The complementary set containing all ill-defined processes, will be denoted STCy. We write
E| (ET)if £ € SIC, (F € STCy).

The semantics of each expression is defined as an equivalence class of transition systems.
We define a transition system for each expression below by means of structural operational
rules. We define two transition relations, one for actions and one to represent the impact of
time. We have taken the liberty to shift the complexity of our calculus from the definition
of the transition system towards the definition of equivalences. As a consequence, the
operational rules are very simple, whereas the definition of a suitable equivalence becomes
more challenging.

Definition 2.3 The action transition relation —= C SIC x Act x STC and the timed
transition relation ---- C STC x IR x {l,r}* x STC are the least relations given by the rules
in Figure 1.

In the rules for timed transitions we use words over {/, r} to generate multiple transitions
for expressions like (A).0 + (1).0 by encoding their different proof trees. This is known
from probabilistic calculi like PCCS [19], € denotes the empty word. The need to represent
multiplicities stems from our interpretation of choice in the presence of delays. It is assumed
that the decision is taken as soon as the first of the delays elapses. Property (C) implies
that this delay is again governed by an exponential distribution given by the sum of the
rates. In other words, the behaviour of (1).0 4+ (A).0 is the same as that of (2X).0. Thus
idempotence of choice does not hold. Our notion of bisimilarity is therefore similar to
probabilistic bisimilarity as introduced by Larsen&Skou [27] regarding timed transitions.
The definition requires to calculate the sum of all rates leading from a single expression
into a set of expression (where the latter set will be an equivalence class of expressions).
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Figure 1: Operational semantic rules for STC*

Definition 2.4 Let C' C STC. We define the cumulative rate function - : STCx291C ., R
as follows
vE,C)= > {M3FeC: E-~- - F)

we{l,r}*

The interrelation of timed and action transitions resulting, for instance, from (X).P+7.Q
is not evident from the operational rules. From a stochastic perspective, the silent action
may happen instantaneously because nothing may prevent or delay it. On the other hand,
property (A) implies that the probability that an exponentially distributed delay finishes
instantaneously, is zero (Prob{delay < 0} = 0). We therefore employ the mazimal progress
assumption. We assume that a process that may perform a silent action is not allowed
to let time pass. The above process is therefore equal to 7.(). Since this equality is
not evident from the operational rules it will become part of the definition of strong and
weak bisimilarity. For this purpose, we distinguish the elements of STC according to their
ability to perform a silent action. We use Ky to denote unstable expressions satisfying
3F : E —/—= F and E./ to denote the converse. Expressions with the latter property will
be called stable expressions in the sequel. Intuitively, only stable expressions may spend
time whereas unstable expressions follow the maximal progress assumption. Note that /
can be equally defined by means of a syntactic predicate on STC. For expressions F that
are stable as well as well-defined we use the shorthand notation F/].

We are now ready to introduce strong and weak bisimilarity on STC. As usual we
define them for closed expressions, and afterwards lift them to STC. The set of equivalence
classes of a given equivalence relation B on a set STC is denoted STC/B. [E]z denotes the
equivalence class of B containing F.



Definition 2.5 An equivalence relation B on STP is a strong bisimulation iff P B ) implies
for all @ € Act

1. P—== P implies Q —— Q' for some Q' with P’ B @',
2. Py implies that /] and that v(P,C') = v(Q, C) for all C € STP/B.

Two processes P and () are strongly bisimilar (written P~@) if they are contained in some
strong bisimulation.

In this definition, maximal progress is realized because the stochastic timing behaviour
(evaluated by means of 7) is irrelevant for unstable expressions. Furthermore we do not
compare the timing behaviour of ill-defined processes. The reason is best explained by
means of an example. An ill-defined process like recX.(X + (1).0) may possess an infinitely

branching transition system (for each n € Ny we have recX.(X + ()1).0) ——:\—l————ﬂ 0). Our
restriction to well-defined expressions thus avoids the need to calculate and compare infinite
sums of rates.

Timed versions of bisimilarity (e.g. [32, 43]) usually require to cumulate subsequent
time intervals. This is sometimes called time additivity. In our calculus, time additivity
is not possible. The reason is that sequences of exponentially exponentially distributed
delays are not exponentially distributed, since the class of exponential distributions is not
closed under convolution. (There is no X satisfying Prob{delay, + delay, <1} =1 — e
if delay, and delay, are exponentially distributed.) In other words, it is impossible to
replace a sequence of timed transitions by a single timed transition without affecting the
probability distribution of the total delay. We thus demand that timed transitions have
to be bisimulated in the strong sense, even for weak bisimilarity (in contrast to action

* a

transitions). We let == and == abbreviate T o - — " except if a = 7. In this case,

- denotes ——" and == denotes ——". For a set of expressions C' we define C'7 as the
set of expressions that may silently evolve into an element of C', i.e. C7 = {F£ | IF € C :

EZ F).

Definition 2.6 An equivalence relation B on STP is a weak bisimulation iff P B () implies
for all @ € Act

1. P iu P’ implies () im Q' for some ' with P' B @',

2. P . P"and P'y| imply @ - Q' for some Q'] such that (P, C7) =~(Q',C")
for all C' € STP/B.

Two processes P and () are weakly bisimilar (written Pa@)) if they are contained in some
weak bisimulation.
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Figure 2: Some characteristic examples for weak bisimilarity.

@<> 7.0+ a.0

a

It can be shown that a~ (~, respectively) is a weak (strong) bisimulation. We il-
lustrate the distinguishing power of &~ by means of some examples, depicted in Fig-
ure 2. (We have used = to denote syntactic identity.) The first two processes, P;
and P,, are equivalent because P, is unstable (thus the p-branch is irrelevant) but
may silently evolve to a stable process that is identical (thus equivalent) to P;. The
process Ps is equivalent to the former two, because v( Py, ([0]x)7) = 2X = y(Ps, ([0]x)7)
and y(Pr,([7.0 4+ a.0]x)") = 2X = 4(Ps, ([7.0 + a.0]x)7) (all other values of v are 0 in ei-
ther case). In contrast, y(Ps, ([7.0 + a.0]x)”) = A whence we have that P; is not weakly
bisimilar to the former three processes.

The shape of this last example sheds some interesting light on our definition. Assume,
for the moment, that A is just an action like all the others. Then, P; and P; would be
equated under the usual notion of weak bisimilarity while they would not under branching
bisimilarity. Branching bisimilarity has been introduced by van Glabbeek& Weijland [18].
Here, however, weak bisimilarity already distinguishes the two, because multiplicities of
timed transitions are relevant. (That is the reason why (P, ([0]x)7) = 2X = (P4, ([0]x)7)
but (P, ([7.0 4+ a.0]x)7) # v(Ps, ([7.0 4+ a.0]x)7).) In general, it is possible to reformu-
late weak bisimilarity such that silent steps following a timed transition are treated as in
branching bisimilarity. This is particularly expressed in the following lemma, where the
equivalence class C' has replaced (7.

Lemma 2.7 An equivalence relation B on STP is a weak bisimulation iff P B @ implies
for all @ € Act

1. P—"= P implies Q ., Q' for some @' with P" B @)’,
2. Py|implies () - Q' for some Q'/] such that v(P,C) = ~(Q', C) for all C € STP/B.

Proof: Condition (2) of Definition 2.6 is an immediate consequence of the second con-
dition of this lemma since each C'™ is a union of equivalence classes of B. The converse
direction is shown by an induction on the number of equivalence classes subsumed by
C'7. Interchangeability of the respective first conditions is straightforward. O



We shall frequently use this reformulation in the sequel. Unsurprisingly, & is not
substitutive with respect to choice. We therefore proceed as usual and define the (provably)
coarsest congruence contained in .

Definition 2.8 P and  are observational congruent, written P &~ @, iff for all a € Act
and all C' € STP/~::

1. P—“= P implies Q == @’ for some Q' with P'~(Q)’,
2. Q —“= Q" implies P == P’ for some P’ with P'~(Q’,
3. Pyl (or Qvl) implies v(P,C) =+(Q,C)

- Pyl Qul.

Definition 2.9 Let R be a relation on STP x STP. We extend it to STC x STC as follows. Let
E, F eSIC. Then ER Fifft VP,... ,P, € STP : E{P/X} R F{P/X}, where X denotes
the vector of occurring free variables and { £/ X} denotes the simultaneous substitution of

each X; by F;.

B

It can be shown that & D &~ D ~. In addition, strong bisimilarity and observational
congruence are compositional relations indeed.

Theorem 1 = is a congruence with respect to the operators of STC.

Proof: See Appendix A. O

3 Axiomatisation

In this section we develop a set of equational laws that is sound and complete with
respect to ~. To achieve completeness is by far not straightforward, due to the
presence of maximal progress. Divergent expressions, performing an infinite number
of silent steps (e.g. tecX.7.X 4 (1).0), will be our main concern. In ordinary CCS
the KFAR law recX.7.X + F = recX.7.F is responsible to remove such infinite se-
quences. This law is not sound in our calculus. To illustrate this phenomenon suppose

c

recX.(7.X 4+ (1).0) = recX.(7.(X).0). This implies recX.(7.X + (1).0) &~ (1).0. But, since
(1).0y] there must be some Py| with recX.(7.X + (1).0) == P which is not the case.

Hence, we are forced to treat such loops of silent actions in a different way. We make
them explicit by means of a distinguished symbol L indicating ill-defined expressions. We
equate divergent and ill-defined expressions. This is inspired by [41], but divergence (and
ill-definedness) can be abstracted away if a silent computation is possible. For this purpose,
we introduce a particular axiom (L):

1l 4+7.F=71F.



The symbol L is not part of the language STC we are aiming to axiomatise. It will however
be an essential part of the laws. For instance, in order to equate the expressions rec.X.(7.X +
7.0) and 7.0 the symbol L appears (and vanishes again) inside the proof. We therefore
define an extended language STC* as follows:

Definition 3.1 Let A € IR, a € Act and X € Var. We define the language STC as the set
of expressions given by the following grammar.

Ex=0 | L | WN.E | a& | E+E | X | recX.E.

All definitions introduced in Section 2 can be equally defined for this langage, in par-
ticular observational congruence, according to Definition 2.8, we denote this extended
observational congruence by ~". Also the properties stated in Section 2 remain completely
valid for this extended language. The reason is twofold. First, no transitions are derivable
for L by means of the operational rules in Figure 1. Furthermore, L is ill-defined accord-
ing to (the redefinition of) Definition 2.2, it is not contained in the inductively defined set
STCH, hence L 7.

The language STC is a subset of STC*. The followmg lemma justifies that a proof system
for & can equally be used as a proof system for &, since both relations coincide on STC.

Lemma 3.2 For E,F € STC, E~ F if and only if E~" F.

We are now ready to introduce a proof system for &~  on STC* (and thus for ~ on
STC). Figure 3 lists relevant axioms grouped into different sets. We omit the usual rules
for structural congruence. The axioms of A U A™ U A! are standard laws forming a
complete proof system of observational congruence for strongly guarded regular CCS [31].
Our axiomatisation is based on this system, but with a slight modification. We require
to replace idempotence A’ by a set of laws A”". This refinement? is needed because of
the presence of stochastic time [24]. Delay rate quantities have to be cumulated according
to property (C) in order to represent the stochastic timing behaviour of expressions like
(A).E+ (N).E.

As we will see in Section 4 the axiom system A= AUA™C Y AT U AU AL s complete
for STC* modulo observational congruence. The system A" is a collection of laws that
cover the impact of stochastic time in STCt. Law (74) is an obvious adaption of (71) while
law (75) axiomatises property (C) (and is the reason why ([) is invalidated in general).
The laws (MP1) and (MP2) express maximal progress: No time will be spent if a silent
(possibly diverging) computation is possible.

The most interesting aspect of our proof system is the treatment of divergence and
ill-definedness reflected in A*+. Law (L) is the key to escape ill-definedness by means of
a silent alternative. Law (rec4) states that fully unguardedness is ill-defined. The last
two laws for recursion explicitly handle divergent expressions that may perform an infinite

ZNote, however, that AUA™U{(I1)} gives rise to a complete proof system of observational congruence
for strongly guarded regular CCS.
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(B1) E+0 = FE (11) arll = akF
(B2) E+F = F+E (12) E+17E = 1.E
(B3) (E+F)+G = E+(F+G) (13) a(E+1.F)4+al = a(E+T1.F)

Axiom system A

(recl) recX.E = recY.(E{Y/X})
provided that Y is not free in recX.F.
(rec2) recX.E = FE{recX.F/X}
(rec3) F = E{F/X}implies F' = recX.E
provided that X is strongly guarded in F.

Axiom system A

(I) E+E = E

Axiom system A’

(11) all+al = alF (I3) E+E+1L = E+ 1
(I12) E+E+7F = E+r1.F (74) 1+1L = 1
Axiom system A"
(t4) (A).7.E (A).E (MP1) (\).E+1F = 1.F
(I5) (A).E+(p).E = (A4p).E (MP2) (M).E+L1L = 1

Axiom system A*

(L) 1L +rEF = 1.E
(recd) recX.( X+ F) = recX.(L+F)
(rech) recX.(r. X+ FE) = recX(r.(L+FE))

(rec6) recX.(T.( 1 X+ E)+F) = recX(T.X+E+F)
provided that X is weakly guarded in F.

Axiom system At

Figure 3: Axioms for observational congruence.

number of silent steps. Law (rech) replaces Milner’s KFAR axiom, it basically equates
divergence and ill-definedness for loops of length 1. Law (rec6) reduces the length of loops
of silent steps such that they can eventually be handled by (rec5). The laws (rech) and
(rec6) are essential in order to handle weakly guarded expressions that are not strongly
guarded (cf. Theorem 4).

It is worth to point out that the fair abstraction rule of unstable divergence (WFAR) of
Bergstra et al. [7] is valid in the presence of maximal progress while KFAR is not sound.
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A WFAR axiom can be formulated as follows:
recX.(1.X + 7.E 4+ F) =recX.(1.(1.E + F)),
and can be derived by means of law (rec5) and (L), i.e.
recX.(1. X + 7. E+ F)=recX.(r.(L +7.E + F)) = recX.(1.(1.E + F)).

This derivation is indeed a simple example where the symbol L appears and vanishes inside
the proof. We shall write A+ F = F when E = F may be proved from A. We conclude
this section by stating that A is indeed sound with respect to observational congruence on

STC:.
Theorem 2 For E, F € STC* it holds that A+ E=F implies FE & F.

Proof: Routine, except for the rec laws. Detailed proofs for these laws are contained in
Appendix B. O

4 Completeness

In this section we will address the question whether our set of laws is complete, i.e. enough
to allow the deduction all semantic equalities. We closely follow the lines of Milner and
use mutually recursive systems of defining equations to capture the impact of rec. We refer
to the explanations in [31] concerning (guarded and saturated) standard equation systems

(SES).
Definition 4.1 Let W = {W;,... ,/W,,} and X = {X;,..., X, } be two disjoint sets of

variables.

1. An equation set (ES) with free variables W and formal variables X' is a set 5 =
{Xi = Fi | 1 <1 < n} of equations such that Var(F;) C WU X and F; € STC
(1 <1 < n). In addition, for all ¢,5 € {1,... ,n} the variable X; is weakly guarded
in Fj.

2. A standard equation set (SES) with free variables W and formal variables X’ is an
equation set S = {X; = F; | 1 <@ < n} such that F; € STC* for 1 < < n is of the
form

(i) s(7) t(7) U;
Fi=)ai; Xeeg + 2 Nin) KXoy + D Waan + > L

=1 k=1
An empty sum denotes 0.

3. Let S = {X; = F, |1 <i < n} be a ES with formal variables X'. An expression
A provably satisfies S if there are expressions A; € STCt (¢ € {1,...,n}) such that
Ae{A,... A} and

AF A= F{A/X).
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Definition 4.2 Let S = {X; = F; | 1 < ¢ < n} be a fixed ES with free variables
W={W,...  W,}and W eW, a € Act. We define

X —s X, iff F} —= X,
2. X; >g W iff there is some fully unguarded occurrence of W in F;.

. . E .
3. S is strongly guarded iff ——=g is irreflexive.

Definition 4.3 An SES S = {X;, = F, | | < ¢ < n} with free variables W and formal
variables X is saturated iff for all X;, X; € X and all W € W it holds that

T % a

T % . . a
1. X; = g £g =g X; implies X; —=5 X, and

2. X; —=¢ >s W implies X; s W.

Lemma 4.4 (Milner) For each strongly guarded £ € STC* there is a guarded SES in the
free variables of I that F provably satisfies.

Lemma 4.5 (Milner) If £ € STCt provably satisfies a guarded SES then there is a
guarded and saturated SES that F provably satisfies.

Lemma 4.6 (Milner) If £, I € STC* satisfy a single guarded and saturated SES in the
free variables of F and F' then AF E = F.

These lemmas are easily shown by a straightforward adaption of the proof of [31]. Now,
the main effort is to bridge the gap between Lemma 4.5 and Lemma 4.6. To this end we
have to verify that two separate SES, each satisfied by some expression, can be merged
into a single SES if both expressions are observational congruent. Verifying this is a lot
more involved than the usual proofs owed to the presence of stochastic timing and maximal
progress. We therefore sketch the proof in some detail.

Theorem 3 Let A, B € STC* and A~ B. Furthermore let A (B, respectively) provably
satisfy the guarded, saturated SES Sy = {X; = F; |1 <i<n} (S, ={Y; =G, |1 <; <
m}). Then there is a guarded SES S, that both, A and B provably satisfy.

T1 (2)

Proof: (Sketch) Let Fi = 5 (Aiw )-X i) +
{

k=1

1(9) t1(3) 1 (3)
Zl a‘i,h-Xgl(i,ll) —I_ z Whl(’i,ml) —I_ E J‘?

1= mi1=1 n1=1
72(4)

52(4) t2(4) u2(4)
and G = 3 (k) ViaGido) + 2 bito Yos(i) + 32 Wha(ima) + 2 L.

k2:1 m2:1 7’L2:1
Because of law (/4) we can assume that ui(¢), ua(y) € {0, 1}. By assumption, there are
some expressions A; € STC (v € {1,... ,n}) and B; € STC* (5 € {1,...,m}) such that
AF A= F{A/X}, A+ B; = G,{B/Y}, and (w.l.o.g.) Ay = A A By = B. We use the

following abbreviations.
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o I={(i,j)|1<i<n A1<j<m A A~ B;},

o Ty = {(kk2) € {1} % (Lo raG)E | (R k), folin ko)) € T,

o ](i7j = {(11712) € {17 - 751(i)} X {17 . 752(j)} | ity = b]}b A (gl(ivll)ng(ja 12)) € ]}
Since A~ B we have (1,1) € I. In the sequel we use X; € M (respectively ¥; € M) to
denote that F; € M (G; € M) if M is an arbitrary subset of STCt. For arbitrary sets
M,N, O C M x N let 7((0) (respectively 7(3)(0)) denote the projections on M (N),
ie.7MW(O)={meM|Ine N : (m,n)cO}.

With this notation we are able to state the following properties that are of central im-
portance for the proof of Theorem 3.

Let (i,7) € I, i.e. A;~" B;. This implies Fi{A/X}~"G;{B/Y}. Since both S;
and Sy are saturated and strongly guarded the following properties hold 3 for
each C' € STC* /&~ and each a € Act.

(i) Xi ——=s, Xy implies 3 (V; ——5, VI A (k, 1) €T) V (a =7 A (k,j) € ),
(i) V; —=g, Vi implies 3k (X; ——=5, Xp A (K,) D)V (b=7 A (i,]) € I),
(iii) X;v] implies either Y;y or (Y;v/] A ’y(FZ{/_l’/)_(‘}, C)= V(Gj{é/Y}, ),
(iv) Y;v| implies either X;y or (X;v] A 'y(F{/T/)_(’} C) =~(G,{B/Y},()),
(v) {Wiu(i,l) Wi 06 } = {Wh2 (1) s Wihs Gt } In addition, if X;]

and )/J\/l then JL|VV}L1 1,1 Wfl (2,21 (3 |} - JL|I/Vh2 (4,1) th (4,t2(3 |}

The proof of these properties requires a characterisation of ~" on open expressions. This
characterisation is developed im Lemma C.1.

Property (i) implies that for each Iy € {1,...,s1(¢)} there is some Iy € {1,...,s2(j)}
such that

(@i, = bjg, N (91(1,11), 925, 12)) € 1) V (aiyy =7 A (a5, 1), 5) € 1), (1)

Using the above notation this disjunction implies that if /; ¢ 7 ([&Z ;) then a;;, = 7 and
(91(2,11),7) € I. Analogously, property (ii) implies that 1f I, & 7(K; ;) then by, = 7

and (7, g2(7,12)) € I. By means of a characterisation of on open expressions, similar
to the one mentioned above, our assumption Ay = A & B = B; can now be used to

derive (via F{A/X} & Gi{B/Y} ) that for (¢,7) = (1,1) the first alternative of the
disjunction in (1) is fulfilled. In other words,

’/T(l)([(Ll) = {1, e 781(1)} N W(Q)([(Ll) = {1, e 752(1)}. (2)
In addition to (z,5) € I, let us now assume X,v| and Y;/]. Property (iii) (or (iv)) implies

VO € STCH /&« y(F{A/X},C) =~(G;{B/Y},C).

3We use { and [} and to delimit a multiset.
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Let (ki1,k2) € J; ;. Then, since (ky,u) € J;; iff BfQ(M)%LAfl(i7k1)%le2(j7k2), we have

7’2(j) 7’1(2)
> wiw = GHAB/Y Y, [BpGan)lat) = VELA/ X L [Afinls) = D0 A
(k1 ’7:"):61]“7] (uvk’;?eljz',]

We abbreviate this sum with vk, z, (though this suggests a dependence from both, k; and
ks that obviously is not there). We can now create a standard equation set S = {7, ;, =
H.; | (2,7) € T} with new formal variables {Z,; | (¢,7) € I} that serves our purposes.
Let

Hi;= Y ain-Zyn)ymGn) + 2o TZpamgt Y. T-Zig(ib)
(I1,12) €K 5 hgr((K; ;) lagn(2)(K, ;)

Xk * Mk .
Z (M) .Zfl(i,k1)7f2(j7k2) if X;y] and Y;y|
9 (k1 ka)eds V1 k2

0 else

t1(e

—_
~

(]

1 it X;Tor Y7

0 else.

_'_
S
Si

s,

—I_ {

Wh, (jyms) else

1

m2

Our claim is that A provably satisfies the SES S (where A will be equated with Z; ; ).
The proof that B provably satisfies S is completely symmetric. In order to show the
former we define expressions C;; ((¢,7) € I) as follows:

o A, if {1,...,80(5)} = 7K, ;)
Y A {1, s0(d)) # 7 B(KGy)

First, observe that (2) implies C; 1 = A1 = A. We proceed with our proof by constructing
the expression HW{C_"/Z_‘} Besides of variables W, (; n,) and L summands of the form
a.A;, a.m.A;, (A).A; and (X).7.A; may occur in this expression. Because of law (71) and
(72) we have

A HCIZYy = Y. ain A+ Y TAugemt Y. A

(l,l2)EK; LhgrW(K; ;) Lgr(2 (K, ;)

Nk, - I .
2 (M) Apry 1 Xivl and Vvl
+ (k1,k2)€ET; 5 V1 k2

0 else
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t1(4)

Wi (imy if X; i
N mzl ha (iim1) i Xivl L if X;Tor YT
t2(7) 0 else.
Z Wy (jma) else

m2:1

We now aim to further simplify the sums occurring in the above expression. Concerning
the sum E ai - Ag (i) + E 7.Ag, 1) We can use, as derived above, that
(l1,l2)EK, 4 Lgr((K; ;)
L & W(l)([&’m) implies 7 = a;y, to obtain E ainy-Aginy + Z aigy-Ag (i)
(l,12)EK; Lign(O(K; 5)
Since every summand a;1,.Ag 1) (L € {1,...,51(2)}) occurs at least once in this sum
51(1)
we transform it, with the help of law (/1), to Z @ity Agy (i)

1=1

Assuming X;/| and Y] we can transform the sum of delay prefixes, using law (75),

Ni g - 11 m(?) ELCUD VN
> (M) Anee = 3 | 2 PR A

(k1,k2)€JT; RLR> k=1 hy=1 Vi ko
(k1,k2)€T; 5

The sums of rates appearing inside this expression can be simplified as follows.

r2(4)
() () oz Hik
ralJ ra(J ) 27
)‘Uﬁ C Mgk Hjks _ (k1,k2)€7; _
E 7—)\2%' E '7—)‘2'19'4——)\2%
’-)/k k 1 7’2(]) 31 7,2(]) 1
ko=1 1,R2 ko=1 E ) )
(k1.k2)€T; (k1.k2)€J; ; ) Hiu ) Piju
u= u=
(k1,u)ET; ; (k1€

i vl 71(4)
In other words, we can equate Z (M) Ag ik and Z (Xiky )-Afy(ihr)-
(k1ko)edi; \ TRk p—
t1(4)
Finally, the sum of free variables reduces to Z Wi, (iymy) even if Xi/| does not hold.
'm1:1
t2(4)
This is a consequence of property (v) ensuring that the sum E Wi, (j,m») contains the
mg:l
same variables as the former sum. We can therefore apply law (7/2) or (13) to add or
remove as many variables as required to match this sum.

In the remainder of this proof we use the following abbreviations.

s1(4) t1(7) r1(7)
By = E iy -Agy (i) + E Whi(im)s B3 = Z ()"i,kl)'Afl(ﬂkl)’ and Fy = Z 7. Ai.
h=1 m1=1 k1=1 lLgr(D(K; ;)
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With this notation we have, in summary, achieved so far:

Es if X;v] and Y|
AF HZ-’]'{C_"/Z_‘}:EI‘FE?—I' L if XiT or Y1 (3)
0 else

We distinguish two cases, dependent on the fact if W(Q)([(M) is equal or different from
{1,... .80} Ha@(K;;) = {1,...,55()} then C;; = A;, and F, denotes an empty
sum. Still, A F HZ]{G/Z} = (;; has to be checked in 16 different subcases, resulting
as a combination of X;/, X;T, Y;v, YT, and their respective negations. Fortunately six
cases can be ruled out immediately.

o Xiv N Xil AN Y,y AY;T isimpossible because of property (iii),
e property (iv) rules out X;vv A X;T A Y,y A Y]],

e X,/ and Yy is impossible (covering four cases), because 7(D(K; ;) = {1,... ,s5(j)}
implies that Viy € {1,... ,s2(7)} 34 € {1,...,s1(0)} @ @iy, = bjy,.

We only sketch one of the remaining cases. If X;v A X;T A Y,y A Y;] then (3) gives

AF HZ-J-{C_"/Z_‘} = F;+ 1 which can be transformed to the desired result £y + Fs+ 1=
A; = C;; with the help of law (MP2). The other cases are similar.

If, on the other hand 7K, ;) # {1,... ,s2(j)}, then C;; = 7.4, and HW-{C_"/Z_‘} contains
a summand 7.4; at least once, resulting from F,. Multiple applications of law (/1) and
of law (MP1) transform this expression to

L i XforY,
E1+T.AZ»+E3+{0 i X or ¥l

else.

Since either A; = K1+ Fsor A, = F1+Fs+ L h(zlds we can t_r}ansform the above with law
(L) to A;+7.A;. Law (72) eventually produces A - H, ;{C/Z} = Ai+1.Ai = 1. A; = Cy .

We have thus shown that A provably satisfies the SES S. As mentioned above, the
proof that B provably satisfies S is completely symmetric and therefore omitted. This
completes the proof of Theorem 3. O

Hitherto we have restricted ourselves to strongly guarded expressions, i.e. expressions
where every recursive variable is proceeded by an action prefix different from 7 or a delay
prefix (A). In CCS weakly guarded expressions are easily handled, because KFAR can be
used to remove loops of 7s. As discussed above the presence of maximal progress does not
allow this treatment since loops of 7s cause divergence, except if a silent alternative exists.
On a syntactic level this is achieved by the laws (rec4)-(rec6). We will now show that these
laws are indeed sufficient to deduce all semantic equivalences that involve unguardedness.
First, extending law (rec4), we point out that ill-definedness is not only caused by fully
unguardedness but also by the absence of strong guardedness.
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Lemma 4.7 If X is not strongly guarded in £ then AFE+ 1=E+ X+ 1.
Proof: By structural induction. a

Theorem 4 For each £ € STC* there exists a strongly guarded F' € STCt such that
AFE=F.

Proof: By induction on the structure of K. The only interesting case is recursion. We
show the following stronger property.

If £ € STC* then there is some strongly guarded F' € STC* such that
e X is strongly guarded in ¥

e Each not strongly guarded occurrence of any variable Y € Var(F') does not
lie within the scope of a recursion recZ.G of F.

o AF recX.FE = recX.F

We only consider the case that each not strongly guarded occurrence of any variable ¥ €
Var(F) does not lie within the scope of a recursion recZ.G where recZ.( is a subexpression
of K. The general case can be reduced to this special case in complete analogy to [31].

Under the above assumptions, we only have to remove not strongly guarded occurrences
of X where none of them appears inside the scope of a recursion. All fully unguarded
occurrences of X can be eliminated (transformed into L) by means of (rec4). So we only
have to consider occurrences of X that are not strongly, but weakly guarded, i.e. guarded
by 7. Those of them that appear in F on top level (i.e. £ is of the form 7.X 4 ...) can
be eliminated by means of law (rech).

All other not strongly but weakly guarded occurrences of X can be transformed such
that (rech) is applicable. To achieve this we perform an iterative procedure that either
lifts (possibly multiple) occurrences of X such that they are directly preceded by a 7
guard or reduces the number of 7 guards of some X.

Case 1: E—T(ZX—I—E)—I—F/
We choose n such that X is weakly guarded in F’. Law (rec6) implies
Al—recXE—recX ZX—I—E)—I—F)_I’GCX(.X—I-E/—I-F/).
=1

We continue with expression 7.X + £’ + F".

Case 2: K =71.F' 4+ F', where X occurs not strongly but weakly guarded in £’
By assumption, this occurrence does not lie within the scope of a recursion. £’ must

hence be of the form G+ 7.E”. Law (L) then gives

AFE =G+r.E"+ 1=F'+ 1.
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Since X is not strongly guarded in £’ we can use Lemma 4.7 to obtain
AFE =E+ 1=FE+ 1 +X=E+X.

We can proceed with 7.(X + E’) + F’ by resorting to Case 1.

[terating the above two steps will eventually lead to an expression F' where all not strongly
but weakly guarded occurrences of X appear on top level (i.e. F'is of the form 7.X +...).
They can be eliminated by applying law (rech). O

We now have the necessary means to prove completeness for arbitrary expressions.
Theorem 5 Let E,F € STC. E A" F implies A+ E = F.

Proof: Theorem 4 implies the existence of guarded E’, F' with AF E = E and
A+ F = F'. Correctness of the laws gives E' &~ F’. Using Lemma 4.4 there are
guarded SES S and Sy, such that K’ provably satisfies S; and F’ provably satisfies S,.
Because of Lemma 4.5 we can assume that S; and 53 are saturated. Theorem 3 implies

the existence of a guarded SES 5, provably satisfying both, E" and F’. Now, Lemma 4.6
implies that S has a unique solution. Therefore, A+ E' = F" and hence AF E = F. O

Corollary 4.1 For E,F € STC*, EA" Fifandonlyif AF E = F.

5 Discussion and Applications

Observational congruence treats divergence in the style of WFAR, it allows to escape
divergence only if a silent alternative exists. It is interesting to discuss ~ in the context of
ordinary CCS that arises from STC by disallowing delay prefixing. We use STCy to denote
this subset of STC. With the technical means of Section 4 the following result is easy to
show.

Theorem 6 For E,F € STCy, E~ F ifand only if (AUA™CUATUAY) FE=F.

Stated differently, we have obtained a complete proof system for CCS modulo ob-
servational congruence with WFAR. The proof system differs from other treatments of
divergence in CCS. Walker has studied divergence sensitive bisimilarity [41] (see also [22]).
His basic notion is a preorder rather than an equivalence. The induced equivalence turns
out to be incomparable with Milner’s original notion of observational congruence.

Our notion of observational congruence does neither coincide with Milner’s divergence
insensitive notion (denoted éMﬂner) nor with Walker’s divergence sensitive variant (éwalker).
Roughly, the reason is that, different from Walker, it is possible to escape from wunstable
divergence. But, deviating from Milner, it is not possible to escape from stable divergence.
As a whole, it can be shown that ~ is incomparable with Walker’s notion (cf. the first
and last pair in Figure 4 [18]). In contrast, &~ turns out to be strictly finer than Milner’s

observational congruence.
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Figure 4: Observational Congruence is finer than Milner’s notion and incomparable with

Walker’s.
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Theorem 7 For E, F' € STCy it holds that FE ~ F  implies ERyimeF.

The inclusion is strict, as testified by the middle pair in Figure 4.

The language STC* does not possess means to express parallel composition of expres-
sions. However, parallel composition ’|” (as well as relabelling and restriction) can be easily
added, as in [30]. The only particularity that has to be clarified is the semantics of delayed
expressions. Indeed, property (B) justifies to simply interleave delays, i.e. extending the
definition of ---= (Definition 2.3) essentially by

E|F___A_’_lfﬁ’_ﬂ E'F E|F ---2---- = E|F’.

In the same way we can establish an expansion law that allows to equate

M-E|(0)-F = ON(E](0).F)+(n).( (\E|F).

As a consequence, the complete proof system introduced in Section 3 can be straightfor-
wardly extended to cover the usual operators of a process algebra.

Our axiomatic treatment of WFAR also allows to tackle completeness for CCS with
priority. To illustrate this, we give a different interpretation of the ingredients of our
calculus. Assume that (X).P denotes that P is preceded by a low priority action instead
of a stochastic delay. In other words, we now assume A € Act and use (_) to denote that
A has low priority, while ordinary prefix, say A.P, denotes high priority. In this scenario
we may define a prioritised strong bisimulation following the lines of Definition 2.5, but we

replace the cumulative rate function v by a boolean function 47 (F, A, C) that is true only
. . Aw . . L .
if there is some ------ = transition from F into the class C. (This is inspired by [19] where

this replacement is done in the opposite direction.)
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Definition 5.1 Let ¢ C STCt. We define a function 5 : STC x Act X 9ol

{true, false} as follows

true fdFeC : K- = F,

false else.

’yP(E,)\,C) = {

Definition 5.2 An equivalence relation B on STP* is a prioritised strong bisimulation iff

P B @ implies for all a, A € Act
1. P = P"implies Q —— Q' for some Q' with P’ B Q’,
2. Py] implies that /] and that v* (P, )\, C) = ~*(Q, A, C) for all C € STP+/B.

It can be shown that this definition agrees with the definition of prioritised strong
bisimulation of Natarjan et al. [34] for weakly guarded expressions. The technical difference
is that we realise priority of ——= transitions by means of an additional constraint in
condition (2) while Natarjan ef al. incorporate this priority inside their operational rules
by means of negative premises.

Defining a simple prioritised weak bisimulation and observational congruence can follow
the lines of Lemma 2.7, respectively Definition 2.8, without introducing any problems. The
set of axioms (AUA™CUATUALU{(74),(MP1),(MP2)}) gives a complete proof system for
this prioritised observational congruence. In particular, (MP1) becomes the priority axiom
mentioned in our introduction. This prioritised observational congruence is weak in the
sense that it abstracts from sequences of silent high priority actions. Low prioritised silent
actions, however, are treated as in strong bisimulation. This is the main simplification with
respect to the approach of [34] where most of the complexity is due to a weak transition
relation that involves silent actions of both, high and low priority.

6 Concluding remarks

In this paper we have investigated weak bisimilarity and observational congruence in a
stochastic timed calculus with maximal progress. The notions refine the usual notions on
CCS because they allow to escape from divergence (only) if a silent alternative exists. This
takes the effect of WFAR. The refinement is needed in order to capture the interplay of
maximal progress and divergence. We have obtained a sound and complete proof system
for arbitrary expressions. Since Milner’s law recX.7.X + P = recX.7.P is invalidated by
maximal progress we have replaced it by a set of laws that allow abstraction of unstable
divergence.

As a side result we obtain a sound and complete proof system for observational congru-
ence with WFAR on CCS. Since our treatment of divergence is orthogonal to the aspects of
stochastic time, it seems obvious that it can be profitably adapted to other calculi. As far
as we know, this paper is the first succesfull attempt to provide a complete proof system
for observational congruence for calculi with recursion including either priority or maximal
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progress. The proof system for WFAR should allow to fill some of the existing gaps of
incomplete proof systems. Of particular interest is weak prioritised bisimilarity of [34] and
its successor [13]. Indeed, we have provided a complete proof system for CCS with priority
modulo a simplified notion of prioritised observational congruence.

It is well known that many strong and weak equivalences can be characterised by means
of simple modal logic characterisations. We plan to investigate such characterisations for
the equivalence notion discussed here. This would be beneficial for the specification and
verification of particular stochastic timed properties. Currently, properties of a specifica-
tion are evaluated by transforming the transition system into a Markov Chain and sub-
sequent calculation of state probabilities. The interpretation of these probabilities is not
easy because the behavioural view is lost on the level of the Markov Chain. Even though of
a speculative nature, we would prefer a model checking approach to this problem, inspired

by [3].

Appendix

A Congruence with respect to Recursion

Congruence of ~ with respect to the operators of STC+ follows the lines of [24], except
for recursion. In order to prove congruence with respect to recursion we use a notion of
"bisimulation up to &’ [37]. We only consider closed expressions P € STP+. Once we have
shown for closed recX.E and recX.F that F &~ F implies recX.E &~ recX.F, Definition
2.9 assures that this implication also holds for arbitrary expressions.

Let S be a binary relation on STP*. A sequence (Ry,...,R,) withn > 1 and R; € STP*
fori e {l,...,n}isa (SU %L)—path (or a path, for short) if:

LVie{l,...,n—1} : R (SUR") Ripx
2. Vi € {1,... ,n — 2} (RZ'NJ—RZ'_H = Rip SéLRH_z)

It is worth to remark that the second requirement can always be guaranteed, due to
the transitivity of ~ . In the sequel we will use P, P, Q, Q' R... to denote paths. If
P =(Ry,...,R,) is a path, let

L. P,=R; (1<i<n)
2. (P) =n,
3. PO = (R;,Riy1,...,R,) (1 <i<n)and
4. S(P)=|{i|1<i<n—1 A Ri# Ry}
For two paths, P = (Py,...,P,) and Q = (Q1,... ,Q,) with P, = Qy, we let

po_ (P i PuQae Qu) i Py % P, or Q15 Qy
(Pl,...,Pn_l,QQ,...,Qm) else
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Definition A.1 Let S be a symmetric relation on STPt. Thus, 7 = (S U %L)* is an
equivalence relation on STPt. § is an observational congruence up to ~ ifPS () implies

for all @ € Act, C' € STP+/T and P’ € STP* that
1. P2+ P implies Q == @’ and P' S R~ Q' for some R, Q' € STP*,
2. Pyl (or Qyl) implies y(P,C) = (@, ) and
3. Pyliff Qvl.

We are aiming to show that P & @ holds already if there is an observational congruence
up to ~" between P and (). This will be expressed in Lemma A.6. We need the following
lemmas beforehand.

Lemma A.2 Let By, By be equivalence relations on STCt. By C B, implies that
if VO € STCH/By : 4(E,Cy) =~(F,Cy) then VO, € STCH/By : y(E,Cy) =+(F,Cy).
Lemma A.3 For P, Q € STP+, P~ holds iff for every a € Act
1. P —" P implies Q == Q' and P'~* Q' for some Q' € STP*,
2. Q —" @ implies P == P’ and P'A*Q’ for some P' € STP*,
3. Pyl implies 3Q'v] (Q —— Q' A YC € STP*/&" : 4(P,C) = +(Q",C)),
4. Qv implies 3P| (P ——=" P' A YC € STP*/~" : 4(P',C) = ~(Q,C)).
The proofs of both lemmas are very easy.

Lemma A.4 If § is an observational congruence up to ~ then P S Q and P = P’

imply Q == Q' and P’ S R~ Q' for some Q', R € STP*.
Proof: It is obviously sufficient to show
P'S R/%LQ/ A P! a P - HQ//,R” € STP+ (Q/ iﬂ Q// A P'S R//%lQ”)

because this implies that we can trace the chain P == P’ transition by transition.
choosing R' = @) for the first step. Since the first step, according to (1) of Definition A.1
and P § () implies that we will perform at least one transition from () we can deduce

a

that Q == Q' instead of the weaker Q@ == Q’. So, let P’ S R'~ Q' A P —- P.
From P’ —~= P", P' S R’ we derive using property (1) of Definition A.1 ' = R" and
P" 8 R'~"R" for some R", R" € STP*. Now, R’ == R" and R'~" Q' imply Q' == Q"
and R"= Q" for some Q" € STPL. As a whole, we obtain P” S R'a~ R"~ Q". The

above reasoning is illustrated (for a specific example) by the following diagram.
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T T
N S . %L .
T Tﬂ T
. S S
a aﬂ a
. S PO at
T T“ 7
1 1

g

Lemma A.5 If S is an observational congruence up to ~" then T = (SuU %L)* is a weak
bisimulation.

Proof: Since § is symmetric, 7 is an equivalence relation. In order to show condition
(1) of Lemma 2.7, assume P 7 ). Thus, there is a (S U %L)fpath P with Py = P and
Pipy = Q. In order to simplify the proof of condition (2) of Lemma 2.7 it is helpful to
show the following stronger condition (1°) instead of (1).

Let P be a path with P = P; and () = Pjp) and let P == P'. Then there is
a path @ and Q' € STP* such that @ ° Q"N =P N Quo=0Q" In
addition, Q has the following properties.
o« P=Px P, = 5(Q) < S(P)
e P=Pi# Py = ((Q1% Q: A S(Q) < S(P)) v S(Q) < S(P))
The proof of (1) is by induction on S(P). So, let P be a path with P = Py and Q = Py(p)
and let P == P’
First, assume S(P) = 0, i.e. PQLQ. Then P == P’ implies, as expected, that there is
some @' such that @ - Q' A P'a"(Q'. We therefore choose Q = (P, Q").
Now, let S(P) > 0. We distinguish the following two cases.
Case 1: P=P, SéLPQ

This implies Py S P,. From P == P’ and Lemma A.4 we derive that there are some
P R € STP* such that P, = P” A P'S R'~" P". Since we also know that S(PR) <
S(P) holds we make use of the induction hypotheses for the path P and the chain of
transitions P, = P" in order to deduce that there is some @’ € STP* such that Q = @',
as well as a path Q' satisfying Q] = P” and Q;(Q,) = @' as well as S(Q') < 5(73(2)).
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If P' A'R' define a path Q as Q = (P',R',P")Q'. Then, Q; = P’ AR = Q,
and S(Q) = S(Q)+1 < 5(73(2)) + 1 = S(P). Hence Q satisfies all requirements.
If, otherwise P'a" R, then R'a" P” implies P'~ P". Define Q = (P',P")Q'. Then
S(Q) = S(Q") < S(P®) < S(P) holds as required. A diagram illustrates the proof of
Case 1:

) P2
P =P ¢ P Q
|- |- |
1 Ql
PSS R ~ P Q'

Case 2: P = Plzng

Thus, P, ﬁLPS necessarily holds. P == P’ however implies that there is some P"
such that P, — P" A P'a"P". 1In case that @ = 7 and P, = P" hold choose
Q' =Q A Q= (P,P")P? (note that P*) = P, = P”). Otherwise P, = P" holds.
We can therefore resort to Case 1 with P(3) and the chain of transitions Py — P”. We
obtain that there is some Q' such that Q == @', as well as a path Q' satisfying Q' = P"
and Q;(Q,) = Q' as well as S(Q') < S(P(Q)). We now choose Q = (P’, P")Q" and obtain
S(Q) = S(Q") < S(P@) = S(P). Again a diagram is helpful to illustrate the proof of
(1") for Case 2.

) PG
P = P o Pyt P Q
I+ e |
Ql
P! NJ_ p Q/

We are now ready to verify condition (2) of Lemma 2.7. Let P 7 @ and Py|. Further-
more let P be a path satisfying P, = P and Pyp) = (). We show the following property
by induction on S(P).

3Q'VIVC € STPH/T (Q —=" Q' A 4(P,C) =~(Q,C)) (4)

The base case, S(P) = 0, (i.e. PQLQ) follows directly from property (3) of Lemma A.3
and Lemma A.2 because ~ C 7. Now let S(P) > 0. Again we distinguish two cases.

Case 1: P=P, SéLpg
So, P1 S P; holds. Since P = Py we obtain (using condition (2) and (3) of Definition
A.1) that Psav| and

VO € STPL /T : 4(P,C) = (P, C). (5)

Since S(P@) < S(P) and Pyy] we make use of our induction hypotheses for the path
P2 We obtain

3Q'vIVC € STPH/T (Q ——=" Q' A 4(P2,C) = 4(Q', ).
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Using (5) this implies (4).

Case 2: P =P~ P,
Thus, necessarily P, 7‘5733. From P./| and PP, we deduce, using ~  C T and
Lemma A.2, that

AP'y|IVC € STPH/T (P, —= P' A ~(P,C) =~(P',C)). (6)

If P, = P', we resort to Case 1 with the path P taking into account that 731(2) =Pyl
holds. We obtain

JQ'VLVC € STPH/T (Q ——=" Q' A A(P',C) =~(Q',0)).

Together with (6) this implies (4). Therefore we can assume that P, = P’. We can
now make use of property (1°) for the path P and the chain 731(2) = P, = P’ taking
into account that 771(2) =P, %Lpg = 732(2). We obtain that there is some Q" € STP* such
that Q T Q", as well as a path Q satisfying

o Q; =P and Qo) = Q" and
o (Q1%# Q A 8(Q) < S(PP) =5(P)) v S(Q) < S(PP) =S(P).

If S(Q) < S(P®) = S(P) holds, we can directly use our induction hypotheses for the
path Q taking @; = P'y/] into account. We obtain

3Q'vIVC € STPH/T (Q" —=" Q' A +(P',C) =~(Q',C)).
As a whole, we get () T Q" T Q'vl, thus @ LT @Q'v| and, using (6),
VC € STPH/T = 4(P,C) =~(Q',C).

If, otherwise, Q; aél Q, and S(Q) < S(P?) = S(P), we can resort to Case 1 with path
Q taking (again) Q; = P'y] into account. We obtain

3Q' VIV € STPH/T (Q" ——=" Q' A ~(P',C) =4(Q', C)).
As above, this results in (4), completing the proof of Lemma A.5. g
Lemma A.6 If S is an observational congruence up to %L, then S C ~.

Proof: Lemma A.5 says that 7 = (S U %l)* is a weak bisimulation, implying & C
(Su %l)* C ~". We can therefore deduce the following properties from P § @):

1. Let P —— P’. This implies (using (1) of Definition A.1) Q == Q' and P’ S R~ Q)
for some @', R € STP*. P’ § R now implies (using S C %L) that P'~" R and thus
P Q).
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2. Symmetrically, Q —— Q' implies that there is some P’ € STP* such that P ==
P A PRQ.

3. Let P,@Qv]|. Condition (2) of Definition A.1 implies v(P,C) = v
C € STP+/T. Since T C =, Lemma A.2 implies (P, C) = ~(
C e STP /a7

4. Condition (3) of Definition A.1 gives rise to Py iff Q/].

) for every

C
,C) for every

These four properties are equivalent to P &~ Q (Definition 2.8). g

In order to prove recX.E A~ recX.F (if E F e STCH and F =~ F) it is sufficient to
construct an observational congruence up to ~ contammg the pair (recX.E, recX.F). We
will construct such an § in Lemma A.12. First, we state some simple lemmas.

Lemma A.7 Let H G,E € STCt. Then G —= H implies G{E/X} —= H{E/X}.

Aw

Analogously, G ------ = H implies G{E/X} ---2--« H{E/X}.

Lemma A.8 Let G, E € SIC+. If E —= FE’ and X is fully unguarded in G then
G{E/X} == E.

Lemma A.9 Let G{E/X} —= F. This implies that X is fully unguarded in G and
E —— F or that G —— H and F = H{E/X}. Furthermore, if X is strongly guarded in
GG and a = 7, then X is strongly guarded in H.

Similarly, if G{E/X} Mo Fand X is weakly guarded in G then ¢ Mo H and
F=H{E/X)

Each of the above three lemmas requires a simple induction on the structure of the
respective proof trees. The following two lemmas need structural induction on STC{.

Lemma A.10 Let H, E € STC*. Then H{FE/X} € STC| implies H € STC{.

Lemma A.11 Let H € STCi. If X is weakly guarded in H or E € STC{ then H{E/X} €
STCY.
1

Lemma A.12 Let Var(E)U Var(F) C {X}, recX.F,recX.F € STP* and F ~" F. Further-
more let R = {(G{recX.E/X}, G{recX F/X}) | Var( 7) C{X}}. Then, S =(RUR™)

is an observational congruence up to .

Proof: (Sketch) We have to check condition (1)-(3) of Definition A.1, which is only nec-
essary for pairs in R due to symmetry. Each condition involves a case analysis concerning
the outermost operator of . Condition (1) is shown by an induction on the height of the
proof tree for G{recX.E/X} —— P'. To show (2) we perform an induction on the sum
of the heights of all proof trees for ---+ transitions emanating G{recX.£/X}. Structural
induction on the definition of STC{ is needed to show condition (3). The complete proof
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is carried out in [28]. We only consider the most difficult case G = X, i.e. the pair
(recX.E, recX.F).

Assume recX.F, —— P. Thus E{recX.E/X} —— P, which can be derived by a smaller
proof tree. Thus, the induction hypothesis implies F{recX.F/X} == Q" and P S R~ Q'
for some Q'. Since E & F,i.e. (using Definition 2.9) E{recX.F/X} &~ F{recX.F/X}
this implies F{recX.F/X} = Q A Q'~" (@ for some Q and thus finally recX.F ==
Q ANPS R~ Q'~" Q.

In order to verify condition (2) of Definition A.1 assume recX.Fy| and recX.Fy|. Thus,
E{recX.E/X}y|, F{recX.F/X}y|. Furthermore, recX.F € SIC| implies that X is
weakly guarded in £. Lemma A.7, A.9, A.10 and A.11 imply E{recX.F/X}y|. There-
fore, for every C' € STP+/(S U %L)*

y(recX.E,C) = (rule (recM))
y(E{recX.E/X},C) (induction hypothes1s)
Y(E{recX.F/X},C) = (E{recX.F/X}~" F{recX.F/X}, Lemma A.2)
Y(F{recX.F/X},C) = (rule (rec™))

y(recX.F,C).

Finally condition (3) of Definition A.1 can be shown as follows. Assume recX.Fy/|.
As in the proof of condition (2) it follows E{recX.F/X}y|. Since E ~ F, ie.
E{recX.F/X} ~" F{recX.F/X}, this implies F{recX.F/X}/|, i.e. recX.F]. O

Eventually, we have all the means to derive that &~ is a congruence with respect to rec.

Corollary A.1 If E, F € STC* then E &~  F implies recX.E &~ recX.F .

Proof: Because of Definition 2.9 it is sufficient to consider only those F, F' € STC* where
Var(E) U Var(F) € {X}. Assume that £ & F holds. Then the relation S appearing

in Lemma A.12 is an observational congruence up to ~ Choosing G = X implies

recX.FE S recX.F. Theorem A.6 now implies recX.F ~" recX.F. g

B Soundness of Laws for Recursion

This Appendix deals with correctness of the laws (recl)-(rec6) The first two need few
justification. Law (recl) states that bound variables can be renamed if no additional
bindings are introduced. Law (rec2) is immediate from the structure of the operational
rules for recursion. A central law, on the other hand, is (rec3). This law, also known as
the recursive specification principle, states that certain types of equations possess a unique
solution. We develop a detailed correctness proof for (rec3) closely following the proof of
congruence with respect to rec (Appendix A). Afterwards we focus on (rec4)-(rec6) that are
specific for the treatment of divergence in the presence of maximal progress. We will make
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use of a similar 'up to’ technique but we use a slightly different definition of observational
congruence up to ~ . Instead of introducing a different name we abuse notation for the
remainder of this chapter and redefine observational congruence up to ~" as follows.

Definition B.1 Let S be a symmetric relation on STP+. Thus, 7 = (S U %L)* is an
equivalence relation. S is an observational congruence up to ~ ifPS () implies for all

a € Act, C € STP*/T and P’ € STP* that
1. P == P’ implies Q = @’ and P'~ R; S Ry~ ' for some Ry, R, Q' € STP*,

2. Pyl {or Qul) implies 1(P.C) = 1(Q.C).
3. Pisa(SU WL)—path and Py then there is some (S U Nl)—path P’ such that

T

Pr=Pi,Vie{l,... . l(P)}: Plyl, and Pypy ——" Plps,
4. Pyl ifft Qyl.
Lemma B.2 If § is an observational congruence up to ml, then S C &7

Proof: The strategy is analogous to that in Appendix A. Apart from proving that
7=(SU %L)* is a weak bisimulation the proof follows the lines of that for Lemma A.6.

Let P T Q. Condition (1) of Lemma 2.7 directly follows from the fact that if P == P’
and P is an (SU ~ )-path with P; = P and Pjpy = @ then there is some (SU N )-path

Q such that Q; = P’ and Q = Qo). To prove this observation requires a simple
induction on [(P) using condition (1) of Definition B.1.

In order to show condition (2) of Lemma 2.7 we use properties (2) and (3) of Definition
B.1 as follows. Let P7 @ and Py and let P be an (S U ~ )-path satisfying P, = P
and Pypy = Q. (3) implies the existence of some (S U ~ )-path P’ such that P; = P,
Vee{l,... ., I(P")}: Plyl,and Q T 731’(73, . Using (2) of Definition B.1 we can show
Y(P,C) =~(P!,C) for every 1 € {1,... ,1(77’)iL and C' € STP+/7T by induction on ¢. O

Lemma B.3 Let £ € STC* and P, Q € STP*+, with X strongly guarded in £ and Var(E) C
{X}. Furthermore, suppose P &~ E{P/X} and Q & E{Q/X} and define the relation
R ={(G{P/X},G{Q/X}) | Var(G) C {X}}. Then the relation S = (R UR™') is an

. 1
observational congruence up to ~ .

Proof: We have to check conditions (1) - (4) of Definition B.1. For symmetry reasons
it is sufficient to restrict ourselves to pairs contained in R. We let 7 denote (S U ml)*.
The proof of (1) is a slight adaption of the one in [30, Prop.13].

(2): Let Var(G) C {X} and G{P/X},G{Q/X}v]. We have to show
VO € STPLT « 4(G{P/X},C) = +(G{Q/X).C).

We fix some C' € STP+/T. We first prove the following weaker property (27).
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If X is strongly guarded in G and Var(G) C {X} then ~(G{P/X},C") =
Y(G{Q/X},C") for every C" € STP+/T.

Since X is weakly guarded in (G, Lemma A.7 and A.9 implies that for each transition

Aw Aw

G{P/X} ---*-- = G'{P/X} there is a unique corresponding transition G{Q/X} ------»
G'{Q/X} and vice versa. Since G'{P/X} §* G'{Q/X}, we obtain y(G{P/X},D) =
v(G{Q/X}, D) for every D € STP+/S*. This in turn implies (2’), because of §* C 7 and
Lemma A.2.

P E{P/X}, Q & E{Q/X} that G{P/X} ~
G{E/X}{P/X} as well as G{Q/X} ~" G{E/X}{Q/X}. Because of ~ C 7T and
Lemma A.2 we have y(G{P/X},C) = v(G{E/X}{P/X},C) and ~v(G{Q/X},C) =
Y(G{E/X}H{Q/X},C). Since X is strongly guarded in G{FE/X} we can apply (2’) to
obtain 1(GLE/X}{P/X),C) = 5(G{E/XHQ/X}, C) implying (2).

(3): We show the following generalisation (3’).

Concerning (2) we can derive from P

Il 20 Qo

Let P be a (SU %L)fpath such that P, —— P'y|. Then there is some
(Su zl)—path P’ such that P{ = P', Pyp) e Pipr and Pjy| for every
ie{l,..., l[(P"}.

W.l.o.g., assume that for every ¢ € {1,... ,I(P)} it holds that if P; ¢l77¢+1 there is some
H satisfying

Pi=H{P/X} AN Piz1 = H{Q/X} N X strongly guarded in H. (7)

(This can be achieved by replacing all subpaths in P of the form (G{P/X}, G{Q/X})
satisfying G{P/X} #  G{Q/X} but where X appears not strongly guarded in G by
subpaths of the form (G{P/X}, G{E/X}{P/X}, G{FE/X}H{Q/X}, G{Q/X}).) We
prove (3’) by an induction on {(P). The base case [(P) = 0 is trivial. We distinguish two

cases.

If P~ P, then P, . p implies that there is some R” such that P, TR A
P'a"R". From P'y| and P'~ R" we obtain that there is some R’ such that R” T
R'y|. Now, P'~" R" and P’y implies P'~" R'. We have thus obtained P, T R|.
Applying the induction hypothesis to the path P and the chain of transitions P, T
R’ returns a path P” satisfying the conditions of (3"). Thus P’ = (P’, R') P" is a path as
required in (37).

If, otherwise, P; # P, holds, (7) says that there is some H € STC* such that P; =
H{P/X}, P, = H{Q/X} and X strongly guarded in H. Iterative application of Lemma
A.7 and A.9 to the chain of transitions P; 7.7 P Jeads to some R’ such that Ps e
R AN P'S R'. Anticipating that we will show below that (4) of Definition B.1 holds,
P'y] and P'S R' implies R'\/|. We can therefore apply the induction hypothesis to the
path P?) and the chain of transitions P, S R'y]. We obtain a path P” such that
P! = (P, R') P" satisfies the requirements of (3’).
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(4): Tt holds G{P/X}y] iff G{E/X}{P/X}y| (since G{P/X} & G{E/X}{P/X}) iff
G{E/X}{Q/X}v] (since X is strongly guarded in G{FE/X}, using Lemma A.7, A.9,
A.10 and A.11) iff G{Q/X}y| (since G{E/X}{Q/X} ~ G{Q/X}). This completes
the proof of Lemma B.3. O

Lemma B.4 Let £ € STCt and P, @ € STP+, X strongly guarded in £ and Var(E) C {X}.
If P~" E{P/X}and Q ~ E{Q/X} then P & Q.

Proof: We obtain P &~ @ by applying Lemma B.2 to the relation R appearing in
Lemma B.3 where we choose (G to be the variable X. a

Lemma B.5 Let £ € STCt and P € STP+, X strongly guarded in F and Var(F) C {X}.
If P~" E{P/X} then P ~" recX.E.

Proof: Var(E) C {X} implies recX.E € STP* and soundness of (rec2) assures recX.F /7
F{recX.E/X}. We can therefore use Lemma B.4 (with Q = recX.E) to deduce P ~
recX. F. O

Definition 2.9 implies that this lemma holds also for arbitrary expressions in STC*.

After having shown soundness of (rec3) we now turn our attention towards the remaining
laws of recursion that are specific for the treatment of divergence. We will discuss (rec5)
in some detail in order to give some insight into the proof. The proofs for (rec4) and (rec6)
are instances of the same proof technique and will therefore be only sketched.

In the sequel let £ € STCt. To prove correctness of (rec5) we have to show that P ~ Q
where P = recX.(r.X 4+ E) and @ = recX.(r.(L +F)). Definition 2.9 enables us to
restrict ourselves to the case where Var(E£) C {X}. We now define the following relations

Ro, R1, R, S and B
o Ro={(H{P/X}, H{Q/X}) | Var(H) € {X}}
o Ri={(P, L +E{Q/X})}
¢ S=RoUR;'UR; UR!
e 5=38"
In order to show that B is a weak bisimulation we use the following lemma.
Lemma B.6 If 'S G then
1. F—2= F' implies
o F(R\URF) G = 3G (GG N F'SEF)
¢« F(RRUR) G = 3G (GG A F'SG)
2. F\y| and Gy/| imply YO € STP*/B : 4(F,C) = ~(G,C)
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Proof: (Sketch) In order to proof (1), first the case F' (Ro U Ry') G has to be dealt
by an induction on the height of the proof tree for the transition F ——= F’. The case
F (R1URT'Y) G follows then easily.

(2) can be proven by an induction on the sum of the heights of all proof trees for ----
transitions emanating F. Note that the case F' (R; URT"') (i is trivial since the premise

Fy| and Gy/| is not satisfied in this case. The details of proof can be found in [28]. O
Lemma B.7 B is a weak bisimulation.

Proof: Let F B F, i.e. there is some n > 0 with £ S™ F'. We have to check condition
(1) and (2) of Lemma 2.7.

(1): Let B —2= E’. We prove the existence of some F’ with F' == F’ and E' B F' by
induction on n. The base case, n = 0, is trivial. So, let n > 0, i.e. there is some G € STP+
satisfying £ §"~' G & F. Applying our induction hypotheses to (E, ) we obtain some
G’ such that = G' N E'BG'. Ifa=r7and G = G’ we can choose the transition
F = F' = F for F. Otherwise ¢ == G’ holds. Iterative application of property (1) of

Lemma B.6 leads to some F” such that F = F' A G' SF'. As a whole we have E' B F".

(2): Let E]. Since ES™ F, there are E; such that £ = 4, SFE,S...SE, = F. We
claim that F;/] for every 7 € {1,... ,n} and show this by an induction on n. The base
case n = 1 is clear by assumption. So let n > 1. Our induction hypotheses implies
E,_1v|. Therefore, the case E,_1(R; U Rl_l)En is impossible. Assume F,_1 Ro F,,
ie. (E,1,E,) = (H{P/X},H{Q/X}) and thus H{P/X}y]. Since Py, Lemma A.8
implies that X is weakly guarded in H. Using Lemma A.7, A.9, A.10 and A.11 we obtain
H{Q/X}y]. The case E,_; Ry' E, proceeds analogously.

Having shown that F;y| holds for all + € {1,... ,n} we deduce from Lemma B.6 that
Fyl ANYC eSTPH/B : ~(E,C) =~(F,C). This obviously is a special case of condition
(2) of Lemma 2.7. O

Now we are able to show soundness of (rech).
Lemma B.8 P =recX.(1.X + F) ~ recX.(1.(L +F)) = Q.

Proof: We have to show that condition (1) to (4) of Definition 2.8 are satisfied.

(1): Let P = recX.(1.X + E) —— P’ which implies 7.P + E{P/X} ——= P'. If 1.P —=
P’ then a = 7 and P’ = P. We can choose Q = recX.(7.(L +F)) ——=1 +E{Q/X} as a
transition for Q because Lemma B.7 implies P~ L +E{Q/X}.

If, otherwise, E{P/X} —— P’ Lemma B.6 assures that there is some Q' such that
E{Q/X} &= Q' A P'S Q' ie. P' B Q. Lemma B.7 implies P'~"Q'. Hence, as
expected, Q@ = recX.(1.(L +F)) —= 1 +F{Q/X} = Q".

32



(2): Let Q = recX.(7.(L +F)) —= Q' which implies 7.(L +F{Q/X}) ——= Q'. Hence,
a=7and Q =L +E{Q/X}. We choose the transition P = recX.(7.X + E) —— P for
P because Lemma B.7 assures L +E{Q/X}~" P.

This completes the proof, because Py and @y directly imply (3) and (4) of Definition
2.8. 0

The proof of soundness for law (rec6) follows the same lines but uses the relation Ry =
{ZL, P+ E{P/X}, @)}, where P = recX.(7.(XL; X + F) 4+ F) and @ = recX.(7.X +
E+F).

The proof of soundness of law (rech) can also be directly adopted to prove law (rect).
In this case Ry = {(P + E{P/X}, L +E{Q/X})} where P = recX.(X 4+ F) and @ =
recX.(L +F).

C Observational Congruence on open expressions

In order to show property (i) to (v) appearing in the proof of Theorem 3 we require a
characterisation of &~ on open expressions.

Lemma C.1 Ea F holds iff £ and F are contained in an equivalence relation B C

STC x STC*, such that (E', F') € B iff for all @ € Act and X € Var it holds that
1. E -2+ E' implies F ° F"and E' B F' for some F' € STC*,

2. X not weakly guarded in £ implies ¥ 7.7 Fand X not weakly guarded in F’ for
some F' € STC*,

3. Ey implies for some I’ € STC+ that F T F'y, y(E,C) = 4(F',C) for every
C € SICt/B and the number of fully unguarded occurrences of Y in F and F,

respectively, are equal for every X € Var.

Proof: (Sketch) Call an equivalence relation on STC* that satisfies the condition (1) to
(3) of the above lemma an extended weak bisimulation, briefly ewb. We only consider
the case n = 1, i.e. Var(F) U Var(F) = {X}. First we prove that Lemma 2.7 implies
Lemma C.1. Thus, assume E~"F. Let a € Act\{r} such that a does not appear in G
or H. Define a relation R by

R={(G,H) | G{a.0/ XY~ H{a.0/X} A a does not appear in G or H}
Since E R F it suffices to prove that (R U R~")* is an ewb, which is straightforward.

In order to prove the converse direction (that Lemma C.1 implies Lemma 2.7), assume
that B’ is an ewb such that E B’ F'. Then it can be shown that the relation (R U R™!')*
where

R ={(G{P/X},H{P/X}) | G B H for some ewb B, P € STP+, Var(G)UVar(H) C {X}}.
is a weak bisimulation. Since E{P/X} R F{P/X} for every P € STP* this implies
E~'F. O
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