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Abstract. During the last decade, CCS has been extended in differ-
ent directions, among them priority and real time. One of the most
satisfactory results for CCS is Milner’s complete proof system for
observational congruence [?]. Observational congruence is fair in the
sense that it is possible to escape divergence, reflected by an axiom
recX.(τ.X + P ) = recX.τ.P . In this paper we discuss observational con-
gruence in the context of interactive Markov chains, a simple stochastic
timed variant CCS with maximal progress. This property implies that
observational congruence becomes unfair, i.e. it is not always possible to
escape divergence. This problem also arises in calculi with priority. So,
completeness results for such calculi modulo observational congruence
have been unknown until now. We obtain a complete proof system by
replacing the above axiom by a set of axioms allowing to escape diver-
gence by means of a silent alternative. This treatment can be profitably
adapted to other calculi.

1 Introduction

One of the outstanding results for CCS [?] is Milner’s complete proof system for
regular CCS expressions modulo observational congruence [?]. The task of prov-
ing completeness is divided into three parts. First, only guarded recursive expres-
sions are considered where guards are visible actions. This means that divergent
expressions (that perform an infinite number of silent steps) are excluded. The
core of that part is to show that two congruent expressions satisfy the same
set of recursive equations. The second important property is that every set of
recursive defining equations has a unique solution. Divergent expressions cannot
be handled in this way, since, for instance, the recursive equation X = τ.X has
infinitely many solutions. Therefore completeness is obtained by adding further
axioms. In particular, a divergent expression can be equated to a non-divergent
expressions by applying essentially the axiom

recX.(τ.X + P ) = recX.τ.P .
Walker [?] studies divergence in the context of CCS and observational congru-

ence. The possibility of escaping from divergence is known as fairness. Koomen
[?] was the first to define a fair abstraction rule similar to the one above, which



will therfore be referred to as the KFAR axiom throughout this paper. Fairness is
mostly regarded as a desirable feature. Therefore, the issue of obtaining fairness
has been extensively studied in the literature. Baeten et al. [?] discusses fairness
in the context of failure semantics. In [?], Bergstra et al. introduce a weaker
version of fair abstraction (WFAR) that allows to escape divergence only if a
silent alternative exists. Fair testing equivalences have been developed in [?,?].

In recent years, CCS has been extended in different directions, among them
priority and real time. Different prioritised process algebras have been developed,
among them [?,?,?]. Investigations of observational congruence in the presence
of priority have been restricted to finite, i.e. recursion free processes [?]. In that
approach priority is nicely reflected by the following axiom where a has a lower
priority than τ :

τ.P + a.Q = τ.P .

A variety of timed process algebras have also been proposed, for instance
[?,?,?,?,?,?]. A thorough overview of their basic ingredients is given in [?]. Com-
plete proof systems for regular expressions have been obtained for some of these
calculi [?,?,?]. One of the typical features of CCS based timed process algebras
is a notion of maximal progress, also called minimal delay or τ -urgency. This
property says that a system cannot wait if it has something internal to do. It is
characterised by the following axiom where delay(T ) usually stands for a fixed
time delay of length T :

τ.P + delay(T ).Q = τ.P .

The concepts of priority and maximal progress arose at different corners
in concurrency theory. Weak bisimulation semantics incorporating one of these
ingredients, however, have a common feature: Divergence implies unfairness. In
particular, the above KFAR axiom is not sound1. Thus, KFAR cannot be used
to equate divergent expressions to non-divergent expressions. So, completeness
is not attainable in this way. But the equation X = τ.X still has infinitely many
solutions. As a consequence, to the best of our knowledge, no complete proof
system for observational congruence for regular CCS including either priority or
maximal progress has been given until now.

In recent years also stochastic timed calculi have emerged, where delays
are not fixed but given by continuous probability distribution functions. This
fits neatly to interleaving semantics, if only exponential distributions are con-
sidered. Then delay(T ) stands for a delay, say t, with mean duration T and
distribution Prob(delay ≤ t) = 1 − e−λt, where the parameter λ is the recip-
rocal value of T . We mention TIPP of Götz et al. [?], Hillston’s PEPA [?],
and Bernardo&Gorrieri’s EMPA [?] as representatives of this approach. Their
unifying feature is that their semantics can be transformed into a continuous
time Markov chain, a stochastic model widely used for performance evaluation
purposes, see e.g. [?].

1 In the timed case, a counterexample is recX.(τ.X +delay(T ).Q). KFAR equates this
expression to recX.τ.delay(T ).Q while maximal progress leads to recX.τ.X. Since
the latter (using KFAR) can be equated to termination, both expressions obviously
describe distinct behaviours.
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The contribution of this paper is threefold. (1) Concerning ordinary CCS we
present a slight modification of Milner’s observational congruence that permits
to escape divergence only if a silent alternative exists. This is exactly the effect
of WFAR in the style of [?]. This notion of observational congruence is truly
contained in Milner’s observational congruence. This compares favourably to the
treatment of divergence in [?] that is incomparable with the original definition.
We provide a sound and complete proof system for observational congruence with
WFAR on CCS. It is achieved by replacing KFAR by a set of axioms allowing
to escape divergence by means of a silent alternative.

(2) We develop that system in order to provide a sound and complete proof
system for observational congruence in the calculus of interactive Markov chains
[?], a stochastic timed extension of CCS with maximal progress. This calculus
contains ordinary CCS as well as (homogeneous) continuous time Markov chains
as proper subalgebras.

(3) Since our treatment of divergence is orthogonal to the stochastic timing
aspects we highlight how our proof system can be adapted to a variety of other
calculi with either maximal progress or priority for which similar completeness
results have been unknown until now.

The stochastic timed calculi of [?,?,?] all attach exponentially distributed
delays to actions. Their subtle differences are mainly based on different inter-
pretations of the delay of synchronised actions. With interactive Markov chains,
we deviate from these calculi and split delays and actions into two orthogonal
parts. This separation is similar to that in timed process algebras as proposed
in [?,?,?]. It rules out any ambiguity in the timing of synchronisation.

An extension of interactive Markov chains has been developed to study per-
formance properties of parallel and distributed systems. In [?], for instance, it
is applied to specify a CSMA/CD protocol stack. The whole system turns out
to have 37136 reachable states. It can be proven to be observational congruent
to a system with 411 states which can be directly transformed into a Markov
chain to study temporal properties of the protocol stack. That case study has
indeed initiated our study of equational properties of observational congruence.
With the results presented in this paper we have a complete proof system for
establishing observational congruence of such systems on the language level.

The paper is organised as follows. Section 2 briefly describes the calculus
of interactive Markov chains and defines congruence relations on it. Section 3
presents a set of equational laws that turn out to be sound and complete for
observational congruence. Section 4 discusses the relation of our laws to WFAR,
ordinary CCS and extensions thereof. Section 5 contains some concluding re-
marks. The proof of completeness (and of congruence) is quite involved, but has
to be omitted due to space constraints. It can be found in [?].

2 The Calculus of Interactive Markov Chains

In this section we introduce the basic definitions and properties of the calculus
we investigate. It includes a distinct type of prefixing to specify exponentially
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distributed delays. Instead of a broad introduction into their theory we briefly
summarise some important properties enjoyed by exponential distributions. De-
tails can be found in various textbooks, e.g. [?].

(A) An exponential distribution Prob{delay ≤ t} = 1 − e−λt is characterised by
a single parameter λ, a positive real value, usually referred to as the rate of
the distribution.

(B) Exponential distributions possess the so called Markov property. The re-
maining delay after some time t0 has elapsed is a random variable with the
same distribution as the whole delay: Prob{delay ≤ t + t0 | delay > t0} =
Prob{delay ≤ t}.

(C) The class of exponential distributions is closed under minimum, which
is exponentially distributed with the sum of the rates. More precisely,
Prob{min(delay1, delay2) ≤ t} = 1 − e−(λ1+λ2)t if delay1 (delay2, respec-
tively) is exponentially distributed with rate λ1 (λ2).

While property (A) allows a compact syntactic representation of delays in our
calculus, the Markov property (B) is important to employ an interleaving seman-
tics. It ensures that distributions of delays do not have to be recalculated after
some (causally independent) delay has elapsed. Therefore, the usual expansion
law can be applied straightforwardly. This substantially simplifies the definition
of parallel composition. Property (C) is decisive for our interpretation of the
choice operator in the presence of delays: If all alternatives of a choice involve an
exponentially distributed delay the decision is taken as soon as the first of these
delays elapses. This finishing delay determines the subsequent behaviour. The
time instant of this decision is obviously given by the minimum of distributions.
As a consequence of property (C), the overall delay until the decision is taken is
exponentially distributed.

After these preliminaries we introduce the calculus of interactive Markov
chains. We assume a set of process variables Var, a set of actions Act containing
a distinguished silent action τ and let IR denote the set of positive reals. We use
λ, µ, . . . to range over IR and a, b, . . . for elements of Act. The basic calculus
does not contain parallel composition, we defer the discussion of this operator
to Section 4.

Definition 1. Let λ ∈ IR, a ∈ Act and X ∈ Var. We define the language IMC

as the set of expressions given by the following grammar.
E ::= 0 | (λ).E | a.E | E + E | X | recX.E

The expression (λ).P describes a behaviour that will delay its subsequent
behaviour P for an exponentially distributed time with a mean duration of 1/λ.
The meaning of the other operators is as usual. We use E, F , . . . to range over
expressions of IMC. With the usual notion of free variables and free and closed
expressions we let IMP denote the set of closed expressions, ranged over by P ,
Q, . . . , called processes. Var(E) denotes the set of free variables of E.

A variable X is strongly guarded in an expression E if every occurrence of
X in E is strongly guarded, i.e. guarded by a prefix “a.” (with a 6= τ) or “(λ).”.
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Weak guardedness is the same, but includes the prefix “τ.”. An expression E
is said to be strongly (weakly) guarded, if, for every subexpression of the form
recX.E′, the variable X is strongly (weakly) guarded in E′.

Definition 2. The set of well-defined expressions IMC↓ is the smallest subset of
IMC such that

– Var ⊆ IMC↓ and 0 ∈ IMC↓,
– if E ∈ IMC then a.E ∈ IMC↓ and (λ).E ∈ IMC↓,
– if E ∈ IMC↓ and F ∈ IMC↓ then E + F ∈ IMC↓,
– if E{recX.E/X} ∈ IMC↓ then recX.E ∈ IMC↓.

The complementary subset of IMC containing all ill-defined expressions, will be
denoted IMC↑. We write E↓ (E↑) if E ∈ IMC↓ (E ∈ IMC↑).

The semantics of each expression is defined as an equivalence class of transi-
tion systems. We define a transition system for each expression below by means
of structural operational rules. We define two transition relations, one for ac-
tions and one to represent the impact of time. We have taken the liberty to
shift the complexity of our calculus from the definition of the transition system
towards the definition of equivalences. As a consequence, the operational rules
are very simple, whereas the definition of a suitable equivalence becomes more
challenging.

Definition 3. The action transition relation −→ ⊂ IMC × Act × IMC and the
timed transition relation ----➤ ⊂ IMC × IR × {l, r}∗ × IMC are the least relations
given by the rules in Figure ??.

(aI)
a.E

a
−→ E

(λM )
(λ).E

λ, ε
--------➤ E

(+I
l )

E
a

−→ E′

E + F
a

−→ E′
(+M

l )
E

λ, w
--------➤ E′

E + F
λ, l w

----------➤ E′

(+I
r)

F
a

−→ F ′

E + F
a

−→ F ′

(+M
r )

F
λ, w

--------➤ F ′

E + F
λ, r w

----------➤ F ′

(recI)
E{recX.E/X}

a
−→ E′

recX.E
a

−→ E′
(recM )

E{recX.E/X}
λ, w

--------➤ E′

recX.E
λ, w

--------➤ E′

Fig. 1. Operational semantic rules for IMC.

In the rules for timed transitions we use words over {l, r} to generate multiple
transitions for expressions like (λ).0 + (λ).0 by encoding their different proof
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trees (ε denotes the empty word). This is known from probabilistic calculi like
PCCS [?]. The need to represent multiplicities stems from our interpretation
of choice in the presence of delays. It is assumed that the decision is taken as
soon as the first of the delays elapses. Property (C) implies that this delay is
again governed by an exponential distribution given by the sum of the rates. In
other words, the behaviour of (λ).0 + (λ).0 is the same as that of (2λ).0. Thus
idempotence of choice does not hold. Our notion of bisimilarity is therefore
similar to probabilistic bisimilarity as introduced by Larsen&Skou [?] regarding
timed transitions. The definition requires to calculate the sum of all rates leading
from a single expression into a set of expressions (where the latter set will be an
equivalence class of expressions).

Definition 4. For E ∈ IMC, C ⊆ IMC we define the cumulative rate function
γ : IMC ×℘(IMC) −→ IR as

γ(E, C) =
∑

w∈{l,r}∗

{λ | ∃F ∈ C : E
λ, w

--------➤ F}.

The interrelation of timed and action transitions resulting, for instance, from
(λ).P + τ.Q is not evident from the operational rules. From a stochastic per-
spective, the silent action may happen instantaneously because nothing may
prevent or delay it. On the other hand, property (A) implies that the prob-
ability that an exponentially distributed delay finishes instantaneously is zero
(Prob{delay ≤ 0} = 0). We therefore employ the maximal progress assumption.
We assume that a process that may perform a silent action is not allowed to
let time pass. The above process is therefore equal to τ.Q. Since this equality
is not evident from the operational rules it will become part of the definition of
strong and weak bisimilarity. For this purpose, we distinguish the elements of
IMC according to their ability to perform a silent action. We use E \√ to denote
unstable expressions satisfying ∃F : E

τ
−→ F and E√ to denote the converse. Ex-

pressions with the latter property will be called stable expressions in the sequel.
Intuitively, only stable expressions may spend time whereas unstable expressions
follow the maximal progress assumption. Note that √ can be equally defined by
means of a syntactic predicate on IMC, like ↓. For expressions E that are stable
as well as well-defined we use the shorthand notation E√↓.

We are now ready to introduce strong and weak bisimilarity on IMC. As
usual we define them for closed expressions, and afterwards lift them to IMC

in the standard manner. The set of equivalence classes of a given equivalence
relation B on the set IMC is denoted IMC/B. [E]B denotes the equivalence class
of B containing E.

Definition 5. An equivalence relation B on IMP is a strong bisimulation iff
P B Q implies

1. for all a ∈ Act, P
a

−→ P ′ implies Q
a

−→ Q′ for some Q′ with P ′ B Q′,
2. if P√↓ then Q√↓ and γ(P, C) = γ(Q, C) for all C ∈ IMP/B.

Two processes P and Q are strongly bisimilar (written P∼Q) if (P, Q) is con-
tained in some strong bisimulation.
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In this definition, maximal progress is realized because the stochastic timing
behaviour (evaluated by means of γ) is irrelevant for unstable expressions. Fur-
thermore we do not compare the timing behaviour of ill-defined processes. The
reason for doing that is best explained by means of an example. An ill-defined
process like recX.(X + (λ).0) may possess an infinitely branching transition sys-

tem (for each n ∈ IN0 we have recX.(X + (λ).0)
λ,lnr

----------➤ 0). Our restriction to
well-defined expressions thus avoids the need to calculate and compare infinite
sums of rates.

Timed versions of bisimilarity (e.g. [?,?]) usually require to cumulate subse-
quent time intervals. This is sometimes called time additivity. In our calculus,
time additivity is not possible. The reason is that sequences of exponentially
distributed delays are not exponentially distributed, since the class of expo-
nential distributions is not closed under convolution. (There is no λ satisfying
Prob{delay1 + delay2 ≤ t} = 1 − eλt if delay1 and delay2 are exponentially dis-
tributed.) In other words, it is impossible to replace a sequence of timed transi-
tions by a single timed transition without affecting the probability distribution
of the total delay. We thus demand that timed transitions have to be bisimulated
in the strong sense, even for weak bisimilarity (in contrast to action transitions).

We let
a

=⇒ and
ba

=⇒ abbreviate
τ

−→
∗ a
−→

τ
−→

∗

except if a = τ . In this case,
τ

=⇒ denotes
τ

−→
+

and
bτ

=⇒ denotes
τ

−→
∗

. For a set of expressions C we define
Cτ as the set of expressions that may silently evolve into an element of C, i.e.

Cτ = {E | ∃F ∈ C : E
bτ

=⇒ F}.

Definition 6. An equivalence relation B on IMP is a weak bisimulation iff P B Q
implies

1. for all a ∈ Act, P
ba

=⇒ P ′ implies Q
ba

=⇒ Q′ for some Q′ with P ′ B Q′,

2. if P
bτ

=⇒ P ′√↓ then for some Q′√↓, Q
bτ

=⇒ Q′ and γ(P ′, Cτ ) = γ(Q′, Cτ )
for all C ∈ IMP/B.

Two processes P and Q are weakly bisimilar (written P≈Q) if (P, Q) is contained
in some weak bisimulation.

It can be shown that ≈ (∼, respectively) is a weak (strong) bisimula-
tion. We illustrate the distinguishing power of ≈ by means of some exam-
ples, depicted in Figure ??. (We have used ≡ to denote syntactic iden-
tity.) The first two processes, P1 and P2, are equivalent because P2 is un-
stable (thus the µ-branch is irrelevant) but may silently evolve to a sta-
ble process that is identical (thus equivalent) to P1. The process P3 is
equivalent to the former two, because γ(P1, ([0]≈)τ ) = 2λ = γ(P3, ([0]≈)τ ) and
γ(P1, ([τ.0 + a.0]≈)τ ) = 2λ = γ(P3, ([τ.0 + a.0]≈)τ ) (all other values of γ are 0
in either case). In contrast, γ(P4, ([τ.0 + a.0]≈)τ ) = λ whence we have that P4

is not weakly bisimilar to the former three processes.
The shape of this last example sheds some interesting light on our defi-

nition. Assume, for the moment, that λ is just an action like all the others.
Then, P3 and P4 would be equated under the usual notion of weak bisimilarity
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a

τ

P2
≡
(µ

).b
.0

+
τ.(2

λ).(
τ.0

+
a.0

)

P3
≡
(λ

).τ
.(τ

.0
+

a.0
)+

(λ
).(

τ.0
+

a.0
)

P4
≡
(λ

).(
τ.0

+
a.0

)+
(λ

).τ
.0

P1
≡
(2

λ).(
τ.0

+
a.0

)

≈

λ λ

τ

b.0

0

b 2λ

τ.0+a.0

µ τ

0

τ
a

τ.0+a.0

0

λ λ

τ

aτ

τ.0τ.0+a.0

6≈≈

2λ

0

τ.0+a.0

aτ

τ.(τ.0+a.0)(2λ).(τ.0+a.0)

Fig. 2. Some characteristic examples for weak bisimilarity.

while they would not under branching bisimilarity. Branching bisimilarity has
been introduced by van Glabbeek&Weijland [?]. Here, however, weak bisimi-
larity already distinguishes the two, because multiplicities of timed transitions
are relevant. (That is the reason why γ(P1, ([0]≈)τ ) = 2λ = γ(P4, ([0]≈)τ ) but
γ(P1, ([τ.0 + a.0]≈)τ ) 6= γ(P4, ([τ.0 + a.0]≈)τ .) In general, it is possible to refor-
mulate weak bisimilarity such that timed transitions are treated in the same way
as external transitions in branching bisimularity. This is particularly expressed
in the following lemma, where the equivalence class C has replaced Cτ .

Lemma 1. An equivalence relation B on IMP is a weak bisimulation iff P B Q
implies

1. for all a ∈ Act, P
a

−→ P ′ implies Q
ba

=⇒ Q′ for some Q′ with P ′ B Q′,

2. if P√↓ then for some Q′√↓, Q
bτ

=⇒ Q′ and γ(P, C) = γ(Q′, C) for all
C ∈ IMP/B.

We shall frequently use this reformulation in the sequel. Unsurprisingly, ≈ is
not substitutive with respect to choice. We therefore proceed as usual and define
the (provably) coarsest congruence contained in ≈.

Definition 7. P and Q are observationally congruent, written P
c

≈ Q, iff:

1. for all a ∈ Act, P
a

−→ P ′ implies Q
a

=⇒ Q′ for some Q′ with P ′≈Q′,
2. for all a ∈ Act, Q

a
−→ Q′ implies P

a
=⇒ P ′ for some P ′ with P ′≈Q′,

3. P√↓ (or Q√↓) implies γ(P, C) = γ(Q, C) for all C ∈ IMP/≈
4. P√↓ iff Q√↓.

Definition 8. Let R ⊆ IMP × IMP. We extend R to IMC × IMC as follows. Let
E, F ∈ IMC. Then E R F iff ∀P1, . . . , Pn ∈ IMP : E{P/X} R F{P /X}, where
X denotes the vector (of length n) of variables occurring free in E or F , and
{E/X} denotes the simultaneous substitution of each Xi by Ei.

It can be shown that ≈ ⊃
c

≈ ⊃ ∼. In addition, strong bisimilarity and obser-
vational congruence are compositional relations indeed. The following theorem
follows from Theorem ?? in the next section.

Theorem 1.
c

≈ is a congruence with respect to the operators of IMC.
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3 Axiomatisation

In this section we develop a set of equational laws that is sound and complete
with respect to

c

≈. To achieve completeness is by far not straightforward, due
to the presence of maximal progress. Divergent expressions, performing an infi-
nite number of silent steps (e.g. recX.(τ.X + (λ).0)), will be our main concern.
In ordinary CCS the KFAR law recX.(τ.X + E) = recX.τ.E is responsible to
remove such infinite sequences. This law is not sound in our calculus. To illus-
trate this phenomenon suppose recX.(τ.X + (λ).0)

c

≈ recX.(τ.(λ).0). This im-
plies recX.(τ.X + (λ).0) ≈ (λ).0. But, since (λ).0√↓ there must be some P√↓

with recX.(τ.X + (λ).0)
bτ

=⇒ P which is not the case. Hence, we are forced to
treat such loops of silent actions in a different way. We make them explicit by
means of a distinguished symbol ⊥ indicating ill-defined expressions. We equate
divergent and ill-defined expressions. This is inspired by [?], but divergence (and
ill-definedness) can be abstracted away if a silent computation is possible, i.e.,
⊥ +τ.E = τ.E. The symbol ⊥ is not part of the language IMC we are aiming
to axiomatise. It will however be an essential part of the laws. For instance, in
order to equate the expressions recX.(τ.X + τ.0) and τ.0 the symbol ⊥ appears
(and vanishes again) inside the proof. We therefore define an extended language
IMC⊥ as follows:

Definition 9. Let λ ∈ IR, a ∈ Act and X ∈ Var. We define the language IMC⊥

as the set of expressions given by the following grammar.
E ::= 0 | ⊥ | (λ).E | a.E | E + E | X | recX.E.

All definitions introduced in Section 2 can be equally defined for this langage.
Note that no transitions are derivable for ⊥ by means of the operational rules
in Figure ??. IMC⊥

↓ ⊂ IMC⊥ denotes the set that is obtained from Definition ??,
applied to IMC⊥ . Note that ⊥6∈ IMC⊥

↓ . Similarly, Definition ?? yields the notion

of a weak bisimulation on IMP⊥ . Then ≈
⊥

is the union of all weak bisimulations
on IMP⊥ . Finally, Definition ?? (with ≈ replaced by ≈

⊥

) yields an observational

congruence
c

≈
⊥

⊂ IMP⊥ × IMP⊥ with
c

≈
⊥

⊂ ≈
⊥

. By replacing in Definition ?? IMP

and IMC by IMP⊥ and IMC⊥ , respectively, ≈
⊥

and
c

≈
⊥

can be lifted to IMC⊥ .

Theorem 2.
c

≈
⊥

is a congruence with respect to the operators of IMC⊥ . Further-

more, for E, F ∈ IMC, E≈F iff E≈
⊥

F , and E
c

≈ F iff E
c

≈
⊥

F .

Because of the first statement above it is justified to call
c

≈
⊥

an observational
congruence. Because of the second statement every proof system for

c

≈
⊥

can
equally be used as a proof system for

c

≈. Finally both statements together prove
Theorem ??.

We are now ready to introduce a proof system for
c

≈
⊥

on IMC⊥ (and thus for
c

≈ on IMC). Figure ?? lists relevant axioms grouped into different sets. We omit
the usual rules for structural congruence. The axioms of A∪Arec together with
the idempotence law

(I) E + E = E
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Axiom system A

(B1) E + 0 = E
(B2) E + F = F + E
(B3) (E + F ) + G = E + (F + G)

(τ1) a.τ.E = a.E
(τ2) E + τ.E = τ.E
(τ3) a.(E + τ.F ) + a.F = a.(E + τ.F )

Axiom system Arec

(rec1) recX.E = recY.(E{Y/X})
provided that Y is not free in recX.E.

(rec2) recX.E = E{recX.E/X}
(rec3) F = E{F/X} implies F = recX.E

provided that X is strongly guarded in E.

Axiom system AI∗

(I1) a.E + a.E = a.E (I2) E + E+ ⊥ + ⊥ = E+ ⊥

Axiom system Aλ

(I3) (λ).E + (µ).E = (λ + µ).E (τ4) (λ).τ.E = (λ).E

Axiom system A⊥

(⊥1) (λ).E+ ⊥ = ⊥ (⊥2) ⊥ +τ.E = τ.E

(rec4) recX.(X + E) = recX.(⊥ +E)
(rec5) recX.(τ.X + E) = recX.(τ.(⊥ +E))
(rec6) recX.(τ.(X + E) + F ) = recX.(τ.X + E + F )

Fig. 3. Axioms for observational congruence.

are standard laws forming a complete proof system of observational congruence
for strongly guarded regular CCS [?]. Our axiomatisation is based on this system,
but with a slight modification. We require to replace idempotence by a set of laws
AI∗

. This refinement2 is needed because of the presence of stochastic time [?].
Delay rate quantities have to be cumulated according to property (C) in order
to represent the stochastic timing behaviour of expressions like (λ).E + (λ).E.

Soundness As we will see, the axiom system Â = A∪Arec ∪ AI∗

∪Aλ ∪A⊥ is
sound and complete for IMC⊥ modulo observational congruence. The system Aλ

is a collection of laws that cover the impact of stochastic time in IMC⊥ . Law (I3)
axiomatises property (C) (and is the reason why (I) is invalidated in general)
while law (τ4) is an obvious adaption of (τ1). Note that an adaption of law
(τ3), the distinguishing law between weak and branching bisimilarity [?], is not
required, as a consequence of Lemma ??.

The most interesting aspect of our proof system is the treatment of divergence
and ill-definedness reflected in A⊥. Law (⊥1) expresses that ill-definedness makes

2 Note, however, that A ∪ Arec ∪ {(I1)} gives rise to a complete proof system of
observational congruence for strongly guarded regular CCS.
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irrelevant the passage of time. Law (⊥2) is the key to escape ill-definedness by
means of a silent alternative.

Law (rec4) states that fully unguardedness is ill-defined. The last two laws for
recursion explicitly handle divergent expressions that may perform an infinite
number of silent steps. Law (rec4) and (rec6) are taken from [?], while law (rec5)
is not . It replaces Milner’s KFAR axiom by basically equating divergence and
ill-definedness for loops of length 1. Law (rec6) reduces the length of loops of
silent steps such that they can eventually be handled by (rec5). The laws (rec5)
and (rec6) are essential in order to handle weakly guarded expressions that are

not strongly guarded. We shall write Â ⊢ E = F if E = F may be proved from
Â.

It is worth to point out that WFAR, the fair abstraction rule of unstable
divergence à la Bergstra et al. [?], is valid in the presence of maximal progress
while KFAR is not sound. In our setting, a WFAR axiom can be formulated as
follows:

recX.(τ.X + τ.E + F ) = recX.(τ.(τ.E + F )),
and can be derived by means of law (rec5) and (⊥2), i.e.

Â ⊢ recX.(τ.X + τ.E + F ) = recX.(τ.(⊥ +τ.E + F )) = recX.(τ.(τ.E + F )).
This derivation is indeed a simple example where the symbol ⊥ appears and
vanishes inside a proof. Another notable example is the maximal progress axiom
mentioned in the introduction, requiring law (⊥1) and (⊥2).

Lemma 2. For E, F ∈ IMC⊥ it holds that Â ⊢ (λ).E + τ.F = τ.F .

Turning our attention to the adequacy of this proof system to decide
c

≈
⊥

, we
first state that Â is indeed sound with respect to observational congruence on
IMC⊥ .

Theorem 3. For E, F ∈ IMC⊥ it holds that Â ⊢ E = F implies E
c

≈
⊥

F .

Completeness In order to address the question whether our set of laws is com-
plete, i.e. sufficiently powerful to allow the deduction of all semantic equalities,
we closely follow the lines of Milner [?] and use standard equation sets (SES),
i.e. mutually recursive systems of defining equations, to capture the impact of
rec for strongly guarded expressions. Nontrivial transformations are needed to
prove the following theorem. In particular, it has to be assured that two separate
SES, each satisfied by some strongly guarded expression, can be merged into a
single SES if both expressions are observational congruent. Verifying this is a lot
more involved than the usual proofs owed to the presence of stochastic timing
and maximal progress. The details can be found in [?].

Theorem 4. For strongly guarded E, F ∈ IMC⊥ , E
c

≈
⊥

F implies Â ⊢ E = F .

Let us now extend this result beyond strongly guarded expressions, i.e. ex-
pressions where every recursive variable is preceded by an action prefix different
from τ or a delay prefix (λ). In CCS weakly guarded expressions are easily han-
dled, because KFAR can be used to remove loops of τs. As discussed above the
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presence of maximal progress does not allow this treatment since loops of τs
cause divergence, except if a silent alternative exists. On a syntactic level this
property is reflected by the laws (rec4)-(rec6). These laws are indeed sufficient
to deduce all semantic equalities that involve unguardedness. Once again, space
constraints urge us to refer to [?] for the details of the proof. The structure
resembles the proof in [?], but the arguments subtly differ.

Theorem 5. For each E ∈ IMC⊥ there exists a strongly guarded F ∈ IMC⊥ such
that Â ⊢ E = F .

Theorem ?? and Theorem ?? provide the necessary means to derive com-
pleteness for arbitrary expressions of IMC⊥ .

Theorem 6. Let E, F ∈ IMC⊥ . E
c

≈
⊥

F implies Â ⊢ E = F .

Corollary 1. For E, F ∈ IMC⊥ , E
c

≈
⊥

F iff Â ⊢ E = F .

4 Discussion and Applications

Observational congruence treats divergence in the style of WFAR, it allows to
escape divergence only if a silent alternative exists. It is interesting to discuss
c

≈ in the context of ordinary CCS that arises from IMC by disallowing delay
prefixing. We use IMC6λ to denote this subset of IMC. With the technical means
of the previous section the following result is easy to show.

Theorem 7. For E, F ∈ IMC6λ, (A ∪ {(I)} ∪ Arec ∪ A⊥ \ {(⊥1)}) ⊢ E = F iff

E
c

≈ F .

Stated differently, we have obtained a complete proof system for CCS mod-
ulo observational congruence with WFAR. The proof system differs from other
treatments of divergence in CCS. Walker has studied divergence sensitive bisimi-
larity [?] (see also [?]). His basic notion is a preorder rather than an equivalence.
The induced equivalence turns out to be incomparable with Milner’s original
notion of observational congruence.

Our notion of observational congruence does neither coincide with Milner’s
divergence insensitive notion (denoted

c

≈Milner) nor with Walker’s divergence

sensitive variant (
c

≈Walker). Roughly, the reason is that, different from Walker, it
is possible to escape from unstable divergence. But, deviating from Milner, it is
not possible to escape from stable divergence. As a whole, it can be shown that
c

≈ is incomparable with Walker’s notion (cf. the first and last pair in Figure ??

[?]). In contrast,
c

≈ turns out to be finer than Milner’s observational congruence.

Theorem 8. For E, F ∈ IMC6λ it holds that E
c

≈ F implies E
c

≈MilnerF .

The inclusion is strict, as testified by the middle pair in Figure ??.
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Fig. 4. Observational Congruence is finer than Milner’s notion and incomparable with
Walker’s.

Applications The proof system given in this paper can be adapted to establish
formerly unknown sound and complete proof systems for a variety of process
calculi with (stochastic) time or with priority. For this purpose the notion of
well-definedness is incorporated into the respective definition of bisimilarity. We
briefly sketch some results.

– The set of laws {(B1), (B2), (B3), (I1), (I2), (I3), (⊥1), (⊥2), (rec4)} ∪ Arec
∼

provides a sound and complete proof system of strong bisimilarity (Definition
??). Arec

∼ is obtained from Arec by changing the word ’strongly’ to ’weakly’
in law (rec3).

– The set of laws {(B1), (B2), (B3), (I2), (I3), (⊥1), (rec4)} ∪ Arec
∼ provides a

sound and complete proof system of strong equivalence of PEPA [?] (where
’(a, );’ replaces ’( ).’ in law (I3) and law (⊥1)). The same set of laws is
sound and complete for Markovian bisimilarity of MTIPP [?] (giving an
implicit proof that strong equivalence and Markovian bisimilarity agree on
this common fragment).

– The set of laws {(B1), (B2), (B3), (I), (⊥1), (⊥2), (rec4)} ∪ Arec
∼ (where the

low priority prefix ’a.’ replaces ’(λ).’ in each of the laws) is sound and com-
plete with respect to strong congruence on CCSprio, the prioritized calculus
of [?]. In particular, Lemma ?? becomes the priority axiom mentioned in our
introduction.

– For a simplified variant of prioritised observational conguence on CCSprio,
A ∪ {(I)} ∪ Arec ∪A⊥ ∪ {(τ4)} ∪ {(λ).(E + τ.F ) + (λ).F = (λ).(E + τ.F )}
is a sound and complete proof system (where again each ’(λ).’ has to be
replaced by ’a.’). This prioritised observational congruence is weak in the
sense that it abstracts from sequences of silent high priority actions. Low
prioritised silent actions, however, are treated as in strong bisimulation.
This is the main simplification with respect to the approach of [?] where
most of the complexity is due to a weak transition relation that involves
silent actions of both, high and low priority.

The details are carried out in [?], respectively [?]. Further completeness re-
sults appear feasible. Of particular interest is the timed calculus CSA [?], espe-
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cially if restricted to a single clock. This fragment of CSA agrees with Hennessy
and Regan’s TPL [?], but originally TPL is developed in a testing setting. We
conjecture, that a sound and complete proof system for observational congruence
for this fragment can be based on Arec ∪A⊥. Another obvious candidate for an
adaption of our proof system is EMPA [?], since it is strongly inspired by both
PEPA and MTIPP.

Parallel composition For simplicity, the language IMC does not possess means to
express parallel composition of expressions. We will outline that parallel compo-
sition can be easily added to IMC, due to the separation of actions and delays.
Different from our calculus, MTIPP, PEPA, and EMPA replace action-prefix
a.E by (a, λ).E. The basic difference between these algebras is the calculation
of the resulting rate in case of synchronisation. MTIPP proposes the product of
rates, EMPA forbids this type of synchronisation and requires one agent to de-
termine the rate only while the other components need to be passive (i.e. willing
to accept any rate), and finally PEPA computes the maximum of mean delays
while incorporating the individual synchronisation capacities of agents.

None of these algebras uses the maximum of delays, since the class of expo-
nential distributions is not closed under maximum. However, the absence of this
closure property does not pose a problem for IMC since — due to the separation
of the Markovian and action transitions — we can model the maximum of two
exponential distributions explicitly (as a corresponding phase-type distribution).

For instance, CCS parallel composition ’|’ (as well as relabelling and restric-
tion) can be easily added to the calculus as well as the proof system, as in [?].
The only particularity that has to be clarified is the semantics of delayed expres-
sions. Indeed, property (B) justifies to simply interleave delays, i.e. extending
the definition of ----➤ (Definition ??) essentially by

E
λ, w

--------➤ E′

E|F
λ, l w

----------➤ E′|F

F
λ, w

--------➤ F ′

E|F
λ, r w

----------➤ E|F ′

(plus the standard rules for action transitions). In the same way we can establish
an expansion law that allows to equate

(λ).E | (µ).F = (λ).( E | (µ).F ) + (µ).( (λ).E | F ).
So, the complete proof system introduced in Section 3 can be straightforwardly
extended to cover the usual operators of a CCS based process algebra, and also
to CSP or LOTOS style operators [?]. Note that the separation of delays and
actions simplifies the semantics of parallel composition, but is not a prerequisite
to achieve an expansion law, since for instance, an expansion law for MTIPP
style synchronisation is known [?]. Nevertheless this separation appears to be
necessary to obtain the maximum of delays in the synchronisation case. We
consider this solution as a natural choice, like many others do, e.g. [?,?].

5 Concluding remarks

In this paper we have investigated weak bisimilarity and observational congru-
ence in a stochastic timed calculus with maximal progress. Our notions refine
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the usual notions on CCS because they allow to escape from divergence (only)
if a silent alternative exists. This takes the effect of WFAR. The refinement is
needed in order to capture the interplay of maximal progress and divergence. We
have obtained a sound and complete proof system for arbitrary (including un-
guarded) expressions. Since Milner’s law recX.τ.X + P = recX.τ.P is invalidated
by maximal progress we have replaced it by a set of laws that allow abstraction
of unstable divergence.

The algebra IMC contains both (homogeneous) continuous time Markov
chains and CCS as proper subalgebras. Since our treatment of divergence is
orthogonal to the aspects of stochastic time, it can be profitably adapted to
other calculi with maximal progress or with a notion of priority. We have high-
lighted how some of the existing gaps of incomplete proof systems are filled by
adapting the techniques of this paper. As far as we know, this paper is first to
solve the open problem of complete proof systems for observational congruence
for calculi including either priority or maximal progress.

As part of the TIPP project, IMC has been extended in the direction of
LOTOS, and this extension has been applied to study performance properties
of parallel and distributed systems, see [?]. For the purpose of compositional
analysis we have recently adapted well-known partition refinement algorithms
[?] for computing strong and weak bisimilarity on IMC [?]. The computational
complexity of these relations is not increased when moving from CCS to the
setting of IMC.

It is well known that many strong and weak equivalences can be charac-
terised by means of simple modal logic characterisations. We plan to investigate
such characterisations for the equivalence notion discussed here. This would be
beneficial for the specification and verification of particular stochastic timed
properties. Currently, properties of an IMC specification are evaluated by trans-
forming the transition system into a Markov chain and subsequent calculation of
state probabilities. The interpretation of these probabilities is not easy because
the behavioural view is lost on the level of the Markov chain. Even though of a
speculative nature, we would prefer a model checking approach to this problem,
inspired by [?].
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