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Abstract. In [NO88], a particular trace monoid M is constructed such
that for the class of length–reducing trace rewriting systems over M ,
confluence is undecidable. In this paper, we show that this result holds
for every trace monoid, which is neither free nor free commutative. Fur-
thermore we will present a new criterion for trace rewriting systems that
implies decidability of confluence.

1 Introduction

The theory of free partially commutative monoids generalizes both the theory of
free monoids and the theory of free commutative monoids. In computer science,
free partially commutative monoids are commonly called trace monoids and their
elements are called traces. Both notions are due to Mazurkiewicz [Maz77], who
recognized trace monoids as a model of concurrent processes. [DR95] gives an
extensive overview about current research trends in trace theory.

The relevance of trace theory for computer science can be explained as fol-
lows. Assume a finite alphabet Σ. An element of the free monoid over Σ, i.e., a
finite word over Σ, may be viewed as the sequence of actions of a sequential pro-
cess. In addition to a finite alphabet Σ, the specification of a trace monoid (over
Σ) requires a binary and symmetric independence relation on Σ. If two symbols
a and b are independent then they are allowed to commute. Thus, the two words
sabt and sbat, where s and t are arbitrary words, denote the same trace. This
trace may be viewed as the sequence of actions of a concurrent process where
the two independent actions a and b may occur concurrently and thus may be
observed either in the order ab or in the order ba.

This point of view makes it interesting to consider trace rewriting systems, see
[Die90]. A trace rewriting system is a finite set of rules, where the left–hand and
right–hand side of each rule are traces. Trace rewriting systems generalize both
semi–Thue systems and vector replacement systems. Considered in the above
framework of concurrent processes, a trace rewriting system may be viewed as
a set of transformations that translate sequences of actions of one process into
sequences of actions of another process. Thus, trace rewriting systems may for
instance serve as a formal model of abstraction.

For all kinds of rewriting systems, the notion of a terminating system and
the notion of a confluent system are of central interest. Together, these two
properties guarantee the existence of unique normal forms. Unfortunately, both



properties are undecidable even for the class of all semi–Thue systems. On the
other hand it is a classical result that for the class of terminating semi–Thue
systems, confluence is decidable. Unfortunately even this result does not hold in
general if trace rewriting systems are considered. More precisely, in [NO88] a con-
crete trace monoid is presented such that for the class of length–reducing trace
rewriting systems over this trace monoid, confluence is undecidable. Therefore
it remains the problem to determine those trace monoids for which confluence
is decidable for the class of terminating trace rewriting systems. This question
will be solved in Section 4, where we prove that confluence of length–reducing
systems is decidable only for free or free commutative monoids. This result will
be obtained by a reduction to the case of trace monoids with three generators,
see Section 3. This undecidability result leads to the question whether there ex-
ist (sufficiently large) subclasses of trace rewriting systems for which confluence
becomes decidable, see [Die90] for such a subclass. In Section 5 we present a new
criterion which implies decidability of confluence. Due to space limitations some
proofs are only sketched or completely omitted. They can be found in [Loh98].

2 Preliminaries

In this section we will introduce some notions concerning trace theory. For a
more detailed study, see [DR95]. The interval {1, . . . , n} of the natural numbers
is denoted by n. Given an alphabet Σ, the set of all finite words over Σ is
denoted by Σ∗. The empty word is denoted by 1. As usual, Σ+ = Σ∗\{1}. The
length of s ∈ Σ∗ is denoted by |s|. For Γ ⊆ Σ we define a projection morphism
πΓ : Σ∗ −→ Γ ∗ by πΓ (a) = a if a ∈ Γ and πΓ (a) = 1 otherwise. Given a word s
and factorizations s = tlu = vmw, we say that t is generated by the occurrences
of l and m in s (that are uniquely defined by the two factorizations above) if
t = 1 = u or v = 1 = w or (l 6= 1 6= m and (t = 1 = w or u = 1 = v)). A
deterministic finite automaton, briefly dfa, over Σ is a tuple A = (Q,Σ, δ, q0, F ),
where Q is the finite set of states, δ : Q × Σ → Q is the transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The language
L(A) ⊆ Σ∗ that is accepted by A is defined as usual.

An independence alphabet is an undirected graph (Σ, I), where Σ is a finite
alphabet and I ⊆ Σ×Σ is an irreflexive and symmetric relation, called indepen-
dence relation. The complement Ic = (Σ×Σ)\I is called a dependence relation.
The pair (Σ, Ic) is called a dependence alphabet. Given an independence alpha-
bet (Σ, I) we define the trace monoid M(Σ, I) as the quotient monoid Σ∗/≡I ,
where ≡I denotes the least equivalence relation that contains all pairs of the
form (sabt, sbat) for (a, b) ∈ I and s, t ∈ Σ∗. Elements of M(Σ, I), i.e., equiv-
alence classes of words, are called traces. The trace that contains the word s is
denoted by [s]≡I or briefly [s]. For the rest of this section let (Σ, I) be an arbi-
trary independence alphabet and let M = M(Σ, I). Since for all words s, t ∈ Σ∗,
s ≡I t implies |s| = |t|, we can define |[s]| = |s|. If Γ ⊆ Σ then the trace monoid
N = M(Γ, I∩Γ ×Γ ) is a submonoid of M and we may view πΓ : Σ∗ −→ Γ ∗ as a
morphism πΓ : M −→ N between trace monoids. A clique covering of the depen-



dence alphabet (Σ, Ic) is a sequence (Σi)i∈n of alphabets such that Σ =
⋃n
i=1Σi

and Ic =
⋃n
i=1Σi × Σi. Given a clique covering Π = (Σi)i∈n, we will use the

abbreviation πi = πΣi . Furthermore let πΠ : M −→
∏n
i=1Σ

∗
i be the morphism

that is defined by πΠ(u) = (πi(u))i∈n. It is well–known that πΠ is injective.
Thus, M is isomorphic to its image under πΠ which we denote by 〈Π〉. Its el-
ements are also called reconstructible tuples, see [CM85] pp. 186. A necessary
but not sufficient condition for (si)i∈n ∈ 〈Π〉 is πi(sj) = πj(si) for all i, j ∈ n.
If the cliques Σ1, . . . , Σn are pairwise disjoint then πΠ is also surjective and
M '

∏n
i=1Σ

∗
i . In the rest of this section let Π = (Σi)i∈n be an arbitrary clique

covering of the dependence alphabet (Σ, Ic) and let π = πΠ . Given a factoriza-
tion u = vw of u ∈M , we obtain a unique factorization π(u) = π(v)π(w) of the
reconstructible tuple π(u) (where concatenation of tuples is defined component
wise). But the converse is false. A factorization π(u) = (si)i∈n(ti)i∈n corresponds
to a factorization of u only if (si)i∈n ∈ 〈Π〉 (which implies (ti)i∈n ∈ 〈Π〉). Since
π(u) ∈ 〈Π〉, this already holds if the weaker condition πi(sj) = πj(si) holds for
all i, j ∈ n. Given a trace l ∈M and a factorization π(u) = (si)i∈n π(l)(ti)i∈n, we
say that the occurrence of π(l) in π(u) that is defined by this factorization is re-
constructible if πi(sj) = πj(si) for all i, j ∈ n. This implies (si)i∈n, (ti)i∈n ∈ 〈Π〉
and thus the factorization above defines a unique occurrence of the trace l in u.

In the following we introduce some notions concerning trace rewriting sys-
tems. For a more detailed study, see [Die90]. Let → be an arbitrary binary
relation (for which we use infix notation) on an arbitrary set A. The reflexive
and transitive closure of → is denoted by →∗. The inverse relation →−1 of →
is also denoted by ←. A →–merging for a, b ∈ A is a finite sequence of the form
a = a1 → . . .→ an = bm ← . . .← b1 = b. We say that the situation a← c→ b
is →–confluent if there exists a →–merging for a and b. The notion of a termi-
nating (confluent, locally confluent) relation is defined as usual, see e.g. [BO93].
Newman’s lemma states that a terminating relation is confluent iff it is locally
confluent. A trace rewriting system, briefly TRS, over M is a finite subset of
M ×M . Let R be a TRS over M . An element (l, r) ∈ R is usually denoted by
l → r. Let c = (l → r) ∈ R. For u, u′ ∈ M , we write u →c u

′ if u = vlw and
u′ = vrw for some v, w ∈ M . We write u →R u′ if u →d u

′ for some d ∈ R.
We say that the TRS R is terminating (confluent, locally confluent) if →R is
terminating (confluent, locally confluent). For i ∈ n we define the rules πi(c)
and π(c) by πi(c) = (πi(l) → πi(r)) and π(c) = ((πi(l))i∈n → (πi(r))i∈n). The
TRSs πi(R) and π(R) are defined in the obvious way. Note that π(u)→π(c) π(v)
( π(u) →π(R) π(v) ) need not necessarily imply u →c v (u →R v). The reason
is that in the rewrite step π(u) →π(c) π(v) a non reconstructible occurrence
of π(l) may be replaced by π(r). We introduce the following notations. Given
(si)i∈n, (ti)i∈n ∈ 〈Π〉, we write (si)i∈n ⇒π(c) (ti)i∈n if for some (ui)i∈n, (vi)i∈n
it holds si = uiπi(l)vi, ti = uiπi(r)vi, and πi(uj) = πj(ui) for all i, j ∈ n.
We write (si)i∈n ⇒π(R) (ti)i∈n if (si)i∈n ⇒π(d) (ti)i∈n for some d ∈ R. With
these notations it is obvious that u →c v iff π(u) ⇒π(c) π(v) and u →R v iff
π(u) ⇒π(R) π(v). In particular, R is confluent iff ⇒π(R) is confluent on 〈Π〉.
R is called length–reducing if |l| > |r| for every (l → r) ∈ R. Obviously, if R



Rules for the absorbing symbol 0:
(1a) (1, x0) → (1, 0) for x ∈ Γ
(1b) (1, 0x) → (1, 0) for x ∈ Γ
(1c) (c, 0) → (1, 0)

Main rules:

(3a) (c, .A|w|+2) → (1, .q0w/)
(3b) (c,B) → (1, 0)

Rules for simulating M: Let q, q′ ∈ Q and a′ ∈ Σ\{�}.
(5a) (1, q / $$) → (1, a′q′/) if δ(q,�) = (q′, a′, R)
(5b) (1, bq / $$) → (1, q′ba′/) if δ(q,�) = (q′, a′, L)
(5c) (1, qa$$) → (1, a′q′) if δ(q, a) = (q′, a′, R)
(5d) (1, bqa$$) → (1, q′ba′) if δ(q, a) = (q′, a′, L)
(5e) (1, .qa$$) → (1, .q′�a′) if δ(q, a) = (q′, a′, L)

Rules for deleting non well–formed words:
(2a) (1, /y) → (1, 0) for y ∈ Γ\{$}
(2b) (1, /$y) → (1, 0) for y ∈ Γ\{$}
(2c) (1, x.) → (1, 0) for x ∈ Γ

Rules for shifting $-symbols to the left:
(4a) (1, aβ$$) → (1, a$β) for β ∈ Σ ∪ {/}
(4b) (1, a$β$$) → (1, a$$β) for β ∈ Σ ∪ {/}

Fig. 1. The system Rw. Let a, b ∈ Σ be arbitrary.

is length–reducing, then R is also terminating. By the well–known critical pair
lemma it is possible to construct a finite set of critical pairs for a terminating
semi–Thue system, see [BO93] for more details. Therefore it is decidable whether
a terminating semi–Thue system is confluent. In [NO88], a trace monoid M is
presented such that even for the class of length–reducing TRSs over M , conflu-
ence is not decidable. This problem will be considered in the next section for
arbitrary trace monoids. More precisely, let CONFL(M) be the following com-
putational problem:
INPUT: A length–reducing TRS R over M QUESTION: Is R confluent ?
For technical reasons we will also consider the problem CONFL 6=1(M) which is
defined in the same way, but where the input is a length–reducing TRS whose
right–hand sides are all different from the empty trace 1.

3 Independence alphabets with three vertices

A trace monoid M = M(Σ, I) with |Σ| = 2 is either the free monoid {a, b}∗ or
the free commutative monoid {a}∗×{b}∗. In both cases CONFL(M) is decidable.
If |Σ| = 3 then there exist up to isomorphism two cases, where M is neither free
nor free commutative. The first case arises from the independence alphabet that
is defined by the graph [a−c−b] and will be considered in this section. The
corresponding trace monoid is {a, b}∗ × {c}∗. The second case arises from the
independence alphabet [a−b c] and is considered in [Loh98].

Lemma 1. CONFL6=1({a, b}∗ × {c}∗) is undecidable.

Proof. First we prove the undecidability of CONFL6=1(Γ ∗ × {c}∗) for a finite
alphabet Γ = {a1, . . . , an} where n > 2. This alphabet Γ can be encoded



into the alphabet {a, b} via the morphism φ : ai 7→ abai+1bn−i+2 for i ∈ n.
The following proof is a variant of a construction given in [NO88]. Let M =
(Q,Σ,�, δ, q0, {qf}) be a deterministic one–tape Turing machine, where Q is
the finite set of states, Σ is the tape alphabet, � ∈ Σ is the blank symbol,
δ : Q\{qf} × Σ → Q × (Σ\{�}) × {L,R} is the transition function, q0 is
the initial state and qf 6= q0 is the final state. We may assume that δ is a
total function. Thus, M terminates iff it reaches the final state qf . Assume
that the problem whether M halts on a given input w ∈ (Σ\{�})+ is unde-
cidable. For instance, M may be a universal Turing machine. Let Γ be the
disjoint union Γ = Q ∪ Σ ∪ {0, ., /, A,B, $}. For every w ∈ (Σ\{�})+, we
define a TRS Rw over {c}∗ × Γ ∗ by the rules of Figure 1. Note that Rw is
length–reducing and that all right–hand sides are non empty. Since we excluded
the case w = 1, we do not have to consider the pair (1, .q / $$) in the last
group of rules. We claim that Rw is confluent iff M does not halt on input
w. Note that for every rule (l1, l2) → (r1, r2) ∈ Rw it holds ri = 1 if li = 1
for i ∈ {1, 2}. This property assures that Rw is confluent iff all situations
(t1, t2) Rw← (s1, s2)→Rw (t1, t2) are confluent, where the replaced occurrences
of left–hand sides (l1, l2), (m1,m2) in (s1, s2) satisfy the following: For every
i ∈ {1, 2}, si is generated by the occurrences of li and mi in si and for some
i ∈ {1, 2} these two occurrences are non disjoint in si, i.e., have some letters in
common. Most of these situations are easily seen to be confluent. For instance, in
the situation (1, Bv . q0w/) (3a)← (c,Bv . A|w|+2)→(3b) (1, 0v . A|w|+2) (where
v ∈ Γ ∗ is arbitrary) both traces can be reduced to (1, 0) since the left trace
contains a factor of the form x. which may be rewritten to 0 with rule (2c). The
only difficult situation is (1, .q0w/vB) (3a)← (c, .AnvB)→(3b) (1, .Anv0), where
v ∈ Γ ∗ is arbitrary. Since (1, .Anv0)→∗(1a) (1, 0), the truth of the following claim
proves the lemma.
Claim: M does not halt on input w iff ∀v ∈ Γ ∗ : (1, .q0w / vB)→∗Rw (1, 0).

Let RM be the subsystem that consists of the rules in group (4) and (5).
First assume that M halts on input w. Then there exists an m ≥ 1 such that
(1, .q0w / $mB)→∗RM (1, .uqfv1$2v2$2 . . . vl−1$2vl$2 / $kB), where u ∈ Σ∗, l ≥
0, v1, . . . , vl ∈ Σ and k ≥ 2. Since M cannot move from the final state qf , the
last pair is irreducible. Now assume that M does not halt on input w. First
consider the case v = $m for m ≥ 0. We obtain

(1, .q0w / $mB)→∗RM (1, .uqv1$α1v2$α2 . . . vl−1$αl−1vl$αl / $αl+1B),

where u ∈ Σ∗, l ≥ 0, v1, . . . , vl ∈ Σ, and α1, . . . , αl+1 ∈ {0, 1}. By rule (2a) or
rule (2b) the last pair can be rewritten to (1, .uqv1$α1v2$α2 . . . vl−1$αl−1vl$αl0)
which reduces to (1, 0) with the rules of group (1). Now assume v = $myv′, where
m ≥ 0, y ∈ Γ\{$} and v′ ∈ Γ ∗. Similarly to the derivation above, we obtain

(1, .q0w / $myv′B)→∗RM (1, .uqv1$α1v2$α2 . . . vl−1$αl−1vl$αl / $αl+1yv′B),

where u ∈ Σ∗, l ≥ 0, v1, . . . , vl ∈ Σ, and α1, . . . , αl+1 ∈ {0, 1}. Since y ∈
Γ\{$} again either by rule (2a) or rule (2b) the last pair can be rewritten to
(1, .uqv1$α1v2$α2 . . . vl−1$αl−1vl$αl0v′B) which reduces to (1, 0) with the rules
of group (1). This concludes the proof.



Note that the system Rw is not length–increasing in both components, i.e., for
all (l1, l2) → (r1, r2) ∈ Rw, |l1| ≥ |r1| and |l2| ≥ |r2|. Together with Theorem 2
of Section 5 this gives a very sharp borderline between decidability and unde-
cidability for the case of a direct product of free monoids. The following result
can be shown using similar techniques.

Lemma 2. CONFL6=1(M({a, b, c}, {(a, b), (b, a)})) is undecidable.

4 The general case

A confluent semi–Thue system remains confluent if we add an additional symbol
(that does not appear in the rules) to the alphabet. This trivial fact becomes
wrong for TRSs, see [Die90], pp. 125 for an example. Thus, the following lemma
is not a triviality.

Lemma 3. Let (Σ, I) be an independence alphabet and let Γ ⊆ Σ. Let M =
M(Σ, I) and let N = M(Γ, I ∩ Γ × Γ ). Thus, N ⊆ M . If CONFL 6=1(M) is
decidable then CONFL6=1(N) is also decidable.

Proof. Given a length–reducing TRS P over N whose right–hand sides are all
non empty, we will construct a length–reducing TRS R over M whose right–
hand sides are also all non empty such that P is confluent iff R is confluent. The
case Γ = Σ is trivial. Thus, let us assume that there exists a 0 ∈ Σ\Γ . Let R =
P∪{[ab]→ [0] | a ∈ Σ\Γ or b ∈ Σ\Γ}. Note that R is length–reducing. Assume
that P is confluent and consider a situation u1 R← u→R u2. If u ∈ N then we
must have u1 P← u →P u2. Confluence of P implies that u1 →∗P v ∗P← u2 for
some v ∈ N and thus u1 →∗R v ∗R← u2. If u 6∈ N then u must contain some letter
from Σ\Γ . This must also hold for u1 and u2. Furthermore ui 6∈ Σ\(Γ ∪ {0})
for i ∈ {1, 2}, which holds since all right–hand sides of P are non empty. Thus,
u1 and u2 can both be reduced to [0]. Now assume that R is confluent and
consider a situation u1 P← u →P u2. Thus, u1 R← u →R u2 and confluence
of R implies u1 →∗R v ∗R← u2 for some v ∈M . Since symbols from Σ\Γ do not
appear in u1 or u2 it follows u1 →∗P v ∗P← u2.

Now we are able to prove our first main result.

Theorem 1. CONFL(M) is decidable iff M is a free monoid or a free commu-
tative monoid.

Proof. The decidability of CONFL(M) in the case of a free or free commutative
monoid is well–known. Thus, assume that M = M(Σ, I) is neither free nor
free commutative. First note that M is a direct product of free monoids iff the
dependence alphabet (Σ, Ic) is a disjoint union of complete graphs iff (Σ, I) does
not contain an induced subgraph of the form [a−b c]. Thus, by Lemma 2 and
Lemma 3, if M is not a direct product of free monoids then CONFL 6=1(M) (and
thus also CONFL(M)) is undecidable. Thus, assume that M =

∏n
i=1Σ

∗
i . Since

M is neither free nor free commutative we have n > 1 and there exists an i ∈ n
such that |Σi| > 1. But then [a−c−b] is an induced subgraph of (Σ, I). Lemma
1 and Lemma 3 imply the undecidability of CONFL6=1(M) and CONFL(M).



5 A decidability criterion

In this section we present a new and non trivial criterion that implies decidability
of confluence for terminating TRSs. For our considerations, we need the concept
of a recognizable trace language. For a more detailed introduction into this topic,
see for instance chapter 6 of [DR95]. One of the fundamental results about
recognizable trace languages states that a trace language is recognizable iff it
is recognized by a special kind of automaton, namely a so called asynchronous
automaton, see [Zie87]. Since we will need only this type of automata, we use it
for the definition of recognizable trace languages.

A (finite) asynchronous automaton A over the trace monoid M = M(Γ, I) is
a tuple A = (Q,Γ, (δa)a∈Γ , q0, F ), where

– Q =
∏m
i=1Qi is a direct product of finite sets of (local) states,

– for every symbol a ∈ Γ , there exists a non empty set dom(a) ⊆ m such that
for all (a, b) ∈ I it holds dom(a) ∩ dom(b) = ∅,

– for every symbol a ∈ Γ , δa is a (partially defined) local transition function
δa :

∏
i∈dom(a)Qi →

∏
i∈dom(a)Qi,

– q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

The (partially defined) global transition function δ : Q× Γ → Q of A is defined
as follows. For (pi)i∈m ∈ Q and a ∈ Γ , δ((pi)i∈m, a) is defined iff δa((pi)i∈dom(a))
is defined. If this is the case it holds δ((pi)i∈m, a) = (qi)i∈m, where (i) qi = pi
for i 6∈ dom(a) and (ii) (qi)i∈dom(a) = δa((pi)i∈dom(a)). For a word s ∈ Γ ∗,
δ((pi)i∈m, s) is then defined in the usual way. Note that for (a, b) ∈ I it holds
δ((pi)i∈m, ab) = δ((pi)i∈m, ba). Thus, it is possible to define δ((pi)i∈m, [s]) for
[s] ∈ M . The language accepted by A is L(A) = {u ∈ M | δ(q0, u) ∈ F}. A
trace language L ⊆ M is called recognizable iff there exists an asynchronous
automaton A over M with L = L(A). Since it holds L(A) = M iff A, considered
as a dfa over Γ , accepts Γ ∗ the following holds.

Fact 1 The following problem is decidable.
INPUT: An asynchronous automaton A over M QUESTION: L(A) = M?

Fact 2 IfK ⊆M is recognizable and L ⊆ N is recognizable thenK×L ⊆M×N
is also recognizable (use the well–known product construction).

The following lemma is crucial for the proof of the next theorem.

Lemma 4. Let R be a terminating TRS over M(Σ, I) and let Π = (Γi)i∈n be
a clique covering of (Σ, Ic) such that

– For all i ∈ n and all (l→ r) ∈ R it holds πi(l) 6= 1.
– For all i, j ∈ n and all (l→ r) ∈ R, if πi(πj(l)) = 1 then also πi(πj(r)) = 1.

Then ⇒πΠ(R) is confluent on 〈Π〉 (and thus →R is confluent) iff all situations

(t′i)i∈n = (siπi(p)s′i)i∈n πΠ(R)⇐ (siπi(l)s′i)i∈n = (ti)i∈n =
(uiπi(m)u′i)i∈n ⇒πΠ(R) (uiπi(r)u′i)i∈n = (t′′i )i∈n (1)

with the following properties are ⇒πΠ(R)–confluent.



– (l→ p), (m→ r) ∈ R and (ti)i∈n, (si)i∈n, (ui)i∈n ∈ 〈Π〉.
– For all i ∈ n, the occurrences of πi(l) 6= 1 and πi(m) 6= 1 in ti generate ti.
– For some i ∈ n, the occurrences of πi(l) and πi(m) are non disjoint in ti.

The fact that the two replaced occurrences of π(l) and π(m) can be assumed to
generate ti is easy to see. Non–disjointness of the occurrences can be assumed
due to the two conditions imposed on R. These conditions assure that if two
disjoint and reconstructible occurrences of π(l) and π(m) exist in (ti)i∈n ∈ 〈Π〉
and (say) π(l) is replaced by π(p) then the occurrence of π(m) in the resulting
tuple is still reconstructible. Let us state now our second main result.

Theorem 2. The following problem is decidable.
INPUT: A TRS R over a trace monoid M = M(Σ, I) such that there exists a
clique covering (Σi)i∈n of the dependence alphabet (Σ, Ic) with the following
properties:

πi(R) is terminating for every i ∈ n and πi(πj(l)) = 1 implies πi(πj(r)) =
1 for all i, j ∈ n with i 6= j and all (l→ r) ∈ R.

QUESTION: Is R confluent?

Note that for instance the second condition on R trivially holds if M =
∏n
i=1Σ

∗
i

with the clique covering (Σi)i∈n. Another class to which the theorem may be
applied are special TRSs (i.e. every rule has the form l→ 1) such that for every
left–hand side l and every clique Σi it holds πi(l) 6= 1. On the other hand,
Theorem 2 cannot be applied to the system Rw from the proof of Lemma 1,
since for instance the projection onto the first component is not terminating.

Proof. Let Π = (Σi)i∈n be a clique covering of (Σ, Ic) such that πi(R) is termi-
nating for every i ∈ n and let π = πΠ . Thus, R must be terminating. Moreover,
there cannot exist a rule (1 → πi(r)) ∈ πi(R), i.e., for every (l → r) ∈ R and
every i ∈ n it holds πi(l) 6= 1 and therefore Lemma 4 applies to R. Fix two rules
(l → p), (m→ r) ∈ R and let li = πi(l) and similarly for p, m, and r. Consider
the situation shown in (1) in Lemma 4. The conditions imposed on (1) imply
that for every i ∈ n either (1) ti = liwimi for some wi ∈ Σ∗i or (2) ti = miwili
for some wi ∈ Σ∗i or (3) li and mi are non disjoint and generate ti. Furthermore
there must exist at least one i ∈ n such that case (3) holds. Thus, for every
partition n = I1 ∪ I2 ∪ I3 with I3 6= ∅ we have to consider all (ti)i∈n ∈ 〈Π〉
such that for all i ∈ Ik case (k) holds. Fix such a partition n = I1 ∪ I2 ∪ I3 and
let I1,2 = I1 ∪ I2, Σ(k) =

⋃
i∈Ik Σi for k ∈ {1, 2, 3}. Moreover, since for every

i ∈ I3 there exist only finitely many possibilities for the string ti we may also
fix the tuple (ti)i∈I3 . After these two choices, the only unbounded component
in the tuple (ti)i∈n is the reconstructible factor (wi)i∈I1,2 . Since the occurrences
(li)i∈n and (mi)i∈n must be reconstructible in (ti)i∈n it is easy to see that
πj(ti) = πi(tj) = 1 for all i ∈ I1, j ∈ I2. Similarly for all i ∈ I3, j ∈ I1,2 it must
hold πi(wj) = 1. Thus, we have to consider all tuples (wi)i∈I1,2 ∈ M1 ×M2,
where M1 = 〈(Σi\(Σ(2) ∪ Σ(3)))i∈I1〉 ' M(Σ(1)\(Σ(2) ∪ Σ(3)), I) and M2 =
〈(Σi\(Σ(1) ∪Σ(3)))i∈I2〉 ' M(Σ(2)\(Σ(1) ∪Σ(3)), I). We will prove that the set



of all tuples (wi)i∈I1,2 ∈ M1 ×M2 for which there exists a ⇒π(R)–merging for
the corresponding tuples (t′i)i∈n and (t′′i )i∈n (that are uniquely determined by
the wi via the two choices made above) is a recognizable trace language, which
proves the theorem by Fact 1.

Let Rk = {(πi(l))i∈Ik → (πi(r))i∈Ik | (l → r) ∈ R} for k ∈ {1, 2, 3} and
let R1,2 = {(πi(l))i∈I1,2 → (πi(r))i∈I1,2 | (l → r) ∈ R}. Obviously, there ex-
ists a ⇒π(R)–merging for (t′i)i∈n and (t′′i )i∈n iff there exist a ⇒R1,2–merging
for (t′i)i∈I1,2 and (t′′i )i∈I1,2 as well as a ⇒R3–merging for (t′i)i∈I3 and (t′′i )i∈I3
such that both mergings can be combined to a ⇒π(R)–merging, i.e., both merg-
ings have the same length, in the k–th step for some (l → r) ∈ R the rules
(πi(l))i∈I1,2 → (πi(r))i∈I1,2 and (πi(l))i∈I3 → (πi(r))i∈I3 , respectively, are ap-
plied, and finally the two replaced reconstructible occurrences of (πi(l))i∈I1,2
and (πi(l))i∈I3 give a reconstructible occurrence of π(l). Since R3 is terminat-
ing it is possible to construct all ⇒R3–mergings for the fixed tuples (t′i)i∈I3
and (t′′i )i∈I3 . Fix one of these mergings. Since a finite union of recognizable
trace languages is again recognizable it suffices to prove that the set of all tu-
ples (wi)i∈I1,2 ∈ M1 ×M2 such that there exists a ⇒R1,2–merging for (t′i)i∈I1,2
and (t′′i )i∈I1,2 which can be combined with the fixed ⇒R3–merging to a ⇒π(R)–
merging is recognizable.

Recall that πj(ti) = πi(tj) = 1 for all i ∈ I1, j ∈ I2. The properties of R
imply that every tuple (si)i∈I1,2 that appears in a ⇒R1,2–merging for (t′i)i∈I1,2
and (t′′i )i∈I1,2 also satisfies πj(si) = πi(sj) = 1 for all i ∈ I1, j ∈ I2. But this
implies that every ⇒R1–merging for (t′i)i∈I1 and (t′′i )i∈I1 can be combined with
every ⇒R2–merging for (t′i)i∈I2 and (t′′i )i∈I2 , assumed that both mergings fit to
our chosen⇒R3–merging. By Fact 2 it suffices to prove that the set of all tuples
(wi)i∈I1 ∈M1 such that there exists a ⇒R1–merging for (t′i)i∈I1 = (piwimi)i∈I1
and (t′′i )i∈I1 = (liwiri)i∈I1 that can be combined with our fixed⇒R3–merging is
recognizable (the corresponding statement for M2 can be proven analogously).

In order to allow this combination only rather restricted ⇒R1–mergings for
(piwimi)i∈I1 and (liwiri)i∈I1 are allowed. More precisely, let the k–th step (in
the ⇒R3–part or the ⇐R3–part) in our fixed ⇒R3–merging be of the form
(si)i∈I3 ⇒R3 (s′i)i∈I3 , where si = uiπi(l)u′i, s

′
i = uiπi(r)u′i, (l → r) ∈ R.

Then we have to consider exactly those ⇒R1–mergings for (piwimi)i∈I1 and
(liwiri)i∈I1 such that the k–th step has the form (si)i∈I1 ⇒R1 (s′i)i∈I1 , where
si = viπi(l)v′i, s

′
i = viπi(r)v′i, and πj(vi) = πi(uj) for all i ∈ I1,2, j ∈ I3.

In particular, the rule from R1 that must be applied in each step of a ⇒R1–
merging for (piwimi)i∈I1 and (liwiri)i∈I1 is fixed. For the further consideration
we may therefore exchange its left– and right–hand side. Thus, we only have to
deal with a fixed sequence of rules over 〈(Σi\Σ(2))i∈I1〉. For the following let
Γi = Σi\Σ(2) for i ∈ I1 and let Γ = Σ(1)\Σ(2).

From the previous discussion it follows that in order to prove the theorem it
suffices to prove that for given α ∈ N (which is the length of the fixed sequence
of rules over 〈(Γi)i∈I1〉), (li,k)i∈I1 , (ri,k)i∈I1 ∈ 〈(Γi)i∈I1〉, ui,j,k ∈ Γi ∩ Σj (that
are fixed for the rest of this section) where i ∈ I1, j ∈ I3, k ∈ α+ 1 the set of



all tuples (wi)i∈I1 ∈M1 such that

∃(si,1)i∈I1 , . . . , (si,α+1)i∈I1 ∈ 〈(Γi)i∈I1〉 ∀k ∈ α, i ∈ I1, j ∈ I3 :
si,1 = piwimi, si,α+1 = liwiri, si,k = vi,kli,kv

′
i,k,

si,k+1 = vi,kri,kv
′
i,k, (vi,k)i∈I1 ∈ 〈(Γi)i∈I1〉, πj(vi,k) = ui,j,k

(2)

is recognizable in M1. Since M1 is recognizable in 〈(Γi)i∈I1〉 and recognizable
languages are closed under intersection it suffices to prove that set of all tuples
(wi)i∈I1 ∈ 〈(Γi)i∈I1〉 such that (2) holds is recognizable. This will be proven in
the rest of this section. We need the following notions.

For the rest of the section let Xi for i ∈ I1 be an infinite enumerable set of
variable symbols with Xi ∩Xj = ∅ for i 6= j and let

⋃
i∈I1 Xi = X. We assume

X∩Γ = ∅. For all i ∈ I1, let xi ∈ Xi be a distinguished variable. For S ∈ (Γ∪X)∗

let Var(S) denote the set of all variables that appear in S. Let Lini denote the
set of all words S ∈ (Γi∪Xi\{xi})∗ such that every variable x ∈ Var(S) appears
only once in S. We write S �i T iff S, T ∈ Lini and the word πX(S) ∈ X∗i
is a prefix of πX(T ). We write S 'i T iff S �i T and T �i S. A substitution
is a function τ : X → Γ ∗ such that τ(x) ∈ Γ ∗i for all x ∈ Xi and i ∈ I1. The
homomorphic extension of τ to the set (Γ∪X)∗ that is defined in the obvious way
is denoted by τ as well. For every x ∈ X and i ∈ I1, we introduce a new symbol
πi(x). Let πi(X) = {πi(x) | x ∈ X}. Every πi may be viewed as a morphism
πi : (X∪Γ )∗ → (πi(X)∪Γi)∗. For a substitution τ we define τ(πi(x)) = πi(τ(x)).
A system of word equations with regular constraints, briefly SWE, is a finite set
∆ that consists of equations S = T with S, T ∈ (Γi∪Xi∪πi(X))∗ for some i ∈ I1
and regular constraints of the form x ∈ L(A) where x ∈ Xi\{xi} and A is a dfa
over Γi for some i ∈ I1. A solution τ for ∆ is a substitution τ : X → Γ ∗ such
that τ(S) = τ(T ) for all (S = T ) ∈ ∆ and τ(x) ∈ L(A) for all (x ∈ L(A)) ∈ ∆.
Let L(∆) = {(τ(xi))i∈I1 ∈ 〈(Γi)i∈I1〉 | τ is a solution of ∆}.

In (2) we ask for the set of all (wi)i∈I1 ∈ 〈(Γi)i∈I1〉 such that (piwimi)i∈I1 can
be transformed into (liwiri)i∈I1 by a fixed sequence of rules where furthermore
the projections onto the alphabets Σj (j ∈ I3) of the prefixes that precede
the replaced occurrences of the left–hand sides are fixed. In the simpler case
of a fixed sequence of ordinary string rewrite rules over some Γi (i ∈ I1) it is
easy to construct finitely many data of the form S(i) 'i T (i) such that s ∈
Γ ∗i can be transformed into t ∈ Γ ∗i by an application of that sequence iff for
some of the constructed data S(i), T (i) and some substitution τ it holds s =
τ(S(i)), t = τ(T (i)). If we further fix the projections onto every alphabet Σj
(j ∈ I3) of the prefixes that precede the replaced occurrences of the left–hand
sides then we have to add to the above data fixed values for some of the πΣj (x)
(j ∈ I3, x ∈ Var(S(i))). These additional data may be expressed as regular
constraints for the variables in Var(S(i)). If we go one step further and consider
the direct product

∏
i∈I1 Γ

∗
i , instead of a free monoid, the only thing that changes

is that we need for every component i ∈ I1 data of the above form. Finally if
we consider the situation in (2), we have to enrich the above data further since
we have to guarantee that reconstructible occurrences of left–hand sides will be



replaced. This can be achieved by adding a (synchronization) equation of the
form πi(S

(j)
k ) = πj(S

(i)
k ) (where i, j ∈ I1, i 6= j and S

(i)
k � S(i) for every i ∈ I1)

for the k–th rewrite step, which assures reconstructibility. These consideration
lead to the following lemma that can be proven by induction on α ≥ 0.

Lemma 5. There exists a finite set S of SWEs (which can be constructed ef-
fectively), where every ∆ ∈ S has the form

piximi = S(i), lixiri = T (i), πi(S
(j)
k ) = πj(S

(i)
k ) (i, j ∈ I1, k ∈ α), C (3)

(with S
(i)
k � S(i) ' T (i) for all i ∈ I1, k ∈ α and C being regular constraints)

such that for (wi)i∈I1 ∈ 〈(Γi)i∈I1〉 it holds (2) iff (wi)i∈I1 ∈ L(∆) for some
∆ ∈ S.

Thus, in order to prove Theorem 2 it suffices to show that for a SWE ∆ of the
form (3) the set L(∆) is recognizable. The next lemma proves the recognizability
of the set of solutions of SWEs of a simpler form.

Lemma 6. Let S(i) ∈ Lini, Yi = Var(S(i)), Y =
⋃n
i=1 Yi and for all i, j ∈ I1

with i 6= j let S(i) = S
(i)
j,1 . . . S

(i)
j,αi,j

be factorizations of S(i), where αi,j = αj,i.
Let ∆ be the SWE

xi = S(i), πj(S
(i)
j,k) = πi(S

(j)
i,k ), y ∈ L(Ay) (i 6= j ∈ I1, k ∈ αi,j , y ∈ Y ). (4)

Then L(∆) ⊆ 〈(Γi)i∈I1〉 is a recognizable trace language.

Proof. Let Ax = (Qx, Γi, δx, qx, {px}) for x ∈ Yi, i ∈ I1. We may assume
that for x 6= y it holds Qx ∩ Qy = ∅. From these automata we can easily
construct a dfa (with 1–transitions) A(i) = (Q(i), Γi, δ

(i), q(i), p(i)) that recog-
nizes the language {τ(S(i)) | ∀x ∈ Yi : τ(x) ∈ L(Ax)}. The dfa A(i) reads the
word S(i) from left to right but instead of reading a variable x ∈ Yi it jumps
via a 1–transition into the initial state of the dfa Ax. If it reaches the final
state of Ax the dfa jumps back into the word S(i) at the position after the
variable x. The idea is to modify the so called mixed product automaton (see
[Dub86]) of the dfas A(i) (which recognizes the language {(wi)i∈I1 ∈ 〈(Γi)i∈I1〉 |
∀i ∈ I1 : wi ∈ L(A(i))}) such that it checks whether the additional equations
πj(S

(i)
j,k) = πi(S

(j)
i,k ) are satisfied for all i, j ∈ I1, k ∈ αi,j with i 6= j. More

formally, let A = (
∏
i∈I1 Q

(i), Γ, (δa)a∈Γ , (q(i))i∈I1 , {(p(i))i∈I1}) be the asyn-
chronous automaton, where dom(a) = {i ∈ I1 | a ∈ Γi} for every a ∈ Γ . The
local transition function is defined as follows. For all i, j ∈ I1, k ∈ αi,j with i 6= j

let Q(i)
j,k ⊆ Q(i) be the set of states of A(i) that corresponds to the subword S(i)

j,k of

S(i) (which contains all states in Qx if x ∈ Var(S(i)
j,k)). Then the idea is to allow

an a–transition only if for all i, j ∈ dom(a) with i 6= j there exists a k ∈ αi,j such
that the i–th component of the asynchronous automata currently is in a state
from Q

(i)
j,k and the j–th component of the asynchronous automaton is in a state

from Q
(j)
i,k , i.e., both components are in the same layer. Thus, δa((qi)i∈dom(a))



is defined for (qi)i∈dom(a) ∈
∏
i∈dom(a)Q

(i) iff for all i, j ∈ dom(a) with i 6= j

there exists a k ∈ αi,j such that qi ∈ Q(i)
j,k and qj ∈ Q(j)

i,k . If this is the case then
δa((qi)i∈dom(a)) = (δ(i)(qi, a))i∈dom(a). It is easy to see that L(∆) = L(A).

Now the proof of Theorem 2 can be completed by proving that every SWE ∆ of
the form (3) can be reduced to a finite set S of SWEs of the form (4) such that
L(∆) =

⋃
{L(Θ) | Θ ∈ S}. The rather technical proof of this fact is carried out

in [Loh98].

6 Conclusion

We have shown that for the class of length–reducing trace rewriting systems over
a given trace monoid M , confluence is decidable iff M is free or free commutative.
Thus, we have located the borderline between decidability and undecidability
for this problem in terms of the underlying trace monoid. Furthermore we have
presented a new criterion that implies decidability of confluence for terminating
systems. Other interesting classes of systems for which it is an open question,
whether confluence is decidable are special or monadic trace rewriting systems
(which are defined analogously to the semi–Thue case, see [BO93]) as well as
one–rule trace rewriting systems, for which confluence can be decided in almost
all cases, see [WD95].
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