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Abstract

Trace rewriting systems, i.e., rewriting systems over trace monoids, generalize both semi—
Thue systems and vector replacement systems. In [NO88|, a particular trace monoid M is
constructed such that confluence is undecidable for the class of length-reducing trace rewriting
systems over M. In this paper, we show that this result holds for every trace monoid, which
is neither free nor free commutative. Confluence for length-reducing semi-Thue systems is
shown to be P—complete. Furthermore we introduce a restricted notion of confluence, called
(a, B)—confluence, where «, 3 > 1. We prove that (o, 3)-confluence is decidable for trace
rewriting sytems and use this result in order to obtain new classes of trace rewriting systems
with a decidable confluence problem.

1 Introduction

The theory of free partially commutative monoids generalizes both, the theory of free monoids and
the theory of free commutative monoids. In computer science, free partially commutative monoids
are commonly called trace monoids and their elements are called traces. Both notions are due to
Mazurkiewicz [Maz77], who recognized trace monoids as a model of concurrent processes. [DR95]
gives an extensive overview about current research trends in trace theory.

The relevance of trace theory for computer science can be explained as follows. Assume a finite
alphabet X. An element of the free monoid over X, i.e., a finite word over X, may be viewed as the
sequence of actions of a sequential process. In addition to a finite alphabet X, the specification
of a trace monoid (over X) requires a binary and symmetric independence relation on X. If two
symbols a and b are independent then they are allowed to commute. Thus, the two words sabt
and sbat, where s and t are arbitrary words, denote the same trace. This trace may be viewed as
the sequence of actions of a concurrent process where the two independent actions a and b may
occur concurrently and thus may be observed either in the order ab or in the order ba.

This point of view makes it interesting to consider trace rewriting systems, see [Die90]. A
trace rewriting system is a finite set of rules, where the left—hand side and right-hand side of each
rule are traces. Trace rewriting systems generalize both, semi-Thue systems (see [BO93] for a
detailed study) and vector replacement systems which are equivalent to Petri nets. Considered
in the above framework of concurrent processes, a trace rewriting system may be viewed as a
set of transformations that translate sequences of actions of one process into sequences of actions
of another process. Thus, trace rewriting systems may for instance serve as a formal model of
abstraction.

For all kinds of rewriting systems, the notion of a terminating system and the notion of a
confluent system are of central interest. Together, these two properties guarantee the existence of
unique normalforms. Unfortunately, in general both properties are undecidable for trace rewriting
systems. More precisely, termination and confluence are only decidable for trace rewriting systems



over free commutative monoids, i.e., vector replacement sytems, see [HL78], [BO8&4], [VRL98] .
For the confluence problem this situation changes if only terminating systems are considered. It
is a classical result that for the class of terminating semi—Thue systems, confluence is decidable,
see [BO81]. Moreover if only length-reducing semi-Thue systems are considered, then confluence
can be even decided in polynomial time, see [BO81], [KKMN85]. Unfortunately even for length—
reducing trace rewriting systems, confluence is undecidable in general. More precisely, in [NO88] a
concrete trace monoid M is presented such that confluence is undecidable for the class of length—
reducing trace rewriting systems over M. Therefore it remains the problem to determine those
trace monoids for which confluence is decidable for the class of terminating trace rewriting systems.
This question will be solved in Section 3, where we prove that confluence of terminating systems
is decidable only for free or free commutative monoids. This result will be obtained by a reduction
to the case of trace monoids with three generators, see Section 3.1. Thus, we have obtained a
sharp borderline between decidability and undecidability in terms of the underlying trace monoid.

Another possible parameter for variation is the length of the involved derivations. More pre-
cisely, we say that a trace rewriting system is (a, 8)—confluent if the following holds for all traces
u, v, and w: If v and w can be reached from v by at most a many rewrite steps then there exists
a trace v' that can be reached from u and w by at most 8 many rewrite steps. In Section 4 we
will prove that («, 3)—confluence is decidable for trace rewriting systems. Finally in Section 5 we
will present some conditions for terminating trace rewriting systems that imply the equivalence
of confluence and (1, a)—confluence for a fixed value a that can be determined effectively. In this
way we obtain new classes of trace rewriting systems with an decidable confluence problem. Other
decidability criteria for the confluence problem are presented in [Die90]. In Section 5 we briefly
compare these criteria with our criteria.

2 Preliminaries

In this section we introduce some notions concerning trace monoids and trace rewriting systems.
For a more detailed study, see [Die90] and [DR95].

2.1 Basic notions

For a set A, the powerset of A is denoted by 24. The identity relation {(a,a) | a € A} on A is
denoted by Id4. Given a function f : A — B and a subset C' C A, we denote by f|c: C — B
the restriction of f to C. Given binary relations E, FF C A x A, the relational composition of E
and F is denoted by E F. The transitive closure of E is denoted by Et and the reflexive and
transitive closure of E is denoted by E*. Given an alphabet ¥, ¥* denotes the set of all finite
words of elements of ¥ as well as the free monoid over ¥. The empty word is denoted by 1. As
usual £t = ¥*\{1}. For T’ C ¥ we define a projection morphism mr : £* — I'* by mpr(a) = a
if a € T and 7r(a) = 1 otherwise. The length of the word s is denoted by |s|. The number of
different occurrences of a letter a € ¥ in s is denoted by |s|,. We define " = {s € £* | |s| = n}.
The set of all letters that occur in the word s is denoted by alph(s) = {a € X | |s|, > 0}.

An independence alphabet is an undirected graph (X, I), where X is a finite alphabet and T C
Y x ¥ is an irreflexive and symmetric relation, called an independence relation. The complement
I¢ = (£ x ©)\I is called a dependence relation. It is reflexive and symmetric. The pair (¥, I°) is
called a dependence alphabet. Given an independence alphabet (3,I) we define the trace monoid
M(X,I) as the quotient monoid ¥*/=;, where =; denotes the least equivalence relation that
contains all pairs of the form (sabt, sbat) for (a,b) € I and s,t € £*, which is a congruence on X*.
An element of M(X, I), i.e., an equivalence class of words, is called a trace. The trace that contains
the word s is denoted by [s]r or briefly [s]. The neutral element of M(X, ) is the empty trace [1]r
which will be also denoted by 1. Concatenation of traces is defined by [s][t]r = [st]r. Monoid
morphisms are defined in the usual way. Since for all words s,t € ¥*, s = ¢ implies |s| = |¢],

I The decidability of termination for vector replacement systems seems to be folklore. It can be proved easily by
using Dicksons Lemma.



|s|a = |t|a, and alph(s) = alph(t), we can define |[s]1| = |s|, |[s]1]a = |S|a, and alph([s]r) = alph(s).
The independence relation I can be lifted to M(X, I) by u I v if alph(u) x alph(v) C I. For a trace
u € M(Z, I), we denote by min(u) = {a € £ | Is € £* : u = [as]r} the set of all minimal letters of
u. The set maz(u) of all maximal letters of u is defined analogously. For the rest of this section
let (£,I) be an arbitrary independence alphabet and let M = M(Z, I).

Note that if I = (X x X)\Idx then M is isomorphic to the free commutative monoid NI over
|X| many generators. In this case we will denote traces in M also by |X|-dimensional vectors over
N. On the other hand if I = @) or equivalently the dependence alphabet (£,1¢) = (X,X x X) is
the complete graph on ¥ then M is isomorphic to the free monoid X* over X. More generally, if
(%, I°) is the disjoint union of complete graphs (X;, D;) for ¢ € {1,... ,n} then M is isomorphic to
[T7, =;. In this case we denote traces in M also by tuples of words. If ' C ¥ then (I',INT x I')
is called an induced subgraph of (X,I). In this case the trace monoid N = M(I', I NT xT) is a
submonoid of M and we may view 7p : ¥* — I'* also as a trace morphism 7 : M — N. A
clique covering of the dependence alphabet (X, I¢) is sequence (X1, ... ,X,) such that ¥ = J;_; &;
and I° = |J_, &; x &;. We may always assume that £; C ¥; if and only if ¢ = j for all

i,j € {1,...,n}. Given a clique covering Il = (21,...,%,) of (£, I¢), we will use the abbreviation
m; = 7x,. Furthermore o : M —» H:.L:l Y7 denotes the trace morphism that is defined by
w(u) = (m(u),...,m(u)) for every u € M. A fundamental fact about 7 is expressed in the

following lemma following lemma [CP85].

Lemma 2.1. Let I = (24,... ,X,) be a clique covering of the dependence alphabet (X, I¢). Then
mn s M — [, B} is injective.

In particular M is isomorphic to its image under ;. Elements of this image, i.e., tuples (s1, ... , sp)
such that there exists a trace u € M with m;(u) = s; for all 4 € {1,... ,n} are also called recon-
structible tuples, see [CM85]. Note that if (s1,...,8,) and (t1,... ,t,) are reconstructible then
also (s1t1,... ,8nty) is reconstructible. A necessary condition for reconstructibility of (sy,... ,s,)
is that m;(s;) = mi(s;) for all 4,5 € {1,...,n}. But this condition is not sufficient for recon-
structibility, see Example 2.3.

Lemma 2.2. Letu € M andletII = (¥4,... ,%,) be a clique covering of the dependence alphabet
(X,I°). For every i € {1,... ,n} let m;(u) = s;t; be a factorization of m;(u). Then ;(s;) = m;(s;)
for all i,j € {1,...,n} if and only if (s1,...,8,) and (t1,...,t,) are both reconstructible.

Proof. The if-direction is clear. We prove the only if—-direction by an induction on |u|. The case
u =1 is clear. Thus assume that v = av for some a € 3. Thus

ami(v) ifa€l;

mi(u) = mi(a)mi(v) = {m(v) if a ¢ 3,

which implies 7;(v) = s;t; if a & ¥; and am;(v) = s;t; if a € £;. W.lo.g. assume that for some
m € {0,...,n} it holds {i | a € ;} = {1,... ,m}. We separate two cases.

Case 1: There exists an ¢ € {1,...,m} such that s; = 1. Assume that for some j € {1,... ,m}
it holds s; # 1. Since am;(v) = s;t; it follows s; = as for some s € X7. Thus 1 = 7;(s;) =
mi(s;) = mi(as) = am;(s) which gives a contradiction. We conclude that for all i € {1,...,m} it

holds s; = 1 and hence ¢; = am;(v). Since

() s;m;i (V) if1<i<m
mi(v) =
! sit; ifm+1<i<n

the induction hypothesis implies that (s1,...,s,) and (71 (v),... , 7m(V), tmy1,... ,ts) are re-
constructible. In particular wp(w) = (w1 (v),... , "W (V) tmt1,- .-, tn) for some w € M. Thus
mn(aw) = (am1 (v), ... a7 V), tmats -« 5 tn) = (t1,.-. ,tn), 1€, (t1,... ,t,) is also reconstructible.

Case 2: For all s € {1,...,m} it holds s; # 1. Thus s; = as} and m;(v) = sit; for i € {1,... ,m}.
It follows
ms(v) = {s;ti for1<i<m

sit; form+1<i<n.



Since furthermore for all 4, j € {1,... ,m} and all k € {m +1,... ,n} it holds m;(s}) = m;(s}) and

i (s;) = m(as) = mr(s;) = mi(sk), the induction hypothesis implies that (s}, ... ,s],, Sm+1,--- ,5n)
and (t1,...,t,) are reconstructible. In particular np(w) = (si,-..,80,, Sm+1,--- , Sn) for some
w € M. Thus m(aw) = (as),... ,ash,, Sm+1s--- 18n) = (S1,--- ,8n)- O

In particular, it is not the case that for all factorizations m;(u) = s;t; there exists a factorization
u = vw with m;(v) = s; and m;(w) = ¢; for all i € {1,... ,n}.

Example 2.3. Let ¥ = {a,b,c,d,e} and I = {(a,d), (d,a), (b,c), (¢,b), (a,e€), (e,a), (b,e), (e, b)}.
In M(X,I) we have for instance, u = [adbcedcb]; = [dacebdbc]r, min(u) = {a,d} and max(u) =
{b,c}. A clique covering for the dependence alphabet (X, I¢) is for instance

II = ({a,b}, {b,d},{c,d, e}, {a,c}).

Then 7 (uw) = (abb, dbdb, dcede, acc) which is therefore a reconstructible tuple. The factorization
mn(u) = (ab,db,d,a)(b,db, cedc, cc) satisfies the conditions of Lemma 2.2. And indeed it holds
u = [adb]r[cedcb]r, mr([adb]r) = (ab,db,d,a), and mr([cedeb]r) = (b, db, cede, cc).

On the other hand, the tuple (s1,s2,53,54) = (ab,bd, de, ca) is not reconstructible. But note
that it holds m;(s;) = m;(s;) for all 4,5 € {1,2,3,4}.

Another fundamental fact about traces is known as Levi’s lemma for traces [CP85].

Lemma 2.4. Let ui,u2,v1,v2 € M and let ujup = v1v2. Then there exist four traces w1, w2,
wa,1 and wy > such that

U =wiwi,2, U2 =w21wW22, V1 =wWi11W2,1, V2= wWi2W22, W12 Iw2,1-
The next lemma follows by induction form Levis’s lemma for traces.

Lemma 2.5. Let u1,... ,%mn,v1,...,0, € M. Then it holds ujus ...ty = v1v2...v, if and only
if there exist w; ; € M for all 4 € {1,... ,m}, j € {1,...,n} such that

(1) u; = wiaws2 ... Wy, for every 1 <i <m,
(2) vj = wy jwa ... wny,; for every 1 < j <mn, and
B) wijTwpif1<i<k<mand1<I<j<n.

This situation in the lemma can be visualized by a diagram of the following kind (where
m = n = 5), where the i—th column corresponds to u;, the j—th row corresponds to v;, and the
square where the i—th column and the j—th row intersect corresponds to w; ;.

Us || W15 | W25 | W35 | Was | W55
V4 W14 | W24 | W34 | Wa4q | W54
U3 W1,3 | W2,3 | W3,3 | W43 | W53
V2 W12 | W | W32 | Wa2 | W52
U1 Wi | W21 | W31 | W41 | W1

IREEEERENES

Proof. We use induction over m + n. The case m = 1 or n = 1 is trivial. Thus let m > 1 and
n > 1. Lemma 2.4 applied to the identity (u1 - -Um—1)tum = (v1 - - - vp—1)v, gives four traces z,
u, v and wy, , such that

ULU2 "~ " Upm—1 = TV, V1V2° " Up—1 =TU, Upm = UWm,pn, Up=VWny, ulv.

Next we apply the induction hypothesis to the identity ujus---u,—1 = zv. We obtain traces
Y1,Y2,- -+ yYm—1 and Wy pn, Wa n, ... Wym—1,, Such that

T=Y1Y2" Ym—1, UV =WinW2pn " Wm-in, Ui =YWin(1<i<m-—1), yplw;,ifi<k.



Similarly, by the induction hypothesis applied to the identity v1vs - - - v,—1 = zu there exist traces
21,22, ,2n—1 and Wm 1, Wm,2, - . . Wy n—1 such that

T =212 Zm1, U=WniWm2  Wmn 1, Uj=2jWn;(1<j<n—1) zijlwy,;ifi>j.

Thus y1y2 -+ Ym—1 = T = 2122---2Zm—1- The induction hypothesis applied to this identity gives
traces w; j (1 <i<m—1,1<j<n-—1)such that

® Y = Wi Wi2... . Win—1 forevery 1<i<m—1,

® 2 = Wi jWaj... Wy, forevery 1 <j<n-—1,and

. wi’jIwk,l if1§i<k§m—1and1§l<j§n—1.
Altogether we now obtain the following.

® U = YiWip = Wi 1 W2 - .. Win—1W;in for every 1 <i<m—1.

® Up = UWm,n = Wn,1Wm,2 " Wnm,n-1Wm,n

® V= 2jWp,j = Wi jW2j.. Wno1,;Wn,; forevery 1 <j<n—1

® Up = VWm,n = W1,nW2,n " Wm—1,n, Wm,n

Finally we have to verify that w; j Jwg,; if 1 <i <k <mand1l<!<j<n. Forthe case k <m
and j < n this was already stated.

e 1<i<k<m—1land1l <! < n: Since y; I w;, and wy is a factor of y;, it holds w; , I wg ;.

o 1<i<mandl<I<n: Then w;, is a factor of v and wp,; is a factor of u. Since ulv we
have Wi,n Iwm,l.

el <i<mandl <[l <j<mn: Ithodszlwy; Since w;; is a factor of z; it holds
wi,j Iwm,l.

Now we have covered all possibilities. O

2.2 Recognizable trace languages

For an introduction into the field of recognizable trace languages, we refer the reader for instance
to chapter 6 of [DR95]. In this section let M be an arbitrary monoid and let (X, I) be an arbitrary
independence alphabet. An M—automaton is a triple 4 = (Q, h, F) where @ is a finite monoid,
h: M — @ is a monoid morphism, and F C . The M-automaton A recognizes the set
L(A) = h=1(F). A subset L C M is called recognizable if there exists an M-automaton A with
L = L(A). The set of all recognizable subsets of M is denoted by REG(M). Sets in REG(M(X, I))
are called recognizable trace languages. The sets in REG(X*) are exactly the regular languages
over X. If A = (Q,h,F) is an M(X, I)-automaton then h is uniquely determined by the values
h(a) for a € ¥. Thus A is a finite object. The following facts are well-known.

Fact 2.6. The following closure properties hold:
(1) REG(M) is closed under Boolean operations.

(2) REGM(X, 1)) is effectively closed under Boolean operations as well as concatenation, i.e.,
given M(3, I)-automata A and B, M(Z, I)-automata that recognize the sets M(Z, I)\ L(A),
L(A)NL(B), L(A)UL(B), and L(A)L(B), respectively, can be effectively computed from A4
and B.

(3) If L C M(X, I) is finite then L € REG(M(Z, I)).



(4) IfT' C X then {u € M(X,I) | alph(u) CT} € REG(M(X,I)) and an M(X, I)-automaton for
this set can be constructed effectively.

Fact 2.7. The following problem is decidable.
INPUT: An M(Z, I)—automaton (Q, h, F).
QUESTION: L(A) = 0?

Lemma 2.8. ([Dub86]) Let (£4,...,%,) be a clique covering of the dependence alphabet (X, I¢)
and let L; € REG(X}) for every i € {1,...,n}. Then L = {u € M(Z,I) | A, m(u) € L;} €
REGM(X, I)).

Proof. For every i € {1,...,n} let A; = (Q;,hi, F;) be a Xf-automaton with L; = L(A;).
Thus L; = h;*(F;). Let Q = [[;-, Qi and let F = [[I_, F;. Define the monoid morphism
h:M(2,I) — Q by h(u) = (hi(m1(w)), ... , hn(mn(u))) for every u € M(X,I). We claim that the
automaton (Q, h, F') recognizes L. We have u € h=1(F) if and only if (hy (71 (w)), ... , hn(mp(u))) €
[1i-, F: if and only if m;(u) € h; ' (F;) = L; for all i € {1,... ,n} if and only if u € L. O

2.3 Trace Rewriting Systems

We start this section with some definitions concerning abstract reduction systems. In the following
let — be an arbitrary binary relation (for which we use infix notation) on an arbitrary set A. The
inverse relation —~! of — is also denoted by <. For n > 0, the relation =" is inductively defined
by (i) =% = Id4 and (i) "' = »"—. Furthermore we define -=<"= |JI_, =% We call —
terminating if there does not exist an infinite chain a; — a2 — az — --- in A. We call the pair
(a,b) € A x A confluent (with respect to —) if a =* ¢ «* b for some ¢ € A. Let a > 1. We call
the pair (a,b) a—confluent (with respect to —) if a =* ¢ +* b for some ¢ € A. The relation —
is called confluent if a <* ¢ —* b implies a —»* d «* b for some d € A. The relation — is called
locally confluent if a < ¢ — b implies a —* d «+* b for some d € A. Finally, for o, > 1, — is
called (a, B)—confluent if a <= ¢ == b implies a =+=# d +=F b for some d € A. Obviously, if —
is confluent then — is locally confluent and if — is (o, 8)—confluent for some «, 8 > 1 then — is
also locally confluent. A (1, a)—confluent relation will be briefly called a—confluent. A 1-confluent
relation is also called strongly confluent in the literature. It is easy to see that if — is strongly
confluent then — is also confluent ([New43]). Newman’s lemma ([New43]) states that if — is
terminating then — is confluent if and only if — is locally confluent.

Lemma 2.9. If there exists an o > 1 such that — is (@, a)—confluent then — is confluent.

Proof. If — is (o, @)—confluent, then the relation —<¢ is strongly confluent and thus confluent.

Now assume that a <* ¢ —* b. Divide these derivations into subderivations of at most a many
rewrite steps, i.e., @ <<% ... <<% ¢ 5@ | s<ap Gince =% ig confluent it follows a —=%
LoosSedese cSapie,a—"d«*bfor somed € A. O

A trace rewriting system, briefly TRS, over the trace monoid M = M(X, I) is a non—empty finite
subset of M x M. In the rest of this section let R be an arbitrary TRS over an arbitrary trace
monoid M = M(X,I). An element (I,r) € R is also denoted by I — r. The set {I | Ir € M :
(I,7) € R} of all left-hand sides of R is denoted by dom(R). The set {r | A € M : (I,r) € R}
of all right-hand sides of R is denoted by ran(R). Given ¢ = (I,r) € R and s,t € M, we write
s 2. tif s = wlv and t = urv for some u,v € M. We write s = t if there exists a c € R
with s =, t. If I = 0, i.e., M ~ ¥* then R is also called a semi-Thue system over ¥. On the
other hand, if I = (¥ x %)\ Ids, i.e., M ~ N*| then R is also called a vector replacement system.
We say that the TRS R is terminating (confluent, locally confluent, (a,3)-confluent) if —% is
terminating (confluent, locally confluent, (o, 8)—confluent). We say that R is length-reducing if
[I| > |r| for every (I,r) € R. Obviously, if R is length reducing, then R is also terminating. We
say that R is special if ran(R) = {1} and 1 ¢ dom(R). Let CONFL(M) denote the set of all
length-reducing and confluent TRSs over M and for a, 8 > 0 let CONFL(a, 3, M) denote the set
of all (a, 8)—confluent TRSs over M. The topic of this paper is the question whether these sets



are decidable. Trivially, if CONFL(M) is undecidable then confluence is also undecidable for the
class of all terminating TRSs over M. The well-known critical pair lemma for semi—Thue systems
(INB72]) states that a semi-Thue system is locally confluent if and only if a finite set of so called
critical pairs are confluent. These critical pairs result from overlapping left—hand sides and can be
calculated effectively, see the end of Section 2.3.1. Therefore it is decidable whether a terminating
semi—Thue system is locally confluent and thus confluent, see [BO81]. In particular, for every finite
alphabet I', CONFL(T*) is decidable. More precisely, CONFL(I'*) can be decided in time O(n?)
where the length of the input R (a length-reducing semi—Thue system) is > {|I| + || | (I,r) € R},
see [KKMNS85]. In contrast to this result, Narendran and Otto [NO88] have presented a trace
monoid M(T, J) for which CONFL(M(T',J)) is undecidable. This result will be generalized in
Section 3 where we prove that CONFL(M) is decidable if and only if M is a free monoid or a
free commutative monoid. On the other hand, in Section 4 we will prove that CONFL(«, 3, M)
is always decidable. Note that a locally confluent semi—Thue system R is always a—confluent for
some « > 1, which can be computed effectively. For a we can choose any 8 > 1 such that for all
finitely many critical pairs (s1, s2) it holds s; —>752ﬂ s RSP sy for some s. For TRSs this does
not hold anymore, as the following example shows.

Example 2.10. Let M be the trace monoid M = M({a, b, ¢}, {(a, ¢),(c,a)}) and let R = {[ba] —
1,[ab] = 1,[c] = 1}, which is a special TRS. Then for every n > 0:

[¢"b] R+ [bac™b] = [bc"ab] =R [bc")

Of course [c"b] =% [b] <™ [bc"] but there does not exist a k£ < n and a trace u € M such that
[c"b] =% u g+* [bc"]. Thus, for every a > 1, R is not a—confluent. On the other it can be shown
that R is confluent, see Example 2.15.

Lemma 2.9 leads to the question whether there are TRSs that are (@ + 1,a + 1)—confluent but
not (a, a)—confluent. At least for a = 1 this is true as the following example shows. We leave the
general question as an open problem.

Example 2.11. Consider the non-terminating TRS R = {aa — 1,aa = a,1 = aa,1 — 1} over
the free (and free commutative) monoid {a}* ~ N. In the following we denote the word a™ simply
by n. Thus R ={2— 0,2 - 1,0 — 2,0 — 0}. We denote the four rules of R by —2, —1, +2, and
0 respectively. For instance n —_; m if m =n —1 and n > 2. The TRS R is not (1, 1)-confluent
because 2 -+_5 0 and 2 —+_; 1 but we have only 0 =% 2 and 1 —5 3.

On the other hand we claim that R is (2,2)—confluent and thus confluent. Let us abbreviate
—x by —. In order to prove that R is (2, 2)—confluent, it suffices to show that for each situation
k <2 m —? n it holds k =2 m/ <2 n for some m' € N (since 0 € R it suffices to consider the
relation —2 instead of —<2. This is the only purpose of the rule 0. In the following we will always
omit the trivial steps n —q n.). Since k =2 m' <2 n implies k +d —2 m' + d «+2 n + d for every
d € N it suffices to consider finitely many situations k <2 m —2 n, namely one for each choice of
¢1,d1,c2,d2 € {—2,—-1,43,0} in k ;< 4, m —4,—, n Fortunately we can reduce the number
of situations that have to be checked considerably.

First w.l.o.g. ¢1,dy,ca,da # +2, because otherwise we can assume w.l.0.g that d; = +2. Since
k=ca+di+m=ci+2+m>m wehave k 54,c, k+da+co=m+2+ci +da+ co.
Similarly n =42 n+2 =, n+2+c¢1 =m+da + ¢+ 2+ ¢1. Thus, for the further consideration
we can assume that c¢y,dy, co,ds # +2. Furthermore we can assume d; # dz. Finally note that
m —_om—2 —_1 m— 3 implies m > 4, and thus m —-_1 m —1 —_5 m — 3. Thus we can
exclude the case —1 € {¢1,d1} N {ea,d2}. The following situations remain:

e 0 o9+ o+ 4—>_1—_51: It holds 0 — 42 2—_11.
o ) 9 _o¢ 4 —_1—_1 2: It holds 2 —_o 0.
o1l 9+ 3—+_1—+ 90:Ttholds0 —+422—_1 1.

e 1 _ o 3—_1—_1 1: trivial



3 1+ 4> 9> 90: It holds 3 —»_1 2 12« 0.

o1l _ 1+ 2—_50: It holds 0 — 42 2—_11.

2.3.1 A critical pair lemmma

For trace rewriting systems strange phenomena may arise, which cannot occur for ordinary semi—
Thue systems. For instance if there exist two disjoint occurrences of left—hand sides /; and 5 in
a word ¢ then we can first replace the occurrence of I; by the corresponding right—hand side. In
the resulting word, the occurrence of I, still exists and thus may be replaced by the corresponding
right—-hand side. If the two rules are applied in the reverse order, the result will be the same. This
simple fact does not hold for TRSs in general, as the following example shows.

Example 2.12. Let M be the trace monoid from Example 2.10 Consider the TRS R; = {[¢] —
[b], [aa] = 1} over M. In the trace [caa] = [aca] there exist unique disjoint occurrences of [¢] and
[aa]. But [aca] =R, [aba] by an application of the rule [¢] — [b]. In the resulting trace [aba] there
does not exist an occurrence of [aa].

Another example is the one—rule TRS Ro = {[ac] — [b]} over the same trace monoid. In
u = [aacc] there exist four occurrences of the left—hand side [ac]. But via the step [aacc] = r, [abd],
the unique occurrence of [ac| that was disjoint of the replaced occurrence is destroyed.

In this section we present a class of TRSs such that the above phenomenon cannot occur. Let us
introduce the following technical property.

The TRS R satisfies condition (A) if
(A1) forall l > r)eR and alla € X, if aIl then alr and

(A2) for all (lp — r¢), (i = m1) € R and all factorizations lo = pogo, I1 = p1¢1
with p; #1 # q; for i € {0,1}, po I p1, and qo I ¢1 it holds: There exist
factorizations rg = sgtg, r1 = s1t1 such that a I p; implies al s; and a I g;
implies aI't; for all a € ¥, i € {0,1}.

The TRS Ry from Example 2.12 does not satisfy property (Al) for the rule [¢] — [b]: We have
alcbut not alb. Note that Rg satisfies property (A2). The TRS R; from the same example
satisfies (A1) but (A2) is not satisfied. Choose po = [a], g0 = [¢], p1 = [¢], and ¢1 = [a]. Thus
po Ip1 and go I ¢;. But either so = [b] or to = [b]. In the first case we have ¢ I py but ¢ I¢ sg, in the
second case we have algg but aI°ty. On the other hand, the TRS from Example 2.10 satisfies
condition (A). In fact, every special TRS satisfies condition (A). The condition (A) will become
important in Lemma 2.14.

As already mentioned earlier, for a semi—Thue system R it is possible to construct a finite
set of critical pairs, which result from overlapping left—hand sides of R, such that R is locally
confluent if and only if all critical pairs are confluent. In [Die90], the definition of critical pairs
for semi—Thue system was extended to general TRSs such that again a TRS R is locally confluent
if and only if all its critical pairs are confluent. But unfortunately the set of critical pairs of a
TRS is in general infinite. However, since confluence is already undecidable for the class of all
terminating TRSs ([NO88]), this is not a specific feature of the definition proposed in [Die90]) but
an unavoidable restriction. In the next definition we introduce the notions of a critical situation
and the notion of a critical pair for a TRS that satisfies condition (A). This definition slightly
differs from the definition of critical pairs in [Die90]. In particular it is restricted to TRSs that
satisfy condition (A). This restriction is motivated by our intended applications in Section 3 and
5. But again the set of critical situations of a TRS is in general infinite.

Definition 2.13. The set Crit(R) of all critical situations of R is the set of all triples (¢o,t,t1)
such that there exist rules (Ip,79), (I1,71) € R and seven traces p;,q;,w; (i € {0,1}) and s # 1
such that



1) lo = posqo, lh = pr1sq

2) poIp1, qolqi, wolwy, slwowr, woelqop1,w:Ipoq

(1)
(2)
(3) alI¢p; and bI€q_; for all a € min(w;), b € maz(w;) and all ¢ € {0,1}.
(4)

4) t = powop15q1W1g0 = P1W1P0SGoWoq1, to = P1W1ToWoq1, t1 = PoWeT1W1go

We say that this critical situation results from the rules lp — r¢ and Iy — 1. We define the set
CP(R) of critical pairs of R as CP(R) = {(to,t1) | 3t : (to,t,t1) € Crit(R)} and we define the set
CT(R) of critical traces of R as CT(R) = {t | to,t1 : (to,t,t1) € Crit(R)}.

Lemma 2.14. If R satisfies condition (A) then R is locally confluent (a—confluent, respectively)
if and only if all pairs in CP(R) are confluent (a—confluent, respectively).

Proof. Let R satisfies condition (A). Note that (to,t,t1) € Crit(R) implies tg g+ t —x t1. Thus
one direction of the lemma is obvious. Now assume that all pairs in CP(R) are confluent (a—
confluent, respectively). Consider an arbitrary situation tg g t —x t1. We have to show that
the pair (tg, 1) is confluent (a—confluent, respectively). There exist rules (I — 79), (l1 = 1) € R
and traces ug,u1,v9,v1 € M with tg = uworoveg R wolovo = t = u1ljv; =g uirivi. Lemma
2.5 applied to the identity wuglove = u1livy gives traces p;, i, w;,y; (i € {0,1}), and s such that
li = pisqi, po Ip1, qo I q1, wo I wi, sTwowy, wylqgop1, and wiIpoq:, see the following diagram.

UV || W1 | Qo | N
I D1 S q1
U1 Yo | Po | Wo

[uo | lo | vo |

It holds ugrovo = (yoprw1)ro(woqiy1) and uim1v1 = (Yopowo)r1 (wigoey1)- It suffices to prove that
the pair (pywirowoqr, poworiwiqo) is confluent (a—confluent) since this implies that also the pair
(yop1w1)ro(woqiy1), (Yopowo)r1(wigoys)) is confluent (a—confluent).

Let us first consider the case s = 1. Only for this case we will need condition (A). Thus Iy = pogo
and l; = p1g1. We claim that the pair (pyw1rowoqs, poworiwigo) is 1—confluent. First assume that
po = 1. We claim that pywirqweqi —r woriwirg R+ wWoTriwigo. Since lg = pogo = qo this can
be deduced as follows:

PLW1ToWoq1 =  PLwiWoqiTo (since woq1 I go = lp which implies woq1 I 79 by (A1))
=  wWep1q1W1iTo (since wo I wy, wo I p1, and wy I ¢q1)

—R WoT1W1To R WoT1W14Go

Thus, we may assume that pg # 1. Similarly we may assume that also g # 1, p1 # 1, and ¢1 # 1.
But then condition (A2) implies that there exist factorizations ro = soto, r1 = s1t1 such that a I p;
implies a I s; and a I ¢; implies a It; for all a € X. In particular it holds

p11so, wiIso, polsi,wolsi, qulto, wolto, golty, wilty.

Furthermore p; I so implies s1 I sg and ¢y I to implies #; I tg. Thus, we obtain

P1w1ToWoq1 = p1wiSoltowoqr = SoWoep1q1wito =R Sowositiwite =

$1w1 Sotowots R S1W1PogoWols = PowWoS1t1W1go = PoWoT1W1go-

In the following we assume that s # 1. We prove confluence (a—confluence) of the pair
(Yop1wiToWoq1Y1, YoPoWor1wigoy1) by an induction on |wowy|. If aI¢p; for all a € min(w;) and
al¢q,_; for all a € maz(w;) (i € {0,1}) then (prwirowoqi, prwilowoeqs, poworiwige) € Crit(R)
and the pair (prwirowoqi, Powoeriwigo) is confluent (a—confluent, respectively). Note that this
case also includes the induction hypothesis wow; = 1. Thus assume that for instance wg = awyj
(the other cases can be dealt analogously) and a I py. Since wq I sqq it follows aIlg. Since R



satisfies condition (A1) it follows aIry. Thus prwireawyqs = aprwirowyq: and poawjriwigo =
apowjriwige. By the induction hypothesis the pair (piwirow{q:, powyriwige) is confluent (a—
confluent, respectively). Thus the same holds for the pair (apyw;rowjqs, apowyriwigo)- O

Example 2.15. Let us use Lemma 2.14 in order to prove that TRS R = {[ba] — 1,[ab] —
1,[c] = 1} from Example 2.10, where only a and c are independent, is confluent. Since R satisfies
condition (A), Lemma 2.14 can be applied. Let lg = ppsqo and I = p1sq; be left-hand sides of
R, where s # 1, po I p1, qo I ¢1. If we exclude the trivial case lop = s = [; then only the following
two cases may occur.

case 1: lg = [ab], [y = [ba], s = [b], po = [a] = q1, and p1 =1 = qo:

We have to consider all pairs (pyw;wog1, powow1go) = (wiwo[a], [alwew: ), where wg and wy satisfy
the conditions (2) and (3) from Definition 2.13. In particular, s f wow;. Since s = [b] this implies
wo =1 = wy. Thus, we have to consider the pair ([a], [a]) which is trivially confluent.

case 2: lg = [ba], Iy = [ab], s = [a], po = [b] = q1, and py =1 = gp:

We have to consider all pairs (pyw;wogr, powowigo) = (wywo[b], [lwew, ), where wy and w; satisfy
the conditions (2) and (3) from Definition 2.13. In particular s [ wow;. Since s = [a] it follows
wo = [¢™] and wy = [¢"] for some m,n > 0. But we cannot have m > 1 and n > 1 since this would
contradict wo I wy. From wy I pogr and po = [b] = ¢ it follows wy = 1. Thus, for every m > 0 we
have to consider the pair ([¢™b], [bc™]), which is obviously confluent due to the rule [¢] — 1.

2.3.2 Codings between trace rewriting systems

In order to prove prove Theorem 3.12 from Section 3.2 it will be useful to consider mappings o
between TRSs over a trace monoid M’ and TRSs over a second trace monoid M such that R is
confluent if and only if o(R) is confluent. The following lemma gives a condition for ¢ that ensures
this property. Let o : M' — M be a morphism between trace monoids and let R be a TRS over
M'. Define the TRS o(R) over M by o(R) ={o(l) - o(r) | = r) € R}.

Lemma 2.16. Let 0 : M' — M be a morphism between trace monoids and let R be a TRS over
M'. Assume that the following properties hold.

e o is injective.
e o(R) satisfies condition (A) and is terminating.
e If [ € dom(R) and o(s) = uyo(l)uy then u; = o(u)) and us = o(u)) for some uj,u) € M'.
o Ifue CT(c(R)) then u = o(u') for some u' € M'.
Then R is confluent if and only if o(R) is confluent.

Proof. We first prove the following statement.
If o(u') =4(r) v then there exists a v' € M’ such that v = o(v') and v’ = v'. (1)

Let o(u') = upo(l)us and v = uy0(r)us, where (I,7) € R. The third assumption from the lemma
implies that there exist u},u) € M’ such that u; = o(u}) and us = o(uh). Thus o(u') = o(u)lul),
which implies u' = w}lu), since o is injective. Therefore u’' - u)jru), and o(uirul) = uio(r)us =
v.

Now assume that o(R) is confluent and let v’ —% u} and v’ —% u). Since ¢ is a monoid
morphism it follows o(u') —(R) o(u}) and o(u') —5(R) o(uh). Since o(R) is confluent there
exists an v € M such that o(u}) —5r) v and o(uy) —5(r) V- An inductive extension of (1) yield
vi,vy € M’ such that v = o(v]), uj =% v] and v = o(vj), uhb =% v4. Since ¢ is injective, it
follows v{ = v} Thus, R is confluent.

Finally, assume that R is confluent. Since o(R) is terminating it suffices to prove that ¢(R)
is locally confluent. Let (u1,u,us) € Crit(c(R)) be arbitrary. Since o(R) satisfies condition (A)
it suffices by Lemma 2.14 to show that the pair (uj,us) is confluent with respect to o(R). By
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the fourth assumption from the lemma, v = o(u') for some v’ € M'. Thus o(u') =4(x) u1 and
o(u') =,(r) uz- By (1) there exist uj,uy € M' such that uy = o(u}), us = o(uy) and v’ =% uj,
u’ =% uh. Confluence of R implies that there exists a v’ € M' such that u; =% v’ and uy =% v/,
which implies u1 = o(uf) —o(R) o(v') and ug = o(ub) —o(R) o(v"). Thus, o(R) is confluent. O

For a finite alphabet ¥ and two words s1, s2 € ¥* we say that a word ¢t € ¥* is an overlapping of
the words s; and s either (i) ¢t = s; = us;_;v for some u,v € X* and i € {0,1} or t = s;u = vs;_;
and |s;| > |v| for some i € {0,1}, u,v € ¥, see the following diagrams:

S;i v | S1—4

u|81—z'|v Szlu

Usually in formal language theory a large finite alphabet {b,...,b,} is encoded into the two—
element alphabet {b;,b2} via the morphism ¢ defined by b; — bibi for i € {1,... ,n}. This is an
injective morphism from {by,...,b,}* to {b1,ba}* Four our purpose this coding is not suitable
since the third condition of the previous lemma is not always satisfied. For instance if j > ¢ then
#(b;) = ¢(b;)b3 ™" but of course b} " is not in the range of . What is needed is a coding which
does not generate new overlappings between left—hand sides. In the next lemma, such a coding
for free monoids is presented. In order to use it later also for non—free monoids, we include some
additional symbols aq, ... ,a, which are mapped to itself.

Lemma 2.17. Letm > 0,n > 2andlet ¥ = {a1,... ,am,b1,... byt and T = {aq,... ,am,, b1, b2}.
Define the morphism ¢ : ¥* — I'* by

#(a;) = a; fori € {1,... ,m} and ¢(b;) = bibobi b7~ 2 for i € {1,... ,n}.
Then it holds
o if #(s) =s19(l)sy and I # 1 then 51 = @(s}) and s2 = ¢(s}) for some si, sy € T* and
o if §(l1) = s15 and ¢(l2) = ssa then s;1550 = ¢(s') for some s’ € T*

Proof. Assume that ¢(s) = s1¢(l)se and [ # 1. First we prove that s; = ¢(s}) for some s} € T*.
Choose the factorization s; = ¢(u)t with v maximal (which exists since s; = ¢(1)s1). Thus
d(s) = ¢(u)td(l)ss which implies tp(l)s2 = ¢(v) for some v € L. We claim that ¢ = 1 which
implies s1 = ¢(u). Assume that t #1. If v = a;--- for some i € {1,...,m} then t = a;--- which
can be excluded due to the maximality of w. Thus v = b;--- for some i € {1,...n}. Therefore
td(1)s = bibebi b2 =2 ... and t must be a proper prefix of bybab b7 ~"+2. The cases t = by and
t = bybybit1b] for 0 < j < n—i+2 can be excluded since this would imply that ¢(I) = by --- (note
that I # 1 and thus also ¢(1) # 1) which is not possible. The case t = bybyb? for 0 < j <i—1 can
be excluded since otherwise ¢(I) = b1bs ---. Finally the remaining case t = b1bobi is impossible
since otherwise ¢(I) = b1babs .. ..

Now we prove that sy = ¢(sh) for some s, € X*. Choose the factorization sy = t¢(u) with
u maximal. Thus ¢(s) = s1¢(I)t¢(u) which implies s1¢(I)t = ¢(v) for some v € . We claim

that ¢ = 1 which implies so = ¢(u). Assume that ¢t # 1. If v = ---a; for some i € {1,... ,m}
then ¢t = ---a; which contradicts the maximality of u. Thus v = ...b; for some ¢ € {1,...n}.
Therefore s19(1)t = ---b1b2bi+1b;’_i+2 and t must be a proper suffix of blbzb’ﬁlb;’_i“. The
cases t = bobiT1bit and t = bIbit! for 0 < j < i can be excluded since this would imply that
#(1) = --- by which is not possible. If t = biT1bi*! then ¢(I) = ---biby which is also not possible.
Finally we can exclude the cases ¢t = b for 1 < j < n —i+ 1, since otherwise ¢(I) = ... by bobit1b%

wherei +14+k <n+3.

Now we prove the second claim of the lemma. Assume that sys = ¢(I;) and ssp = ¢(l3). The
case s = 1 is clear, thus assume that s # 1. If we can show that s = ¢(s') for some s’ € T*,
ie., s10(s") = ¢(l1) and ¢(s')sa = ¢(l2), then the first statement of the lemma and s # 1 imply
s1 = ¢(s]) and sy = ¢(sy) for some si,s), € ¥* and thus t = ¢(s]P(s")P(sh) = P(s}s'sh). Now
s = ¢(s') for some s' € T* can be proven as follows. Choose the factorization s = ¢(u)v with
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u maximal. Thus ssy = ¢(u)vsys = ¢(l2) and vss = @(w) for some w € ¥*. We claim that
v = 1. Assume that v # 1 and thus also w # 1. If w = a;--- for some i € {1,...,m} then

v = a;--- which contradicts the maximality of u. Thus w = b;... for some i € {1,...,n} and
vsy = bibab BN 2 . Hence v must be a proper prefix of bybobit b7~ 2. But this cannot be
the case since v is a suffix of ¢(l1) = s15 = s10(u)v. O

The lemma says that overlappings of two words of the following kind (where each square represents
a word ¢(z) with z € ¥ are not possible.

[ | HENEEEE

Thus each overlapping between two words ¢(s1) and ¢(s2), where s; # 1 # 2 results from an
overlapping of s; and s5. Note that if m = 0 in the previous lemma and R is a length-reducing
semi-Thue system then also ¢(R) is length-reducing, because ¢ satisfies |¢(b;)| = n + 5 for all
ie{l,...,n}.

3 Undecidability of confluence for length-reducing TRS

In this section we will prove that CONFL(M) is decidable if and only if M is free or free com-
mutative, which generalizes a result of [NO88]. For this it will be useful to study also the
set CONFLy(M) that consist of all R € CONFL(M) such that 1 ¢ ran(R). Trivially, if
CONFLy (M) is undecidable then CONFL(M) is also undecidable. Our proof will proceed in
two steps. In a first step (Section 3.1) we will prove the undecidability CONFLx, (M(X,I)) for
the two smallest independence alphabets (I',J) that do not result in a free or free commuta-
tive monoid. In a second step (Section 3.2) we show that CONFL,i(M(X,I)) is undecidable if
CONFL (M(T, J)) is undecidable for some induced subgraph (T, J) of (3, I).

3.1 Independence alphabets with three vertices

If (¥,I) is an independence alphabet with |X| = 2 then M = M(X, I) is either isomorphic to the
free monoid {a,b}* or isomorphic to the free commutative monoid N*> = {a}* x {b}*. In both
cases CONFL(M) is decidable. If |¥| = 3 then there exist up to isomorphism two cases, where M
is neither free nor free commutative. The first case arises from the independence alphabet

and will be considered in Section 3.1.1. The corresponding trace monoid M is isomorphic to
{a,b}* x {c}*. The second case arises from the independence alphabet

————eo o

and will be considered in Section 3.1.2. In the corresponding trace monoid M, exactly two letters
are allowed to commute. In both cases we will prove that CONFL; (M) (and thus CONFL(M))
is undecidable.

3.1.1 Thecasea—c—b

In this section we prove that CONFL({c}* x {a,b}*) is undecidable. In a first step we prove that
CONFL({c}* x T'*) is undecidable for some alphabet I' that contains more then two letters. The
result for {c}* x {a,b}* follows by a simple coding. A trace ¢t € £} x X3 will be also denoted by
(M) where t()) € B, The proof of the following lemma is very easy and is left to the reader.

Lemma 3.1. A TRS R over X} x ¥} satisfies condition (A) if for every (I,r) € R and every
i€{1,2},if ) =1 then r() = 1.
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Lemma 3.2. Let R be a TRS over the direct product i x X3 of free monoids. Then for every
(to,t,t1) € Crit(R) there exist rules (lp,79), (I1,71) € R such that for both ¢ =1 and ¢ = 2 one of
the two following three cases holds and furthermore for either s = 1 or ¢ = 2 the second or third
case holds:

(1) l((]i) #1# ly) and t() = ly)slﬂj, t;i) = ry)sl@j, tgilj = ly)srﬂj for some j € {0,1},
w e X}

(2) t® = lg.i) = ulﬂjv, t;i) = rg-i), tgilj = urﬂjv for some u,v € £} and j € {0,1}
(3) t) = l;i)u = vlgilj, t;i) = rg.i)u, t@j = vrﬂj, and |l§-i)| > |v| for some j € {0,1}, u,v € X}
Note that in the second and third case ¢() is an overlapping of lgi) and lgi). In the first case we

say that t( is disjointly generated by lgi) and lgi), see the following picture, where we omitted the
superscript (7):

(G v Th]

Proof. Let (tg,t,t1) € Crit(R). By Definition 2.13 there exist rules (lo,70), (l1,71) € R and pairs
Pi» 4i, Wi, s € X7 x X3 with t = prwilowoqi = powoliw1qo, tj = p1-jwi—jrjwiqi—; (j € {0,1}) and

b lj = P;jsqj fOI‘j € {071}7 s 7é (171)7
® polp1, qolqr, wolwy, sITwowr, wolqopr, w:iIpoq
e pj Twj or ¢i_j Iw; implies w; =1 for j € {0,1}.

We can separate the following cases.
case 1: s # 1 # s then sTwow; implies wy = w; = (1,1), i.e. t = pilogi = poliqo,
tj =p1jrjqj; for j € {0,1}. Let i € {1,2}. Then t() = pgi)l(()i)qgi) = p((]i)lgi)q((]i). Furthermore
po I p1 implies py) =1 for some j € {0,1}. Similarly q](-i) =1 for some j € {0,1}. In each case,
() is an overlapping of l(()i) and IY).
case 2: s =1 and sV # 1 (the case s() =1, s?) # 1 is symmetrically). Since s wow; it

(1) (1)
0 1

follows wy’ =1 and w}”’ = 1. As in case 1, it follows that ¢(!) is an overlapping of l(()l) and l§1).

) contradicts wo ] w; we may assume w.l.o.g. that w; = (1,1)

Furthermore, since w((]2) #1# w§2
(the case wg = (1,1) is symmetric). If also wg = (1,1) then also ¢(?) is an overlapping of léz) and
l§2) (see the first case). Hence, assume that w(()2) # 1. Thus neither pg I wg nor g; I wg (because
for instance po I wog would imply wo = 1). It follows p(()2) #1# q§2). Hence p1 Ips and ¢1 I g2

imply p§2) =1= q(()Z). Now we have

§2) = 2,22 (2 (2),D2) _ (2, D) (2) _y(2),, ()2

with l((,z) = p((f) #1# qu) = l?’. Thus also ¢ is disjointly generated by l((f) and l?’. O

In the following let M = (@, X,0, 4, go, g7) be a universal deterministic one-tape Turing ma-
chine, where @ is the finite set of states, ¥ is the tape alphabet with QNYX = @, O € X is the blank
symbol, 0 : Q\{gr} x¥ — @ x X x {L, R} is the total transition function, go is the initial state and
gr # qo is the final state. Since M is universal, the problem whether M halts on a given input
w € (X\{O})™" is undecidable. Note that M terminates if and only if it reaches the final state
gr- Let T =QUXU{0,>,<, A4, B,$}, where 0,>,9, 4, B,$ ¢ QU X. Given a word w € (E\{O})™,
we define a TRS R,, over {C'}* x I'* by the rules of Figure 1. Note that R,, is length-reducing
and that all right-hand sides are non empty. Since we excluded the case w = 1, we do not have
to consider the pair (1,>¢q <$$) in the last group of rules. The corresponding rule would have the
form (1,0q<$8%) — (1,>¢'Oa’<) if 6(¢,0) = (¢', a’, L) which is not length-reducing. Let R be the
system that consists of the rules (1a) to (1c) and let R aq be the system that consists of the rules
(4a), (4b) and (5a) to (5e).
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Rules for the absorbing symbol 0: Rules for deleting non well-formed words:

(la) (1,20) = (1,0) forz € T (2a) (1,«y) — (1,0) for y € T\{$}
(1b) (1,0z) - (1,0) forz € T (2b) (1,<8y) — (1,0) for y € I'\{$}
(Ic) (C,0) »> (1,0)forz €T (2¢) (1,zp) —» (1,0) forz €T
Main rules: Let n = |w| + 2 Rules for shifting $-symbols to the left:
(3a) (C,>A™) — (1,>pgow<) (4a) (1,a0%%) = (1,a80) fora € £, g € EU {«}
(3b) (C,B) — (1,0) (4b) (1,a$38%) — (1,a$8p) fora € ¥, B € X U {«}

Rules for simulating M: Let a,a’,b € X, and ¢ € Q\{qr}, p € Q.
(5a) (1,¢<88) = (1,a'pq) if 6(¢,0) = (p,a’, R)

(5b) (1,bq 1 88) — (1,pba'<) if 4(¢,0) = (p,a’, L)
(5¢) (1,qa8$$) — (L,a'p)  if 4(g,a) = (p,a’, R)
(5d) (1,bqa$8) — (1,pba’) if 6(q,a) = (p,a’, L)
(5¢) (1,>qa$$) — (1,0p0d’) if 6(g,a) = (p,a’, L)

Figure 1: The TRS R,

Lemma 3.3. R, is confluent if and only if M does not terminate on input w.

Proof. The following proof is a variant of the one presented in [NOS8§]. First assume that M
terminates on input w. Then there exists an m > 1 such that

(1,>gow < $™B) —)%M (1,bugra1$%a2$” . .. ai—1$%a;$% < $¥ B) = (1, 1),

where u € ¥*,1 > 0,a1,... ,a; € ¥ and k > 2. Since M cannot move from the final state gy, the
pair (1,%) is irreducible. Thus we obtain

(1,t) <1 (1,>q0w <$™B) @3a)& (C,>A"S$™B) —3p) (1,0A"870) —{y,, (1,0).

Since the left—most pair and right—most pair are both irreducible, it follows that R, is not con-
fluent.

Now assume that M does not terminate on input w. By Lemma 3.1, R,, satisfies condition
(A). Thus, we can apply Lemma 2.14 in order to prove that R, is confluent. We have to consider
all (t1,t,t2) € Crit(R,). By Lemma 3.2 the following cases may occur.

(1) Note that all critical situations of the form (vC,r) .+ (CvC,l) —. (Cv,r), where ¢ =
((C,1) = (1,7)) € Ry and v € {C}* are trivially confluent since vC = Cwv.

(2) Note that if (s,s10s2) =R, (s',t') then also t' = s]0s) for some s},s) € I'*. Since every
pair of the form (s, s10s2) can be reduced to (1, 0), this shows that all critical situations that
result from one of the rules (1) to (1c) and any other rule are confluent.

(3) Also the situations (1,0) (24)¢ (1,<>) —2¢) (1,0) and (1,0) (a5 (1,<$>) —(2c) (1, <0) are
trivially confluent.

(4) Let ¢ = ((l,yl') = (r,7")) € Ry with y € T\{$}. Then (1,00') (20)¢ (I, <yl") = (r,<r') is
a critical situation. Since r' must be of the from zr" for some z € I'\{$} and r"" € T, we
obtain (r,<zr") —(24) (r,0r") =%, (1,0) Ro+" (I,00). Critical situations that arise from
(2b) and any other rule can be dealt similarly.

(5) Let ¢ = ((I,I'z) — (r,7")) € Ruw, where z € T. Then (1,1'0) (20« (I,l'z>) =, (r,7'>) is a
critical situation which can be dealt analogously to the previous case.
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(6) (C,04") (a0)¢ (Crz > A™) —(34) (1,7 > gow<):
We obtain (1, > gow<) —ac) (1,0g0w<) =%, (1,0) go¢" (C,0A").
(7) (1,0qa88) (2cy¢ (1,7 > qa$8$) —(s5¢) (1,z>¢'Oa’):

We obtain (1,z > ¢'Oa’) — (2 (1,0¢'0a’) =%, (1,0) », <" (1,0ga$$). Now we have
considered all critical situations that can result from one of the rules (2a) to (2c) and any
other rule.

(8) (1,pgow <v > A") (30)¢ (C,pAMw > A™) —(34) (1,>A™v > gow<) for an arbitrary v € I'*:

Since in both pairs, the second component contains a factor of the form x>, we can apply
rule (2c¢) to both pairs. After this, both pairs can be reduced to (1,0) with the rules (1a) to

(1c).
(9) (1, Buv gow<) (30)¢ (C,Bu > A™) =33 (1,0v> A™) for an arbitrary v € T'*:

In the left pair, a factor of the form z> appears in the second component. Thus, we can
apply rule (2c¢) and we can reduce both pairs to (1,0) with the rules (1a) to (1c).

(10) (1,pqow <wB) (30)¢ (C,>A™vB) = () (1,0A™00) for an arbitrary v € T'*:

This is the main case and will be considered later.

(11) (1,00B) (3¢ (C, BuB) =35 (1, Bv0) for an arbitrary v € I'*: Both pairs can be reduced
to (1,0).

These are all critical situations that can arise. Note that since M is deterministic, the rules (5a)
to (5e) do not produce any critical situations. Thus, it remains to consider the critical situation

(1,l>q0’LU <1’UB) (3a)€— (C, DA"UB) —(3b) (l,DAnUO)

for an arbitrary v € T*. Of course, the right pair can be reduced to (1,0). The truth of the

following claim proves the truth of our first claim.

Claim: If M does not terminate on input w then (1,>gow <vB) =% (1,0) for every v € I'™*.
First consider the case v = $™ for m > 0. We obtain

(1,pq0w < $™B) =% (1,puqa;$*'a28** ... a;_1$%-1q;$* < §*'+1 B),
where u € ¥*,¢€Q,1>0,a1,...,a; € X, and ay,... ,q41 € {0,1}. Thus,

(1,>uqa1$1ax8% . .. a;1 8% a8 <§% 1 B) —(24),(20)}
(1, >uqa1$a1a2$a2 ceaQp—q $a’—1al$a’0) _>>(k1a) (1, 0)

Now assume v = $™yv', where m > 0,y € T'\{$} and v’ € T'*. Similarly to the derivation above,
we obtain

(1,pgow < $™xv'B) =% . (1,>uqa:1$8% ax$% ... a;_1$%'~1 ;8% <« $¥+1yv'B),
where u € ¥*, g€ Q,1>0,a1,...,a; € X, and ay,... ,a;41 € {0,1}. Since y € T'\{$} we obtain

(1,puqa: 8% as8°? ... a1—18* "1 @8 < 8%+ 1 yv'B) —((24),(20)}
(1,pugai8%a28%* ... a1—18% 1@ 0v' B) —=7(14) (153 (1,0),

which concludes the proof. O

From the previous lemma it follows that CONFL.({C}* x I'*) is undecidable. The following
lemma strengthens this result.

Lemma 3.4. CONFL4 ({c}* x {a,b}*) is undecidable.
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Proof. Consider the TRS R,, from the previous proof. We will use the coding ¢ from Lemma
2.17, where m = 1, a; = C, and {b1,...,b,} = I The morphism ¢ induces a morphism
o: {C} xTI'* = {C}* x {b1,b2}* in the obvious way. But note that the fourth condition of
Lemma 2.16 is not satisfied for the TRS o(R,,). For instance (C, ¢(B)s¢(B)) € CT(c(Ry)) but
if s does not belong to the range of o then the same holds for the pair (C, ¢(B)s¢(B)). We solve
this problem by adding some rules to o(R,). Let P, be the TRS o(R,) plus the following rules
(note that each word ¢(z) for z € T has the length n + 5):

(

(6a) (1,24(0)) — (1,¢(0)) for = € {by, b2}

6b) (1,¢(0)z) — (1,¢(0)

6c) (1,z¢(>)) — (1,4(0

6d) (1,¢(<)s) = (1,(0)) for all s € {by,b2}"+>\{¢(z) | = € T’}
6e) (1,¢(<8)s) — (1,¢(0)) for all s € {by,b2}"+*\{¢(z) | = € T’}

Then P, is a length-reducing TRS with 1 ¢ ran(P,,) that satisfies condition (A). The following
claim proves the Lemma:
Claim: P, is confluent if and only if M does not terminate on input w.

First assume that P, is confluent. Assume that M terminates on input x. Then for some
m>1

P e

(1, l>uqfa1$2a2$2 . al,1$2al$2 N $kB) Rw(—+ (C, DAn$mB) —);Ew (1, 0)
Application of the morphism o gives
(1, p(>ugrai$®a:$” ... a1—1$°a;$> < $*B)) p T (C,p(>A"$™B)) =% (1,9(0)).

It is easy to see that the left and right pair in this derivation are irreducible with respect to Py,.
Thus P,, is not confluent which is a contradiction.

Now assume that M does not terminate on input w. By Lemma 3.3, R, is confluent. It
suffices to consider an arbitrary (t1,t,t2) € Crit(Py). The case that (t1,t,t2) results from two
rules of P, \o(Ry) is clear, because in this case t; and t2 both contain the factor ¢(0). Thus ¢;
and t2 can both be reduced to ¢(0) with rule (6a), (6b), and o(1c).

Next assume that (t1,t,t2) results from a rule ¢ € Py, \o0(Ry) and a rule from o(R,,). Let
us consider the case that ¢ is the rule (6d) (the other cases can be considered similarly). Let
(z,9(l)) = (1,¢(r)) be a rule in o(R,,), where z € {C,1}. Thus ¢t must be of the form (z,t'),
where t' is an overlapping of ¢(I) and ¢(<)s, where |s| =n + 5 and s € {¢(x) | z € T'}. The case
t' = ¢(l) can be excluded since this would imply that the word s is of the form ¢(z) for some
x € T, see the following diagram, where | = ¢ < $$ is the left—hand side of rule (5a):

o) | s
[ 9(@) [9(«) [ 9(5) | 4(8) |

Because of Lemma 2.17 the only possible overlapping of ¢(<)s and ¢(l) is of the form ¢(<)up(l)
where s = uv, ¢(l) = vl’, and u # 1 # v, see the following diagram:

70
(6@ [u]v] v ]

L)

Thus ¢t = (7, ¢(Que(l)) = (z,¢(9)sl'), t1 = (1,¢(<)ug(r)), and t» = (1,¢(0)I'). Thus t» =7,
(1,¢(0)). We claim that the prefix of ug(r) of length n + 5 (which exists) does not belong to
{#(z) | z € T'}, which implies ¢t; = (1, p(<)udp(r)) —(6d)(6) (1, ¢(0)). But this is clear, because
otherwise we would obtain an overlapping between ¢(r) and some ¢(z) for z € T" of the following
kind, where r = yr', y € T':
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ul ély) [o0") |
9(z)

Finally assume that (¢1,t,%2) results from two rules in o(R,,). The critical situations of this type
precisely correspond to the critical situations of R,, that we have considered in the cases (1) to
(10) in the proof of Lemma 3.3. Apart from cases that correspond to the cases (7) to (10) it holds
t = o0(s), t1 = o(s1), ta = o(s2) for some s,t; and t2, which follows from Lemma 2.17. Since
Ry is confluent it follows s; —% u (i € {1,2}) for some u and therefore o(s;) —%_ o(u) Thus
it remains to consider the four cases that correspond to cases (7) to (10) in the proof of Lemma
3.3. The cases (7) to (9) can be dealt analogously to the corresponding cases from the proof of
Lemma 3.3 using the new rules (6a), (6b), and (6¢). Thus it remains to consider the critical pair
(t1,t2) = ((1, p(>pgow<)vp(B)), (1,0(>A™)vé(0))). where v € {b1,b2}*. The case v = ¢(v') for
some v' € T is clear since in this case t; and t; belong to the range of . Thus assume that
v = ¢(v')s for some v' € I'* and some s € {b1,b2}T, where s can be assumed to have no prefix
of the form ¢(z) for some z € I'. The pair (1,0(>A™)v$(0)) can be reduced to (1,¢(0)) with the
rule (6a). We have to show that also (1, (>gow<)vd(B)) —p, (1,¢(0)) holds. If v' = §™yv" for
some m > 0,y # $ and v € I'* we can again use the arguments from case 2 from the end of the
proof of Lemma 3.3. Thus assume that v’ = $™ for some m > 0, i.e., v = #($)™s. We obtain

(1,6(bqow <$™)s5¢(B)) =5, (1, p(Pugar§* a8 ... a11$% -1 @3 < §%1+1)s¢(B)),

where u € ¥*, ¢ € Q,1 >0, a,... ,q; € I, and a1,... ,oq41 € {0,1}. Since s # 1 is not of the
form ¢(z)s' for some z € T and some s’ € T*, the prefix of s¢(B) of length n + 5 does not belong
to {¢(z) | z € T'}. Hence we can apply either rule (6d) or rule (6e). The resulting pair can be
reduced to (1, ¢(0)) with the rules (1¢), (6a), and (6b). O

Note that the system P,, is not not length—increasing in both components, i.e., for all (I1,12) —
(ri,72) € Puw, [l1] > |r1] and |la| > |r2|. Together with Corollary 5.1 of Section 4 this gives a very
sharp borderline between decidability and undecidability for the case of a direct product of free
monoids.

3.1.2 Thecasea—c b

In this section we will consider trace monoids of the following form.

Definition 3.5. Define the independence alphabet (X,,I,) by ({a,¢,b1,...,b,},{(a,¢),(c,a)}),
where n > 1. Let M,, = M(X,,I,).

The aim of this section is to show that CONFL; (M) is undecidable. This result will be proven
in three steps. In a first step we will show that there exists an n > 2 such that (a stricter version
of) CONFL,(M,,) is undecidable (Lemma 3.7). In a second step the generators b1, ... , b, of M,
will be encoded into two generators b; and by (Lemma 3.8), which proves the undecidability of
CONFLy(Ms). In a last step we show how to encode the two generators by and by into a single
generator b; with the help of the two commuting letters a and ¢ (Lemma 3.9). This two-step
encoding makes the proof easier to follow. In order to make these codings possible we have to
start in Lemma 3.7 with a stricter version of CONFL;(My). In both coding-steps we use Lemma
2.16 together with the next lemma that applies to traces which satisfy the following condition (B).

A TRS R over M, (n > 1) satisfies condition (B) if for every | € dom(R) it holds
{b1,... by} N alph(l) # 0.

Obviously, a TRS R that satisfies condition (B) also satisfies condition (A), since for ly,ly €
dom(R) their cannot exist factorizations Iy = p1¢1, l2 = p2ge with p; # 1 # g; for i € {1,2} and
p1Ip2, g1 I gz (since either p; or ¢; contains a letter from {by,... ,b,}).
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Lemma 3.6. Let R be a TRS over M, for some n > 0 that satisfies condition (B). If (¢1,%,t2) €
Crit(R) then there exist rules (I1 — r1), (I = 72) € R such that one of the following six cases
holds, where in each case s # 1, a, 3,7,6 > 0, {z,z2} = {y,y} = {a,c}, and p1,p2,q1,92 € M.

1) I; =z%sy7,ly = gﬂsg‘;, and t = zﬁwasy”'g‘s = w“gﬁsgégﬂ, t) = gﬁr1g6, ta = z%r2y”
2) Iy = 2%s,ly = 2°sq2, and t = 2Pz%sqs = 2°2Psqe, t1 = 2Pr1ga, b2 = 27y
3) Iy = sz%,ly = pasz?, and t = pasz®2® = pasaPr®, t1 = par12P, ty = roz®

1)
2)
3)
4) kL
(5)
(6)

5q1,lo = pos, and t = pasqy, t1 = pari, ta = Taqy

5) Iy = 8,1y = pasqe, and t = ls = paliqa, t1 = pariqe, t2 = 1o

6) l1 = p12°,l> = 2%, and t = p12°2Pq> = p12P2°ga, t1 = r12Pqs, ta = p1aPrs
Note that the cases (4) and (6) are not exclusive.

Proof. Let (t1,t,t2) € Crit(R). Thus, there exist rules (I; — r1), (I = 73) € R such that
t = ppwrliwiga = prwilbwaqr, t1 = pawariwiga, ta = prwirswaqi,

and

li =pi1sqi, la =p2sqa, s#1, p1Ip2, qilqz, wilwz, slwiws, wilqps, walpige

We separate the following cases.

case 1: wy =1 =ws: Thus ¢ = paliga = p1laqi, t1 = par1ge, t2 = pir2q1-

case 1.1: p; # 1 # py: Since py I, p2, p1 = z* and py = 2P for some a, 3 > 0.

case 1.1.1: q; # 1 # ¢o: Thus, ¢; =y and ¢ = y° for some 7,8 > 0 and we obtain type (1).
case 1.1.2: ¢ = 1: We obtain type (2). The case g» = 1 is symmetric.

case 1.2: p; =1 (the case p2 = 1 will be symmetric).

case 1.2.1: g1 # 1 # g2: We obtain type (3).

case 1.2.2: go = 1: We obtain type (4).

case 1.2.3: ¢; = 1: We obtain type (5).

case 2: wy # 1: Since s # 1 and sIw; it follows s = 2, w; = z” for some a, 8 > 0. But sw;Jw,
then implies wy = 1. Finally, we claim that also p» = ¢ = 1. Assume ps # 1. Since wiIps
and wy = 2P it follows p2 = z7 for some v > 0. Thus, lo = pasqa = x72%¢2. Since l» must
contain a letter from {b1,... ,b,} it follows ga # 1. Similarly either p; or ¢ must contain a letter
from {b1,...,bn}. But the first alternative contradicts p;Ip, # 1, whereas the second alternative
contradicts g1 Ig2 # 1. Analogously, we can show that ¢; = 1. We obtain type (6). The case
we # 1 is symmetric. O

Lemma 3.7. There exists an n > 1 such that the following problem is undecidable.

INPUT: A length-reducing TRS R over M,, that satisfies condition (B) such that for all (I — r) €
R it holds max(l) C {a,c} and r # 1.

QUESTION: Is R confluent ?

Proof. Let M be the same Turing machine that we used in the proof of Lemma 3.3. Let (X, I,,) =
(QuxuU{0,r,«,A,B,C,$},{(8,B),(B,$)}). Given a word w € (£\{O})*, we define a TRS R,,
over M, by the rules of Figure 2, where the value w > 2 will be specified later. Note that R,, is
length-reducing and that all right—hand sides are non empty. Since we excluded the case w =1,
we do not have to consider the trace ¢ < $$ in the last group of rules. Note that R, satisfies the
additional conditions required in the lemma. Let R aq be the system that consists of the rules (4)
and (5a) to (5e).

Claim: R, is confluent if and only if M does not terminate on input w.
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Rules for the absorbing symbol 0: Rules for deleting non well-formed words:

(1) z0% — 0% for z € X, (2) <$*C$ — 08 for k € {0,... ,w —1}

Main rules: Let n = |w| + 3. Rules for shifting $-symbols to the left:
(3a) A"B — pgow< (4) a$*B$% — a$*t13 for k € {0,... ,w — 1},
(3b) BC$ — 08 a€ X, and g € ZU{«}

Rules for simulating M: Let o' € ¥\{0O}, a,b € ¥, and ¢ € Q\{qs}, p € Q.
(5a) ¢<8“ = pg'a if 6(¢,0) = (p,a’, R)
(5b) bg < $¥ — pba'« if 6(¢,0) = (p,a’, L)
(5¢) qa%$¥ — a'p if 6(¢g,a) = (p,a’, R)
(5d) bga$¥ — pba' if 6(q,a) = (p,a’, L)
(5¢) >qa$¥ — >pOa’ if §(q,a) = (p,a’, L)

Figure 2: The TRS R4,

First assume that M terminates on input w. Then there exists an m > 0 such that
>gow < $™C$ —>7J5M pugra1$”as$” ... a;—18“a;$” « $*C$ =/,

where u € ¥*,1 > 0,a1,... ,a4; € ¥ and k¥ > w. Since M cannot move out of the final state gy, the
trace v’ is irreducible. Thus, we obtain

' gt pgow < $™C$ (30) A"B$™CS$ = A"$™BCS$ —(3b) A"$™0$ —)?i) 0$.

Since the left— and right—most trace are both irreducible it follows that R, is not confluent.

Now assume that M does not terminate on input w. In order to prove that R, is confluent,
we can apply Lemma 2.14 since R,, satisfies condition (B) and hence also condition (A). Thus, we
have to consider all critical situations (t1,t,t2) € Crit(R). By Lemma 3.6, t, t;, and t2 have one
of the six forms, enumerated in Lemma 3.6. There are only the following three cases (note that
since M is deterministic, the rules in group (5) do not produce any critical situations).

e BO0$ (1)< B$0$ = $B0S — (1) $0§ is a critical situation of type (2) following the enumeration
in Lemma 3.6. But the left and right trace can both be reduced to 0$.

o Let {z,y} ={B,8}and ¢ = (I'z = r) € R (all rules of R, are of this form). Then for every
m >0,

I'y™08$ (1) U'y™x08 = l'zy™ 08 —. ry™0$

is a critical situation, where I'y™x0 is of type (6) following the enumeration in Lemma 3.6.
But the left and right trace can both be reduced to 0$ with rule (1).

e The last type of critical situation arises from the two main rules (3a) and (3b), namely
pgow 4$MC§ (3¢ A"BS"CS = A"$"BCS — (3, A"$™08,

where m > 0 is arbitrary. Again A"B$™C is of type (6). The right trace can be reduced to
0$. Furthermore since M does not halt on input w, for every m > 0 it holds

pgow < $MCE =% puqui§Tva§*? . v §M 1§ < §U 1O,
whereu € £*, ¢ € Q,1 >0, v1,...,u € ¥, and aq,... ,a;41 € {0,... ,w —1}. Thus,

puqui§*t w82 L v 1 §M 1§ < §UHCF = (9) puqu §M 0§ L v §M 1§08 —>2‘1) 0$.
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O

The undecidability of CONFL(M>) is also stated in [Ber96]. The following lemma is a strength-
ening of this result.

Lemma 3.8. The following problem is undecidable.

INPUT: A length-reducing TRS R over M, that satisfies condition (B) such that for all (I — r) €
R it holds maz(l) C {a,c} and r # 1.

QUESTION: Is R confluent ?

Proof. In this (and the next) proof it is important to distinguish traces from words. Thus, all traces
are written in the form [s] for a word s. Let n be the number whose existence is stated in Lemma
3.7. Let ¢ : ¥ — X% be the injective morphism from Lemma 2.17 where {a1, ... ,an} = {a,c},
ie.,

dla) =a, ¢(c)=c, B(b;)=DbibabiT by "2 fori e {1,...,n}.

Obviously ¢ defines a trace morphism o : M, = Ms by o([s]) = [¢(s)]. In the followinglet R = R,,
be a TRS from the proof of Lemma 3.7. Then o(R) satisfies also condition (B) and furthermore
for every (I — r) € R it holds maz(l) C {a,c} and r # 1. Furthermore if we choose the value w > 2
in the proof of Lemma 3.7 big enough, the system o(R) will be also length-reducing. The rules
in group (1) to (4) will be length-reducing independently of the value of w since for each of these
rules | = r it holds |rr(l)| > |nr(r)| where I is the alphabet {b1,... ,b,} = QUXU{0,>,<, A4,C}.
But this does not hold for the rules in group (5). By Lemma 3.7 the following claim proves the
lemma.

Claim: R is confluent if and only if o(R) is confluent.

We can apply Lemma 2.16 in order to prove the claim. Thus, we have to show that the four
conditions of Lemma 2.16 hold. Injectivity of o is easy to prove. In order to prove the third
conditions of Lemma 2.16, we will prove the following more general statement for all s;,s2 € X3
and s,l € 7.

If [p(s)] = [s1][p(D][s2] = [s16(1)s2] then 51 = §(s1), s2 = ¢(s3) for some 57,55 € T (2)
Note that (2) need not hold for [ = 1. Furthermore note the following simple fact.
If [¢(s)] = [t] then there exists a s’ € 3} such that [s'] = [s] and t = ¢(s"). (3)

Assume that [¢(s)] = [s1¢(1)s2] Because of (3), we may assume that ¢(s) = s1¢(l)s2. But then
Lemma 2.17 (for {a1,... ,am} = {a,c}) implies s; = ¢(s]) and s» = ¢(s4) for some si, sy € 7.

It remains to prove the fourth condition of Lemma 2.16. Thus, assume that [t] € CT(c(R)).
We have to show that there exists a t' € % with [¢(¢')] = [t]. Since o(R) satisfies condition (B),
we can apply Lemma 3.6 and it suffices to consider the six types for [t] that we have enumerated
in Lemma 3.6. The first three types and type (5) are easy, because for these types we have
[1] = [+°6(4)y7] = [$(*L4y™)] for some z,y € {a,c}, k € {1,2}, and a, § > 0.

Assume that [t] is of type (4), i.e., [t] = [psq], where [¢(I1)] = [ps] and [¢(l2)] = [sq]- By (3),
we may assume that ps = ¢(l1) and sq = ¢(l2). But then Lemma 2.17 implies psq = ¢(s’) for
some s’ € X%,

Finally assume that [t] is of type (6), i.e., [t] = [uz®y®v], where {z,y} = {a,c}, [#(l1)] = [uz?],
and [¢(l2)] = [z*v]. By (3), we may assume that ¢(l1) = uz® and ¢(l2) = z%v. This implies u =
#(u') and v = ¢(v') for some u',v' € £ and therefore [t] = [p(u')z*yPp(v')] = [p(u'z%yPv")]. O

Lemma 3.9. CONFL4, (M) is undecidable.

Proof. The proof follows the line of the proof of Lemma 3.8. In the following we denote the single
additional generator b; of M; by b. We define an injective morphism ¢ : ¥ — X7 by

¢(a) =a, ¢(c)=c, ¢(bi)=Dbbab, ¢(by) = bbcb.
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¢ defines an injective trace morphism o : My — My by o([s]) = [¢(s)]. In the following let R be
a TRS from the proof of Lemma 3.8. Thus o(R) satisfies also condition (B) and furthermore for
every (I = r) € o(R) it holds maxz(l) C {a,c} and r # 1. Furthermore if we start in the proof of
Lemma 3.7 with a value w > 2 that is big enough, the system o(R) will be also length—reducing.
By Lemma 3.8 the following claim proves the lemma.
Claim: R is confluent if and only if o(R) is confluent.

We can apply Lemma 2.16 in order to prove the claim. Thus, it remains to show the second
and third conditions of Lemma 2.16. Again the following property holds.

If [¢(s)] = [t] then there exists an s’ € ¥4 such that [s'] = [s] and t = ¢(s') (4)
The second condition of Lemma 2.16, namely
If [I] € dom(R) and [¢(s)] = [s16(1)ss] then s; = ¢(s]), s2 = @(sh) for some si,sh € T3, (5)

will be proven by the same strategy that we used in the proof of Lemma 2.17. Let [I] € dom(R)
and [¢(s)] = [s1][@(D)][s2] = [s10(l)s2]. Note that |¢p(I)] > 2 since | & {a,c}. Because of (4), we
can assume that ¢(s) = s1¢(l)s2. Choose the factorization s; = ¢(u)t with 4 maximal (which
exists since 51 = ¢(1)s1). Since ¢(l) = s10(1)s2 = d(u)td(l)ss it follows tep(l)ss = ¢(v) for some
v € F. We claim that ¢ = 1 which implies s; = ¢(u). Assume that t # 1. If v = a--- or
v=c--- then alsot =a--- or t = ¢--- which contradicts the maximality of u. Thus v = by ...
or v = by---. Assume w.lo.g that v = bjw, i.e., t¢(l)sy = bbabd(w) Thus t is a proper prefix of
the word bbab. The case t = b can be excluded since otherwise ¢(I) = ba - -- which is not possible.
If t = bb then ¢(1)sa = abp(w). Since ¢(I) = ab is not possible we must have w #1. f w=a---
orw = c--- then ¢(l) = aba--- or ¢(I) = abc--- which is not possible. If w =by--- orw = by - --
then @(I) = abbb- - - which is also impossible.

Now we prove that sy = ¢(s)}) for some s, € ¥3. Choose the factorization sy = t¢(u) with u
maximal. Since ¢(1) = s1¢(I)s2 = s16(1)td(u) it follows s1¢(I)t = ¢(v) for some v € BT . We claim
that ¢+ = 1 which implies s; = ¢(u). Assume that t #1. f v=---aorv=---cthent=---a or
t = - - - ¢ which contradicts the maximality of u. Thus v =---by or v = -- - by. Assume w.l.o.g that
v = wby, i.e., $10(1)t = ¢(w)bbadb. Thus t is a proper suffix of bbab. The cases t = b and ¢t = ab can
be excluded because otherwise bb or bba would be a suffix of ¢(I) which is not possible (note that
|¢(I) > 2). Thus t = bab, i.e., s1¢(l) = ¢(w)b. Since ¢(I) # b but bb cannot be a suffix of ¢(I) we
must have either w = ---a or w = ---¢. Assume w.l.o.g. that w = wia. Thus s1¢(l) = ¢(w)ab.
Again, since ¢(l) # ab but aab or cab cannot be a suffix of ¢(l) we must have wy = ---b; fori =1
ori=2 Ifw =---b we obtain s;¢(l) = ---bbabab, i.e., abab is a suffix of ¢(I) which is not
possible. The case w; = - - - bs can be excluded similarly.

It remains to prove the third conditions of Lemma 2.16. Let [t] € CT(c(R)). We have to show
that there exists a t' € X5 with [¢(¢')] = [¢]. Since o(R) satisfies condition (B), we can apply
Lemma 3.6 and it suffices to consider the six types for [t] that we have enumerated in Lemma 3.6.
The first three types and type (5) can be dealt by the same arguments that we have applied in
the proof of Lemma 3.8. Assume that [¢] is of type (4), i.e., [t] = [s1852], where [¢(l1)] = [s1] and
[¢(2)] = [ss2]- By (4), we can assume that ¢(l1) = s1s and ¢(la) = ss2. Again it suffices to show
that s = ¢(s') for some s’ € 3.

Choose the factorization s = ¢(u)v with 4 maximal. Thus sss = ¢(u)vse = ¢(l2) and vsy =
¢(w) for some w € X¥. We claim that v = 1. Assume that v # 1 and thus alsow # 1. fw=a---
orw=c--- then v =a--- or v = ¢--- which contradicts the maximality of u. Thus w = by ...
or w = by.... Assume w.l.o.g. that w = by ---. Thus vsy = bbab.... Hence v must be a proper
prefix of bbab. If v = bba then ¢(l1) = s18 = s1p(u)v = ...bba which is not possible. But if
v = b or v = bb then similarly ¢(l1) = ---b. But this gives a contradiction since maz([l1]) C {a,c}
implies ¢(l1) = ...a or ¢(l2) = ...c. It should be noted that this the only point where we need
the fact that maz([l]) C {a,c} for all left-hand sides [/]. Finally, type (6) for [t] can be dealt
analogously to the corresponding part of the proof of Lemma 3.8. O
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3.2 The general case

A confluent semi—Thue system is also confluent if we add an additional letter (that does not appear
in the rules) to the alphabet. This trivial fact becomes wrong for TRSs. The following example
is taken from [Die90], pp. 125.

Example 3.10. Consider the trace monoid M that is generated by the independence relation
a—c—f—b—d
and let N C M the trace monoid that is generated by the independence relation
a—c¢ b—d

Let R = {ab — ¢, ¢cd — a}. If we consider R over the submonoid N of M then R is confluent
(which follows from [Die90], note the R does not satisfy condition (A) and thus we cannot apply
Lemma 2.14). But if we consider R as a TRS over M then R is no longer confluent. To see this,
consider the trace [cabfd] = [afcdb], which can be rewritten to [ccfd] = [c¢fcd] and [afab]. The
only trace that can be derived from [cfed] is [cfa], whereas the only trace that can be derived
from [afab] is [afc]. But since a and f are dependent it holds [cfa] # [afc].

Thus, the following lemma is not a triviality.

Lemma 3.11. Let (I, I) be an independence alphabet and let ¥ CT'. Let M = M(X,INE¥x¥) C
M(T,I) = N. If CONFL(N) is decidable then CONFL; (M) is also decidable.

Proof. Given a length-reducing TRS R over M such that 1 & ran(R), we will construct a length—
reducing TRS P over N such that 1 & ran(P) and R is confluent if and only if P is confluent. The
case X = I'is trivial. Thus, let us assume that there exists a0 € T\X. Let P = RU{[ab] — [0] | a €
I\X v b e'\X}. Note that P is length-reducing and 1 ¢ ran(P). Assume that R is confluent
and consider the situation u; p+ u —p us. If u € M then we must have u; g+ u =g us
and ug,us € M. Confluence of R implies that uy =% v R4 us for some v € M and thus
Uy —=p U pé ug. If u € M then u must be of the form [s'as"] for some a € T'\X. This must also
hold for u; and uy. Furthermore, since 1 & ran(R), it holds u; = 0 or |u;| > 1 for ¢ € {1,2}. Thus
u; and us can be both reduced to 0. Now assume that P is confluent and consider the situation
u1 R u =g uz. Thus, u; p& u —p uz and confluence of P implies u; =3 v 34 uz for some
v € N. Since symbols from I'\¥ do not appear in u; or us and cannot be produced by rules from
P it follows u; =5 v S+ uo. O

Now we are able to prove our first main result.

Theorem 3.12. CONFL(M) is decidable if and only if M is a free monoid or a free commutative
monoid.

Proof. The decidability of CONFL(M) in the case of a free monoid or free commutative monoid
is a well-known result, see [BO81] and [BL81]. Thus, assume that M = M(X,I) is neither free
nor free commutative, i.e., I # 0 and I # (X x X)\Ids. If (X, ) contains an induced subgraph of
the form

then Lemma 3.4 and Lemma 3.11 imply the undecidability of CONFL.; (M) (and thus CONFL(M)).
Thus assume that not contain such an induced subgraph. This means that [ is a transitive relation
on ¥, i.e., (%,I) is a disjoint union of n cliques (£;,(E; x £;)\Ilds;) (1 <i < n). If n =1 then
I =# (X x ¥)\Idy, which we have excluded. If |[¥;| =1 for all i € {1,... ,n} then I = () which we
have also excluded. Thus there are at least two cliques and one of these cliques contains at least
two nodes. Thus
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must be an induced subgraph of (X, ), which is (£1,I1) from Definition 3.5. Lemma 3.9 and
Lemma 3.11 imply that CONFL, (M) (and thus CONFL(M)) is undecidable. O

Since confluence is decidable for the class of terminating semi—Thue systems and vector replace-
ment systems it follows that for every trace monoid M, confluence is decidable for the class of
terminating TRSs over M if and only if confluence is decidable for the class of length—reducing
TRSs over M. The negative result of Theorem 3.12 can even be strengthened by using the fol-
lowing obvious lemma. Let TRSs (M) denote the set of all length-reducing TRSs over the trace
monoid M.

Lemma 3.13. For every trace monoid M, the set TRSs (M)\CONFL(M) is recursively enumer-
able.

Proof. A semi-algorithm that tests whether a TRS R over M belongs to TRSs (M )\ CONFL(M)
may operate as follows: Generate all situations u g4 w —g v. Since R is terminating it can be
decided whether u - w' < v for some w' € M. O

The following theorem follows immediately from the previous lemma and Theorem 3.12.

Theorem 3.14. If M is neither a free monoid nor a free commutative monoid then the set
CONFL(M) is not recursively enumerable.

4 Deciding (o, 3)—confluence

In this section, we will prove the following result.
Theorem 4.1. CONFL(a, 8, M) is decidable for all o, 3 > 1 and for every trace monoid M.

In Section 5 we will prove some important consequences of Theorem 4.1. But also for itself,
Theorem 4.1 is interesting. In the last section we proved that confluence for length-reducing
TRSs is undecidable in most cases. Given a length-reducing TRS R over some trace monoid
and a situation v g u =R w, the traces v and w have a common descendant if and only if a
common descendant is reached after less then |u| many rewrite steps. For a monotone function
f : N — N let CONFL(f, M) be the set of all TRSs over M such that v g+ u —x w implies
v =50y g <F(uD) 4y for some u' € M. The above consideration and Theorem 3.12 imply
that CONFL(n — n, M) is undecidable if M is neither a free nor a free commutative monoid. For
a free or free commutative monoids M, CONFL(n — n, M) is easily seen to be decidable, since
only finitely many critical pairs have to be considered. On the other hand, Theorem 4.1 implies
that CONFL(n — «, M) is decidable for every constant a > 1 and every trace monoid M. This
sharpens the borderline between decidability and undecidability in another way.

The idea for the proof of Theorem 4.1 is to construct for every TRS R over M and every
a, > 1 alogical sentence ¢ whose atomic subformulas are of the form z € L for a variable x and
a recognizable trace language L C M such that R is (a, 8)—confluent if and only if ¢ is true in the
trace monoid M. Due to the nice properties of recognizable trace languages that we have stated
in Fact 2.6 and Fact 2.7, it can be decided effectively whether ¢ is true in M.

We start the proof of Theorem 4.1 by considering some simple logical formulas in trace monoids.
Let Var be a countably infinite set of variables. Variables will be denoted by z,y, 2, possibly with
subscripts. Fix an independence alphabet (3, I) with VarN'Y: = ) and let M = M(%, I). The set
of all patterns is (VarU X)*. Patterns will be denoted by S, T, U, ..., possibly with subscripts.
The set of all variables that appear in a pattern S is denoted by Var(S). A pattern S is called
linear if every variable appears at most once in S. In the following all patterns are assumed to
be linear. A linear pattern S with Var(S) = {z1,... ,z,} is also denoted by S(z1,... ,z,) (this
does not mean that the variables zi,... ,z, appear in S in this order. Linear patterns in Vart
are called types. Thus a type is just a repetition—free list of variables. Types will be denoted by S,
T, U, possibly with subscripts. Given a pattern S, we denote by typ(S) = 7v,-(S) the projection
of S to the set of all variables, which is a type.

We will consider first—order formulas that are built up from atomic formulas of the form
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e S =T, where S and T are linear patterns,
e £ € L, where L € REG(M) and z € Var, and
e 7r(x) =y where ' C ¥ and z,y € Var.

For T' C X, we write alph(z) C I instead of z € {u € M | alph(u) C I'} which is recognizable
by Fact 2.6(4). A formula ¢ with free variables zi,...,z, is also denoted by ¢(z1,... ,2n).
Sometimes we write \/ o to denote a finite disjunction, where the concrete number of disjuncts

(o3

is not important. We use 3z;(1 <4 < m) as an abbreviation for the quantifier prefix 3z; ...3x,,.
A substitution is a function ¥ : Var — (VarUX)*. The homomorphic extension of 9 to (VarUXx)*
is also denoted by 9. If S(x1, ... ,2,,) is a linear pattern such that 9(S) is also linear, then we also
write S(Hz1)/z1,... ,9(xm)/Tm) or simply S(...,%(x;)/z;,...) instead of ¥(S). A substitution
9 is a ground substitution if ¥(x) € ¥* for every x € Var.

The interpretation of such formulas in M is the obvious one. For a ground substitution 9 we
write (M, ) = ¢ if ¢ is true in M if each variable z is set to #(x). More precisely

(M,9) E (S =T) if [9(S)]r = W(D)]r,
o (M,9) = (z € L) if [9(z)]; € L, and
(M, 9) | (nr(z) = y) if [z (I(2))]1 = [I()]r-

If ¢ is a sentence, i.e., does not contains free variables we simply write M = ¢. Two formulas
o(z1,--- ,2m) and ¢(z1,-..,Tn) are equivalent in M if for all ground substitutions 9 it holds
(M,¥) = ¢ if and only if (M,¥) = ¢.

For a finite set X of variables and a function ¢ : X — 2* we define an independence alphabet
(X,I(0)) by I(0) = {(z,y) | o(x) x o(y) C I'}\Idx. The congruence relation =) on X* will be
also denoted by =,.

In the next two lemmas, we assume that I = (). Thus we are working in the free monoid
M = X*. The next lemma states a well-known fact about conjugated words, see e.g. [Lot83].

Lemma 4.2. Let 5, € ¥ be non—empty words and let € Var. The word equation sz = xt is
equivalent in ¥* to a formula z € L where L € REG(X*).

Proof. Let s,t € ¥F. Then for u € ¥* it holds su = ut if and only if there exist s1,s2 € ¥* with
S2 # 1, 8 = 8182, t = 251, and u = s"s; for some n > 0, see e.g. [Lot83]. The statement of the
lemma, is an immediate corollary of this fact. O

The next lemma generalizes the previous lemma to the case of arbitrary many variables.

Lemma 4.3. Let s1,... ,5m+1,t1,--. ;tmy1 € £*. The word equation

$1Z182 - TmSm+1 = t1ZT1t2 - - - Tmtmy1 (6)

is equivalent in ¥* to a formula ¢(z1, ... ,z,) of the form V /\ x; € L; o, where L; , € REG(X*)
a =1
for every ¢ € {1,...,m} and all a.

Proof. The lemma can be proven by induction on m. The case m = 0 is trivial. Assume m > 0. If
neither s; is a prefix of ¢; nor #; is a prefix of s; then we may choose for ¢ the empty disjunction,
i.e., the truth value false. Thus, assume w.l.o.g. that s; = t;s and cancel ¢;. It remains the
equation sz1S2 - TmSmy1 = Tita - - Tmbmy1. If s =1 then we may also cancel z;. Then by the
induction hypothesis $22283 - TmSm+1 = t2Zats - Tmitms1 1S equivalent to a finite disjunction

\/ /\ x; € L; o where L; , € REG(X*) for every i € {1,...,m} and all @. Then the original

a =2
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m
equation (6) is equivalent to V(wl €eX* A /\ z; € L; o). If s # 1 then we may guess the position
a =2
in ty...z,tme1 where sz ends. More precisely sx182 -+ Ty Simt1 = Z1ta + - Tty 18 equivalent
to the finite disjunction of all formulas of the form

(].) STr1 = Tty -+ tz',l.fll'z',ltl N 822983 T Sm41 = t”.sz't»H_l e Tytmt where s € {2, - ,m+1}
and t; = t't" and

(2) dx,y : x; = xy A sx1 = Tito - Ti—1t;x N S2X2S3 - “TmSm+1 = Ytit1Tir1tiv2 - - Tmlmt1
where i € {2,...,m} and z,y are new variables.

Let us consider a formula of the second type (the first type can be dealt similarly). After substi-
tuting zy for x; we obtain the formula

dz,y:x; =xy A sty =ity ;16T A SaT2 - SiTYSiqy1 T Smpl = Ytit1Tit1 ** Tl 1,

see also the following figure.

SR 0 7% o o oy e
T1 | to | | ti |z|Y ti+1| |$m |tm+1
T

It suffices to prove that a formula of this type is equivalent to a finite disjunction of the
form required in the lemma. Note that for every solution of sxy = zits...x;_1t;x, i.e., every

tuple (u1,ug,...,u;—1,u) with su; = uite...u;—1t;u, it must hold |s| = |taus ... u;—1t;ul. But
there exist only finitely many tuples (ua,...,u;—1,u) with the last property. Thus we can take
the finite disjunction over all these tuples. Let (ua,...,u;—1,u) be one of these tuples and let

v = tousts ... uj—1t;u and w = squss3 ... u;—18;u. It suffices to prove that the formula

i—1
Jy:x; =uy A sz = z10 A /\ xj € {uj} N WYSit1Tit1 -+ TmSmt1 = Ytit1Tit1 - - - Tmbmy1
j=2

is equivalent to a finite disjunction of the form required in the lemma. By Lemma 4.3 (note that s #
1 and thus also v # 1), the equation sz1 = z1v may be replaced by a formula z1 € L1 where Ly €
REG(Y*). Furthermore by the induction hypothesis, the equation wys;+1%it1 - - SmTmSmy1 =
Ytit1Tit1 - - - tmTmtms1 (since 4 > 2 this equation contains m — ¢ + 1 < m many variables) is

m
equivalent to a formula of the form \/(y € Ky A /\ xj € Lj o), where L; o, K, € REG(X*) for
a Jj=i+1
every j € {i +1,...m} and all a. We obtain the formula

i—1 m

dy:x;=uy A x1 € Ly A /\.Z'je{u]‘} /\V(yEKa A /\ .Z'jELj,a)
j=2 [e% Jj=i+1

which is equivalent to

i—1 m

\/(.Z‘l €L N /\ T; € {UJ} Az €EuKy A /\ T; € Lj,a)
a j=2 j=it1

where uK, = {uu' € ¥* |u' € K,} € REG(X*). O

In the following the independence alphabet (X,I) may be again arbitrary. The next lemma
generalizes Lemma 4.3 to traces.
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Lemma 4.4. Let o : {z1,... ,zpm} — 2%, let S(z1,... ,om) and T(x1,- .. ,Ty) be linear patterns
with typ(S) =, typ(T). Then the formula

m

S@1,-e s xm) = T(@1,-. . xm) A\ alph(@i) C o(xi). (7)

i=1

is equivalent in M(X, I) to a formula of the form \/ /\ x; € Lj o, where L; o € REG(M(X, 1)) for
a =1
every i € {1,...,m} and all a.

Proof. Let (I'y,...,T',) be a clique covering of the dependence alphabet (X,1¢). W.l.o.g. assume
that S(z1,...,Zm,) is of the form S = 51218222 ... $mTmSmy1- For i € {1,...,m} and j €
{1,...,n} let z; ; be a new variable which will represent the projection of z; to the clique T;.
Since the value of z; is only allowed to contain symbols from o(z;) we can replace z;; by the
empty word if o(x;) NT'; = §. Define the pattern x; ; for i € {1,... ,m} and j € {1,...,n} by
(i) xij = lif o(x;) NT; = 0 and (ii) xi,; = xi,; otherwise. For j € {1,...,n} let S; be the
pattern 7t (s1)X1,;7T, (52)X2,5 - 7T; (8m) Xm,;7T; (Sm41). Thus S; represents the projection of S
to the clique I';. The pattern T is defined analogously. We claim that typ(S;) = typ(T;) for every
je{l,... ,n}

Since typ(S) =, typ(T) there exists an k > 0 such that
typ(S) = So =6 S1 =4 -+ =5 Sk = typ(T)

and for every k € {0,...x — 1} there exist types 7} and U and variables yy, 2z, €
{:l’:l, ... ,ZL‘m} with S = Tryrzely, Sk+1 = TezryrUr, and yi I, 2. For k € {0, - ,R}
and j € {1,...,n} let Sk ; be the type that results from S; by replacing the each
variable z; by x; ;. Thus typ(S;) = So,; and typ(T;) = Sk, ;. Therefore in order to
prove typ(S;) = typ(T;) it suffices to prove S ;j = Sk41,; for every k € {0,...x — 1}.
For this it suffices to prove o(yx) NT'; = @ or o(z;) NT; = ( for every k € {0,...k—1}.
Assume that o(yg) NT; # 0 # o(zx) NT;. Thus there exist a € T'; No(yx) and
be T No(z). Since a,b € T'; it follows a I¢b. But since a € o(yx) and b € o(z;) this
contradicts yx I, 2.

Furthermore by Fact 2.1, (7) is equivalent to the formula
n m
E.Z'z',j(l S 7 S m, 1 S J S TL) : /\(SJ = Tj A /\ 71'1‘_7. (Z‘,) = .Z’z',j A alph(wi,j) (S (T(.Z'z) n Fj). (8)
j=1 i=1

Since alph(z; ;) C I'; and T is a clique for every j € {1,...,n}, the equation S; = T} can
be considered as a word equation in the free monoid I';. Since typ(S;) = typ(T}) for every j €

m
{1,...,n}, by Lemma 4.3 the equation S; = T} is equivalent in I'] to a formula \/ /\ Zij € Lijan
a =1

where L; j o € REG(I'}) for all a. Thus, (8) is equivalent to

=

Jz;j(1<i<m,1<j<n): /\ \/ (#ij € Lijja N mr;(2i) =235 A alph(z;;) € o(x;) NTy),
=1 «

i=1

which is equivalent to a finite disjunction of formulas of the form

m n
Ewi,j(l <i<m,1<j<n): /\ /\ 25 € Lij A 7T[‘j(SL'i) = Zi,j,
i=1j=1
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Ys 21,3 | 81,3 | 22,3 | 52,3 | 233

to || t1,2 2,2 3,2
Ya || 21,2 | S1,2 | 22,2 | S22 | 23,2
t1 || t11 2,1 3,1

U1 211 | S1,1 | 221 | 821 | 23,1

]

e [ oo [ a2 | 82| o]

Figure 3: The equation x;s51228223 = y1t1y2t2y3: The empty boxes represent traces that are not
important.

n
/\ z; € {u € M(XZ,I) /\ ) € Li;}, where L; ; C I'; is a regular word language. By
1 j=1
= n
Fact 2.8 {u € M(%,I) /\ )€ L;;} € REG(M(X, 1)), which concludes the proof. O

The following lemma follows directly from Lemma 2.5, see also Figure 3.

Lemma 4.5. Let s1,... ,8m—-1,t1,--- ytn—1 € X5, let ©1,... ,Zm, Y1, .. ,Yn be pairwise different
variables, and let o : {T1,... ,Zm,Y1,--- ,Yn} — 2. Then the formula

n

m
T151T252 - .. Sm_1Tm = Y1t1yota .. .tn_1yn A /\ alph(z;) C o(x;) A /\ alph(y;) C o(y;)
i=1 j=1

is equivalent in M(X,T) to a finite disjunction of formulas of the form

Fz; ;(1<i<m,1<j<n):

/\ Ty = 2i1tinzi2 . tin—12in A /\ Yj = 21,j51,j22,5 -+ - Sm—1,jZm,j N
i=1 j=1

/\ /\ alph(z; ;) C 7(zi5)

i=1j=1

where 7(2;;) CXforie {1,... ,m},j€{l,...,n}and 2 ; I(7) zi, if ((i <k, < j)orz;I(o)xy
or y; I(o) yi)

The next lemma is of central importance. Let ¢ = (¢1,...,¢x) be a finite sequence of rules
i = (I; > r;) with I;,r; € M(X,I) for every i € {1,...,k}. For u,v € M(X,I), u =, v is
defined inductively as follows. (i) If k = 0, i.e.,, ¢ = () is the empty sequence then u —. v if
u=wv (i) Ik >01letd=(c1,.-.,c6—1). Then u =, v if u -4 w and w —, v for some
we MZE,I). Ifl;,r; € * for every ¢ € {1,...,k} then it is not difficult to construct finitely
many equations 12152 - .. LmSm4+1 = t1Z1t2 . . . Tmtmt1 With s;,t; € ¥* foreveryi € {1,... ,m+1}
such that for strings s,t € ¥* it holds s —. t if and only if for some of the constructed equations
S1T182 - . . Ty Smy1 = t1T1ta . .. Tyytmy1 and some uq, ... , Uy, € X* it holds s = sju1S2 . .. U Smp1
and t = tiuits ... Umtm41- The next lemma generalizes this fact to traces.

contain both the same set of m variables such that the following holds: For each finite sequence
¢ = (c1,...,¢x), where ¢; € M(X,I) x M(X,I) for every ¢ € {1,...,k}, there exists a finite
disjunction ¢(z,y) of the form

Lemma 4.6. Let k > 0 be arbitrary and let m = 2%. There exist types Sx and 7, which

m

\/Elml,...:cm 2 =80(21,- -, 2m) Ny=Ta(x1,... ,Zm) A /\alph(mi) Coal(zi), (9)

i=1

20f course the words 8;,j,ti,j, and the function 7 may be different for each of these disjuncts.
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where oy : {z1,... ,2m} — 2% such that (i) typ(Ss) = Sk =, T = typ(Ty) for all @ and (ii) for
every ground substitution ¢ it holds (M(X,),9) = ¢(z,y) if and only if [(z)]r —¢ [H(y)]1-

Proof. The lemma, can be proven by induction on « > 0. If Kk = 0 then we may choose S = Ty = 2
andz:x =2 Ay=2z A alph(z) C X for p(z,y).

If k > 0 then by the induction hypothesis there exist types Sx_1 and T,_1 which contain both
the same set of m = 2! many variables such that the conclusion of the lemma holds for x — 1.
Fix an arbitrary sequence ¢ = (¢, ... ,¢x), where ¢; € M(2,I) x M(Z, I) for every i € {1,... ,k}.

Let d = (c¢1,-.. ,¢x_1)- Then there exists a finite disjunction ¢(z,y) of the form
Vﬂml,...wm 2 =Un(z1,. . y2m) ANy =Va(z1,... ,2m) A /\ alph(z;) C 74(z;) (10)
a =1

such that (i) typ(U,) = Sx—1 =+, Te—1 = typ(V,,) for all « and (ii) for every ground substitution
9 it holds (M(X, I),9) = ¢(z,y) if and only if [¥(z)]r —4 [H(y)]r- W.lo.g. assume that T,_1 =
T1Ty---Tm. For every i € {1,...,m} and j € {1,2} let z;; be a new variable. Note that
these are 2m = 2* many new variables. We define Sy = Sg—1(-..(2i12i2)/%;i...) and T, =
21,1221 " Zm,121,222.2 - - Zm,2. Let ¢ = ([l]1,[r]1)- Let p(z,y) be the finite disjunction

m
V31, @msy1,y2 8 =Ua A Va =yilys Ay =yirys A [\ alph(z;) C 7ales), (1)

a =1
where y1,y2 & {Z1,...,Zm,z,y}. Then obviously for every ground substitution ¢ it holds

M(X%,1),9) E ¢(z,y) if and only if [¢(zx)]r —¢ [H(y)]r- We claim that ¢(z,y) is equivalent
to a finite disjunction of the form (9). Fix an @ and let V =V,,, U = Uy, and 7 = 7,. It suffices
to prove that the subformula

m
Az, T y1,Y2 . =U AV =anlys Ay =y1rys A /\ alph(z;) C 7(x;) (12)

i=1
of (z,y) is equivalent to a finite disjunction of the form (9). Note that typ(V) = Teo1 =

Z1Z2 ... Tm. By Lemma 4.5 we may replace the formula V' = yilys A /\ alph(z;) C 7(z;) in (12)
i=1
by a finite disjunction of the form

\32i,;(1<i<m,1<j<2):

B
1 =Wig(z11,22,1,- - 5 2m1) A ya = Wap(z12,22,2,- -+ ,Zm,2) A

m

N zi = zialigzia A alph(zi1) C op(zin) A alph(zi2) C op(2i2),

i=1
where typ(W; g) = 21,i22,i . .- Zm,; for all ¢ € {1,2} and all 8 and z; ; I(08) 2k, if ((¢ < k, §j = 2,
I =1)or ; I(r)xy) for all B (see also Figure 4, where V = zv122...0m—12m and W, 5 =
21,iV1,i%2,i - - - Um—1,i%m,i for ¢ € {1,2}). By doing some elementary logical transformations the
formula that results from (12) by doing this replacement is equivalent to a finite disjunction of
the form

\/azz,,}(l Slgmal S] S2)3$17 yTm, Y1, Y2 :
B
e=UNy1=Wig ANy2=Wag ANy=uyirys A (13)

/\(.’L‘Z = zia1ligzia N alph(zi,l) - ag(zi,l) A alph(zig) - (Tﬂ(zz',g)).
i=1
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Y2 21,2 | V1,2 | 222 | V22 | 232 | U32 | 242
| AW lap ls lap
Y1 21,1 | V11 | B21 | V2.1 | 23,1 | V31 | 24,1

[ o [ oo [ @2 [ v2 | @[ vs | &l
Figure 4: The equation z1v1Z2v223v3%4 = Y1lay2

If we define Sp = U(...(2,1li,8%i,2)/%;i ...) and Ty = Wy grWs g we may eliminate the variables
Z1,--- %m,Y1,y2 and (13) becomes equivalent to

\/Elzi,j(l <i<m,1<j<2):2=83ANy="Tg A /\ alph(z;1) C o5(2i,1) A alph(z;2) C oa(2i2)-
B i=1

Note that

typ(Sp) = typ(U) (... (zi12i,2/2i . ..) = Se—1(- - 2zi12i2/2s ... ) = Sk

and
typ(Tg) = typ(W1,8Wa8) = 21,122,1 - - - Zm,121,222,2 - - - Zm,2 = T
Thus it remains to prove that
Sk =Sp—1(2i1%i2/Ti..) Zop 21,1221 -+ - Zm, 1212722 -+ - Zm2 = T (14)
for all 8. Since Sx—1 =7 Te—1 = 1 ...Zm and z;; [(0g) 2k, if ; I(7) z}, it follows
Sk =Sk 1(---zinzip/Ti-..) Zop Te1(---2i12i2/Ti ... ) = 21,121,2221222 - - - Zm,1%m 2-

Since 2,2 I(O’g) 25,1 if 4 < _] it holds 21,121,222,122,2 - - - Zm,1%m,2 Eg'ﬁ 21,122,1 ++-2m,1%21,222,2 - - - Zm,,2
which implies (14). O

The previous lemma gives us the means to express the fact that a TRS is (a, 3)—confluent as a
logical formula of a particular type. In order to prove that is decidable whether a formula of that
type is valid in M(X, I') we first prove the decidability of the validity of formulas of a simpler type.
A positive Boolean formula is a Boolean formula that only contains the connectives A and V.

Lemma 4.7. Let ¢ be a first-order formula whose atomic subformulas are all of the form x € L
for L € REG(M(X,I)). Then ¢ is equivalent to a positive Boolean combination ¢ of atomic
formulas of the form x € L, where L € REG(M(X,I)). Moreover ¢ can be calculated effectively
from .

Proof. The lemma can be proven by induction on the structure of ¢. The cases ¢ = (x € L)
is trivial. For ¢ = —¢' the induction hypothesis for ¢’ and Fact 2.6(2) have to be used. For
@ = (p1 A @2), the induction hypothesis suffices. It remains to consider the case ¢ = Iz : .
We may assume that ¢’ = \/i-, ¢; where ¢; is a finite conjunction of formulas of the form z € L
with L € REG(M(X,I)). Since 3z : /I, ¢; is equivalent to \/[-, 3z : ¢; it suffices to prove
that the conclusion of the lemma holds for a formula 3z : (z; € L1 A... A 2, € L,) where
L; € REGM(Z,I)) for every i € {1,...,n}. The case z & {z1,...,2,} is clear. Thus assume
w.lo.g. that x = ;. By Fact 2.6(2) we may assume that z ¢ {z2,...,2,}. Thus, 3z : (z €
Li Nzo € Ly A ...A x, € Ly,) is equivalent to (3z : x € L1) A 22 € Ly A... A\ z, € L, which
is either equivalent to the truth value false (if L; = 00) or equivalent to 25 € Ly A ... A Ty, € Ly,.
Moreover by Fact 2.7 it can be decided effectively which alternative holds. O
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For the proof of Theorem 4.1, the following lemma is not needed in its full generality. We formulate
it in this general form since we intend to make further use of it in future works. In the following
we also allow atomic formulas of the form S —. T, where S and T are patterns and ¢ = [{]r = [r]r
is a trace rewrite rule. The interpretation of such a formula is the obvious one.

Lemma 4.8. The following problem is decidable.
INPUT:

e An independence alphabet (X, ) and a finite set A which consists of finite sequences of trace
rewrite rules over M(X, I).

e A function o : {z1,... ,7pn} — 2% and sets L1,... ,L, € REGMM(Z,I)) such that for all
ie{l,...,m} and all u € L; it holds alph(u) C o(x;).

e Linear patterns S(z1,...,%n) and T(x1,. .. ,Z,) with typ(S) =, typ(T).
QUESTION: Does M(S, 1) = Vo1 € Lu,...,&m € Ly : \/ S@1,...,8m) ¢ T(@1,-.. ,Tm)

cEA
hold ?

Proof. Let (£,1), A, 0, Ly,... , Ly, S(x1,-.. ,Zm), and T(z1,... ,Zm) be of the form described
in the lemma. By appending the trivial rule 1 — 1 to some sequences from A we may assume that
all sequences in A have the same length k. W.l.o.g. assume that typ(S) = z; - -- z,,. By Lemma
4.6 the sentence

Vo1 € L1,... ;T € Ly : \/ S(Z1,--yxm) 2 T(T1,.-. ,Tm)
ceA

is equivalent to a sentence of the form

Va1 € Ly, .o, @m € Lo \/ 3y1, -+ 9 :
(67

n (15)
S=Ua(i,-->yn) AT =Var,---,yn) A\ alph(y;) € oaly)),
j=1
where n = 2* and y1,... ,y, are new variables. Furthermore for all « it holds typ(Uy) = Sk =,

Te = typ(V,) where S; and T, are the types from Lemma 4.6. We may assume w.l.o.g. that
typ(Ua) = y1 -+ - yn for all a. Since for all i € {1,... ,m} and all u € L; it holds alph(u) C o(=;),
(15) is equivalent to

Vo1 € Ly, .o, @m € Lo s \/ 3y1, -+ 4 :
o

S(x1y e Tm) =Us(yty--- Yn) AT (T1,- - ,Tm) = Va(W1,--- ,yn) A (16)

/\ alph(y;) € oalys) A [\ alph(z:) € o ().

n

By Lemma 4.5 applied to S(z1,... ,Zm) = Ua(Y1,--- ,yn) A /\ alph(y;) C oa(y;) A /\ alph(z;) C

j=1 =1
o(z;) the sentence (16) is equivalent to a sentence of the form

Vx, € Ly, ... ,wmELm:\/Hyl,...,yn:\/ﬂzi,j(lgigm,lgjgn):
a B

m n
N 2 =Sias(zits- 5 2in) AN\ U5 =Tiap(z15- - s 2mg) A
i=1

i=1
T(@1,- %m) = Vai,--,yn) A N\ )\ aloh(zij) C 0a(2i ),
i=1j=1
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where typ(Sm,g) = Zi1"" " Zin, typ(Tj’a,ﬂ) = 21,5 %m,j and Zij I(O’aﬁ) 2k, if ((Z < k, l < J) or
z; (o) zp ory; I(oq)yr) forall a, 8. Let To g =T(...Sia8/%i--.) and Vo 3 = Vo (... Tja,p/yj---)
for all a, 3. Then the above sentence is equivalent to

Vzy € Ly,... , T € Ly, - \/Elzz-,j(l <i<m,1<j<n):

a,B
m n (17)

m
/\ i =8i0p(Zi1---2in) NTapg=Vap A /\ /\ alph(z; ;) C 0a,5(2i,5)-
=1 i=1j=1

We claim that typ(Ta,s) =o. 5 typ(Va,s). This can be deduced as follows:

typ(Ta,p) = typ(T(. .. Sija,p/Ti---))
=typ(T)(...(2zi1 - 2Zim)/Ti-..) (typ(Si,a,8) = 2i1 - Zin)
Z0as WP(S)(-- (Zi1 - 2in) /20 ) (typ(T) =, typ(S) and
2ij 1(0a,p) 2Ky if ;I(0) z)
typ(S) = z1 -+ T)
2i,j I(0a,) 2Ky if i < k and [ < j)
typ(Ua) = y1 -+~ yn)
typ(Ua) =0, typ(Va) and
2i,j 1(0a,p) 2k, if y; 1(0a) Y1)

= (211 21m) - (2t Zraim) (
= (211 Zma) (L Zonm) (
= typ(Ua)(- .- (21,5 - 2m,5) /Y - - -) (
Z0up WP(Va)( - (21,5 2mg) Y5 --)  (

= typ(Va(-- - Tja,p/Yj---)) = typ(Va,p)-

m n
Hence we may apply Lemma 4.4 to the subformula T 3 = Vo 8 A /\ /\ alph(zi,;) C 0q,5(2i,5) of

i=1j=1
(17). We obtain an equivalent sentence
Vz1 € L1, ... ,Tm € Ly : \/ Fz;;(1<i<m,1<j<n):
a,B8,y
m n
N @i = Siap(zin - 2in) /\ zi,j € La,py(2i5)),

i=1 j=1
where Lo 5., (2i,;) € REG(M(X,I)) for all o, 3, v. Let

La,gyry(.’l,',') = {Si,a’g(wl, . ,wn) | Vj € {]., . ,n} Twj; € La’gw(zi,j)}.
Since REG(M(X, I)) is closed under concatenation by Fact 2.6(2) also Ly g.,(x;) € REGM(X, 1))

(here it is important that S; g is linear. Since Var(S; a,g) N Var(Sj,a,pg) =0 for i # j and all o, 3
the above sentence is equivalent to

Va1 € Ly, ... ,&m € Ly, : \/ /\ z; € Lo g (2;).
a,B3,y =1
By Lemma 4.7 it can be decided whether this sentence is valid in M(X, I), which completes the
proof. O

Now we are able to prove Theorem 4.1. Let R be a TRS over M. For ¢ = (I — r) € R,
we denote the inverse rule » — [ by ¢~ !. Thus, u —.-1 v if and only if v =, u. We define
R ={c'|ceR}

Proof of Theorem 4.1. Fix values a,3 > 1 and fix a trace monoid M = M(X,I). Let R be
an arbitrary TRS over M. Fix rules ¢;,...c;y € R, di,...,d; € R™! where k,I < a and let
c=(c1,...Cp,d1,---,dp). It suffices to prove that it is decidable whether the sentence

<B

Vo,y: 2z —.y implies 3z : ¢ —3" 2 rSP y (18)
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is true in M(X, I). By Lemma 4.6 there exists a finite disjunction (z,y) of the form

m

\/Elxl,... T 2 =Sy (21, 2m) AY =T (21, .. ,Tm) A /\ alph(z;) C o(xs), (19)
v

i=1

where m = 2" and 0., : {xy,... , @} — 2 for all  such that typ(S,) =, typ(T,) and for every
ground substitution ¥ it holds (M, d) | ¢(z,y) if and only if [9(z)]; —. [I(y)]s- Fix a v and let
S=8,T=T,,and 0 =0,. Fori e {1,... ,m} let L; = {u € M | alph(u) C o(x;)} which is
recognizable. It suffices to prove that it is decidable whether the sentence

Voy € Lyy... ;T € Ly : 3y : S(21,. .- 5 Tm) —)7%5y73<—5ﬁ T(z1,... ,Zm) (20)

is valid in M. Let A be the set of all sequences that consist of at most § many rules from R
followed by at most 8 many rules from R~!. Then (20) is equivalent to the following sentence

Vo1 € Ly,... ,Zy € Ly : \/ S(z1,-- 2m) 24 T (@1, ,Zm).
deA

By Lemma 4.8 it is decidable whether the last sentence is valid in M. O

5 Applications of («, f)—confluence

In this section we will present some applications of Theorem 4.1. An immediate corollary of this
result is

Corollary 5.1. Strong confluence is decidable for TRSs.

Another important application results from Lemma, 2.9. The fact that for every a > 1, all TRS in
CONFL(a, a, M) are confluent, gives us a formal method for proving that a given (possibly non
terminating) TRS is confluent.

In [Die90] a notion of a critical trace similar to definition 2.13 was introduced. Furthermore it
is proven that the set of critical traces for a specific TRS is recognizable. Thus it can be decided
whether this set is finite and if this is the case, confluence can be decided. Furthermore to the
knowledge of the author all known criteria for terminating TRSs that imply the decidability of
the confluence problem also imply the existence of a finite set of critical traces, see for instance
[Die90], pp 134 for such a criteria. In contrast to this, in this section we will present a method
that may also handle infinite sets of critical traces. The idea is to give sufficient conditions for
a TRS that imply the equivalence of confluence and (1, a)—confluence for a TRS. This allows to
apply Theorem 4.1.

Let M = M(X,I) be a trace monoid. Given two traces ui,us € M we define the set
overlap(u1,uz) as the set of all traces s € M\{1} such that there exist factorizations u; = vy swy,
ug = vaswe with v T vy and wy I we. Note that overlap(ui,us) is always finite. Furthermore, ev-
ery s € overlap(ui,us) appears as the intersection of occurrences of u; and e in in the trace
V1VeswWowy = vaviswiws. For a TRS R we define overlap(R) = J{overlap(l1,l2) | l1,l2 €
dom(R)}. Note that dom(R) C overlap(R) and thus overlap(R) # 0. For a trace u € M we
define dep(u) = {a € £ | 3b € alph(u) : (a,b) € I¢}.

Theorem 5.1. The following problem is decidable.
INPUT: A TRS R over a trace monoid M = M(X, I) such that

(1) R satisfies condition (A) and
(2) for all u € overlap(R), the TRS 7 g¢p(y) (R) is terminating.
QUESTION: Is R confluent?
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Proof. Let R be a TRS with the properties stated in the theorem. We will prove that there
exists an a > 1 such that R is confluent if and only if R is a—confluent and that this constant
a can be calculated effectively. By Theorem 4.1 this proves the theorem. First assume that R is
a-confluent. Then R is locally confluent. Since overlap(R) # 0, by property (2) wr(R) must be
terminating for some I" # (). Thus, R must be terminating. Since R is locally confluent it follows
that R is confluent.

Now assume that R is confluent. Consider a critical situation (¢1,t,t2) € Crit(R). Thus, there
exist rules (I1 — r1), (l2 = r2) € R and traces p;, g;,w; (i € {1,2}), and s # 1 such that Iy = p1sqi,
ly = pasqa, t = prwilowaqs = pawaliwige, t1 = pawariwiga, ta = prwirawaqs, and s I wyws (plus
some other independencies that are not important in the following). The only factors that are
unbounded in ¢ are w; and wy. Note that s € overlap(ly,15).

First we claim that it is possible to construct effectively an « > 1 that depends only one
P1,P2,q1,42,71,72, § (and that is thus independent of w; and wsy) such that the pair

(tl,tg) = (szJQT11U1QQ,p1UJ1T2UJ2ql) S CP(R)

is a—confluent. We will denote this @ by a(p1,p2, q1,42,71,72,5). Since R is confluent there exist
ai,az > 0 and a u € M such that

pawariwiqe = u and  pywirowaqr S u. (21)

We claim that an upper bound for «; and as, which is only dependent from py, ps, ¢1, ¢2, 71, and
r9, can be determined effectively. Let T' = dep(s). From s I wyws it follows #p (wiws) = 1. Thus
(21) implies

7Tr(p2T1QQ) —):;(R) ’/TF(U) and r @17“2(11) _):E(R) .

Since 70 (R) is a terminating TRS, it is possible to construct all derivations in 7r (R) that are ema-
nating from 7 (p2r1¢2) and 7r(p172¢1 ), respectively. The length of the longest of these derivations
is an upper bound for a; and as which can be determined effectively. Let a(p1,p2,q1,42,71,72,8)
this number.

Now let

a={a(p1,p2,q1,4q2,71,72,8) | (P15q1,71), (P28G2,72) € R, p1Ip2, q1 I q2, s # 1}.

From the previous discussion and Lemma 2.14 it follows that R is a—confluent. Furthermore, a
can be determined effectively. O

Corollary 5.2. The following problem is decidable.
INPUT: A TRS R over a trace monoid M = M(X,I) such that there exists a clique covering
(Z1,...,%,) of (X,I°) such that (as usual, m; = 7y,)

(1) for all 4,5 € {1,...,n} with ¢ # j and for all rules I — r) € R, if m(7;(l)) = 1 then
mi(m;(r)) =1 and

(2) for all i € {1,...,n}, the semi—Thue system m;(R) is terminating,.
QUESTION: Is R confluent?

Proof. Let R be a TRS that satisfies conditions (1) and (2) of the corollary and let (X1,...,%,)
be a clique covering of (X, 7¢) with the stated properties. We will prove that R satisfies the
input—conditions of Theorem 5.1.

Claim 1: R satisfies condition (A): Let I € dom(R). Condition (2) implies that for all i €
{1,...,n} it holds m;(l) # 1 (otherwise m;(R) would contain a rule 1 — 7;(r) and thus m;(R) would
not be terminating). It follows a I¢! for all a € 3. Thus, R satisfies condition (A1). It remains to
verify condition (A2). Let (I1 — r1),(l2 = 7r2) € R and let I = p1¢1, la = paga be factorizations
with p; # 1 # g; for j € {1,2}, p1 I ps, and ¢1 I g2. We have to construct factorizations ry = s,
Ty = Sata such that alp; implies als; and algq; implies alt; for all a € X, j € {1,2}. Since
u v implies m;(u) = 1 or m;(v) = 1 for all 4 € {1,...,n}, exactly one of the following two cases
has to hold for every i € {1,... ,n} (note that m;(p1q1) = mi(l1) # 1 # mi(l2) = mi(page)):
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o Case 1: mi(p1) # 1 # mi(ge) and mi(p2) =1 = mi(q1)
o Case 2: mi(p2) # 1 # mi(q1) and mi(p1) = 1 = mi(g2)
We define a factorization m;(r1) = st for every i € {1,... ,n} as follows:
(1) s =m;(ry) and ¢ =1 if case 1 holds for i.
(2) s =1 and t = m;(ry) if case 2 holds for i.

We claim that (s(U,...,s() and (t(,... () are reconstructible. By Lemma 2.2 it suffices to
prove m;(s)) = m;(s')) for all i,j € {1,...,n}. If both i and j satisfy case 1 or both i and j
satisfy case 2 this obviously holds. Thus, w.l.0.g assume that i satisfies case 1 and j satisfies case
2, i.e.,

mi(p1) # 1 # mi(g2), mi(p2) = 1 = mi(q1), and w;(p2) # 1 # mj(q1), mj(p1) = 1 = m;(qz)-

It follows m;(m;(l1)) = mi(mj(p1g1)) = 1 and m;(mj(l2)) = mi(wj(p2g2)) = 1. Thus, the second
condition on R implies m;(m;(r1)) = 1 = m;(mj(r2)). Thus m;(s?)) = m(1) = 1 = mj(mi(r1)) =
7j(s() also holds in this case and (sV),...,s(™) and (t("),... () are both reconstructible.
Therefore there exist unique traces s1, t; with m;(s;) = s and m;(t;) = @ for all i € {1,... ,n}.
It follows ry = s1t1 by Fact 2.1.

Now let @ I p;. Thus, for each j € {1,...,n} with a € ¥, it holds 7;(p1) = 1. The construction
of (sM),...,sM) implies sU) =1 for all j € {1,...,n} with a € Y;. Thus als; (otherwise there
would exist a clique ¥; with a € ¥; and 7;(s1) = s} # 1). Analogously it can be proven that
al g implies aIty. Therefore we have constructed the desired factorization of r;. The desired
factorization of ro can be constructed analogously. The claim is now proven and we can proceed
with the proof of the corollary.

Claim 2: T gep(y)(R) is terminating for every u € overlap(R): Let u € overlap(R) and assume that
Tdep(u)(R) is not terminating. Let X; be a clique with ¥; C dep(u). Since u # 1 such a clique
exists. But then m;(R) would be also non-terminating, which is a contradiction to condition (2).
Thus 7 gep(y) (R) is terminating. O

Example 5.2. Let R be a TRS over a direct product [, X} of free monoids. If the semi-Thue
system 7, (R) is terminating for every ¢ € {1,...,n} then by Corollary 5.2 it can be decided
whether R is confluent.

Let R be a special TRS over a trace monoid M(X,I) such that for some clique covering
(Z1,...,%,) of (X,I°) it holds m;(I) # 1 for all i € {1,... ,n} and all left-hand sides [ € dom(R).
Again by Corollary 5.2 it can be decided whether R is confluent.

A trace u € M(X, 1) is called connected if there does not exist a factorization v = vw such that
v # 1 # w and v I w. The following statement is similar to Corollary 5.2.

Corollary 5.3. The following problem is decidable.
INPUT: A TRS R over a trace monoid M = M(X, I) such that

(1) alll € dom(R) are connected and
(2) for some clique covering (X1,...,%,) of (£, I¢), the semi—Thue system 7;(R) is terminating
forallie {1,...,n}.
QUESTION: Is R confluent?

Proof. The proof will follow the arguments of the proof of Corollary 5.2 Let R be a TRS that
satisfies conditions (1) and (2) of the corollary and let (21,...,%,) be a clique covering of (X, I¢)
with the stated properties. Again, for all I € dom(R) and all s € {1,... ,n} it holds m;(l) # 1
and R satisfies condition (Al). It suffices to prove that R satisfies condition (A2) (the rest of
the proof is identical to the proof of claim 2 from the proof of Corollary 5.2). Assume that there
exist rules (I1 = r1),(l2 = r2) € R and factorizations I; = p1q1, l2 = pags with p; # 1 # ¢; for
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i € {1,2}, p1 I p2, and ¢1 I go. We will deduce a contradiction. Assume that m;(p1) # 1 for some
i € {1,...,n}. Since p; I p it follows 7;(p2) = 1. Because of 7;(p2g2) = m;(l2) # 1, we can deduce
m;i(g2) # 1, which implies m;(¢1) = 1 because of g1 I g2. Thus, for all i € {1,... ,n},if m(p1) #1
then m;(¢1) = 1. Hence p1 I ¢1 (otherwise there would exist a clique £; with 7;(p1) # 1 # m;(q1)).
Together with p; # 1 # ¢ this contradicts the fact that [y = pyq; is connected. O

Example 5.3. Let M be the trace monoid M({a,b,c,d},{(a,d), (d,a), (b,c),(c,b)}) with the
unique clique covering ({a, b}, {b,d},{c,d},{a,c}) and consider the TRS R = {[b*dc?] — [d]}.
The trace [b?dc?] is connected and the projections of R onto the four cliques are all length-
reducing and thus terminating. Therefore by Corollary 5.3 it can be decided whether R is con-
fluent. Note that Corollary 5.2 does not apply to R since we have w5} (74,0} ([b?dc?])) = 1 but

T{a,b} (ﬂ{a,c} ([a])) ?é 1.

6 Conclusion

In this paper we have shown that for the class of length-reducing trace rewriting systems over a
given trace monoid M, confluence is decidable if and only if M is free or free commutative. Thus,
we have located the borderline between decidability and undecidability for this problem in terms
of the underlying trace monoid. In contrast to the proven undecidability results, the problem of
being («, B)—confluent (a, 3 > 1) was shown to be decidable for trace rewriting systems. This
result was used to present new sufficient criteria that imply the decidability of confluence for
terminating trace rewriting systems.

The following points deserve further investigations. First, the complexity for deciding («, 8)-
confluence should be analyzed. Interesting classes of trace rewriting system for which it is still an
open question whether confluence is decidable and which should be investigated further include
special systems, monadic systems (i.e. for all rules I — r it holds |r| < 1 and |I| > |r|, see [BO93]
for the semi-Thue case) and one-rule systems. For the last class, confluence can be decided in
almost all cases, see [WD95].
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