
�
����

����

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��

�

�

��

�

�

��

�

�

��

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Universit�at Stuttgart

Fakult�at Informatik

�
Institut f�ur Informatik

Breitwiesenstra�e 20-22

D-70565 Stuttgart

Complexity Results for

Conuence Problems

Markus Lohrey

Report Nr. 1999/05

March 4, 1999

1

Abstract

We study the complexity of the conuence problem for restricted kinds of semi{
Thue systems, vector replacement systems and general trace rewriting systems.
We prove that conuence for length{reducing semi{Thue systems is P{complete
and that this complexity reduces to AC1 in the monadic case (where all right{
hand sides consist of at most one symbol). For length{reducing vector replace-
ment systems we prove that the conuence problem is PSPACE{complete and
that the complexity reduces to NP and P, respectively, for monadic vector re-
placement systems and special vector replacement systems (where all right{hand
sides are empty), respectively. Finally we prove that for special trace rewriting
systems, conuence can be decided in polynomial time and that the extended
word problem for special trace rewriting systems is undecidable.

1 Introduction

Rewriting systems that operate on di�erent kinds of objects have received a lot
of attention in computer science and mathematics. For all kinds of rewriting
systems, conuence and termination are two of the most interesting properties.
Together they guarantee the existence of unique normalforms.

Two of the most intensively studied types of rewriting systems are rewriting
systems on free monoids, which are better known as semi{Thue systems [BO93],
and rewriting systems on free commutative monoid, which are better known as
vector replacement systems or Petri nets. Both of these types of rewriting sys-
tems may be seen as special cases of trace rewriting systems [Die90b]. Trace
rewriting systems operate on free partially commutative monoids, which are in
computer science better known as trace monoids. Trace monoids were intro-
duced by [Maz77] into computer science as a model of concurrent systems.

Several decidability and undecidability results are known for the conuence
problem for the di�erent types of rewriting systems mentioned above. Let us
just mention a few of these results. It is known that for length{reducing semi{
Thue systems conuence can be decided in polynomial time [BO81, KKMN85].
In contrast to this result there exists a trace monoid such that conuence is
undecidable for length{reducing trace rewriting systems over this trace monoid
[NO88]. In [Loh98] this result was even sharpened. It was shown that unless the
underlying trace monoid is free or free commutative, conuence is undecidable
for length{reducing trace rewriting systems. Concerning vector replacement
systems it was shown in [VRL98] that conuence is decidable but EXSPACE{
hard for the class of all vector replacement systems.

In this paper we continue the investigation of the conuence problem for
restricted kinds of trace rewriting systems. In Section 3 we prove that the con-
uence problem for length{reducing semi{Thue systems is not only solvable in
polynomial time but furthermore P{complete, which roughly means that it is
inherently sequential. On the other hand we prove that for the more restricted
class of monadic semi{Thue systems (where monadic means that all right{hand
sides consist of at most one symbol) there exists an eÆcient parallel algorithm
(more precisely an AC1{algorithm) that decides conuence. Concerning vec-
tor replacement systems we prove in Section 4 that for the length{reducing
case, conuence is PSPACE{complete and that this complexity reduces for the
monadic case and the special case (where special means that all right{hand
sides are empty), respectively, to NP and P, respectively. Finally in Section
5 we prove that conuence is decidable for special trace rewriting systems in
polynomial time which solves a question from [Die90b]. We end this paper
by showing that in contrast to semi{Thue systems the extended word problem
[BO85] is undecidable even for special trace rewriting systems that contain only
one rule.

1

2 Preliminaries

In this section we will introduce some notations that we will use in this paper.
Given an alphabet �, �� denotes the set of all �nite words of elements of �.
The empty word is denoted by 1. As usual �+ = ��nf1g. The number of
occurrences of a 2 � in the word s is denoted by jsja. The length of the word
s is denoted by jsj. The set fs 2 �� j jsj = ng is denoted by �n. The set of all
letters that occur in the word s is denoted by alph(s). The word s written in
reverse order is denoted by srev. A context{free grammar G, briey CFG, is a
tuple G = (N;�; P; S) where N and � are disjoint alphabets of non{terminal

symbols and terminal symbols, respectively, P is the set of productions which is
a �nite subset of N � (N [�)�, and S 2 N is the start symbol. A production
(A;�) is usually written as A) �. Given A 2 N , we denote by L(G;A) the
set of all elements in �� that can be derived by G, starting from A. Finally
L(G) = L(G;S). We say that G is 1{free if for every production (A) �) 2 P
it holds � 6= 1. Let a1; a2; : : : ; an be a �xed linear ordering of the alphabet
�. A commutative word over � is a word of the form ae11 a

e2
2 � � � aenn , where

e1; : : : ; en 2 N. In particular 1 = a01 � � �a
0
n and jae11 � � � aenn j = e1 + � � �+ en. The

set of all commutative words over � is denoted by ��. The concatenation of
two commutative words ad11 � � � adnn and ae11 � � � aenn is ad1+e11 � � � adn+enn . In this
way �� becomes isomorphic to the free commutative monoid Nj�j . For a natural
number n 2 N let ld (n) denote the logarithm of n to the base 2. Furthermore
let bit(n) = bld (n)c + 1 if n > 0 and bit(0) = 1, i.e., bit(n) is the length of the
binary representation of n. For ae11 � � � aenn 2 �� we de�ne bit(s) =

Pn

i=1 bit(ei).
We assume that the reader is familiar with the basic notions of complexity

theory, in particular with the complexity classes P, NP, and PSPACE, see for
instance [Pap94]. In the following we introduce some notions concerning circuit
complexity, see [BS90] for more details. All Boolean circuit that we consider in
this paper are built from AND, OR, and NOT{gates. A Boolean circuit with n
(linearly ordered) input nodes and exactly one output node accepts a language
L � fa; bgn in the obvious way. By encoding an arbitrary alphabet with more
than two symbols into the alphabet fa; bg, a Boolean circuit can also accept a
language L � �n, where � is an arbitrary alphabet. Let F = fCn j n � 0g
be a family of Boolean circuits, where Cn accepts a subset of �n. We say
that F is uniform if the function n 7! Cn can be computed in deterministic
logarithmic space. Note that this implies that there exists a polynomial p(n)
such that Cn contains at most p(n) many gates. For k � 0, ACk denotes the
set of all languages L such that there exists a uniform family fCn j n � 0g of
Boolean circuits such that the following holds: There exists a constant c > 0
such that the depth of the circuit Cn (i.e. the length of the longest path from
an input node to the unique output node) is at most c � ld k(n), the fan{in (i.e.
the number of inputs) of each AND and OR{gate is unbounded (but since the
number of gates is bounded by a polynomial the same can be assumed for the
fan{in), and �nally Cn accepts the language �n \ L. The class NCk is de�ned
in the same way, but only gates of fan{in at most two are allowed. Finally
NC =

S
k�0 NC

k. The problems in NC are viewed as those problems that can

2

be eÆciently parallelized. By allowing circuits with more than one output node
it is possible to de�ne classes of functions that correspond to ACk, NCk, and NC.
We omit the obvious formal de�nition, and just say that a particular function
can be calculated for instance in ACk. In particular we use reduction functions
between instances of computational problems that can be calculated in AC0 and
which are therefore also computable in deterministic logarithmic space by well
known results, see e.g. [Pap94], Theorem 16.1. Since an AND{gate of fan{in
m can be replaced by a tree of height ld (m) which consists of AND{gates of
fan{in two, and similarly for OR{gates, the following hierarchie is obvious.

NC0 � AC0 � NC1 � AC1 � NC2 � � � � � NC � P

For most of these inclusions it is unknown whether they are proper. In particular
it is an open problem whether NC = P. It is generally believed that NC (P.
If this is true then problems that are P{complete under NC{reductions cannot
be contained in NC, i.e., are inherently sequential.

In the following we introduce some notions from trace theory, see [DR95] for
more details. An independence alphabet is an undirected graph (�; I), where �
is a �nite alphabet and I � ��� is an irreexive and symmetric relation, called
an independence relation. Given an independence alphabet (�; I) we de�ne the
trace monoid M (�; I) as the quotient monoid ��=�I , where �I denotes the least
equivalence relation that contains all pairs of the form (sabt; sbat) for (a; b) 2 I
and s; t 2 ��, which is a congruence on ��. An element of M (�; I), i.e., an
equivalence class of words, is called a trace. The trace that contains the word s
is denoted by [s]I . The neutral element of M (�; I) is the empty trace [1]I which
will be also denoted by 1. Concatenation of traces is de�ned by [s]I [t]I = [st]I .
Since for all words s; t 2 ��, s �I t implies jsj = jtj and alph(s) = alph(t), we can
de�ne j[s]I j = jsj and alph([s]I) = alph(s). The independence relation I can be
lifted to M (�; I) by u I v if alph(u)�alph(v) � I . For the rest of this section let
(�; I) be an independence alphabet and let M = M (�; I). If I = (���)nId�,
where Id� = f(a; a) j a 2 �g, then M is isomorphic to the free commutative
monoid Nj�j ' ��. On the other hand if I = ; thenM is isomorphic to the free
monoid ��. The following lemma is a generalization of Levi's lemma for traces
[CP85], which states that for u1; u2; v1; v2 2M it holds u1u2 = v1v2 if and only
if there exist wi;j 2 M (1 � i; j � 2) such that ui = wi;1wi;2, vi = w1;iw2;i

(1 � i � 2) and w1;2 I w2;1. The following lemma can be proved by induction
on n+m using Levi's lemma for the case n = 2 = m.

Lemma 2.1. Let u1; : : : ; um; v1; : : : ; vn 2M . Then it holds

u1u2 : : : um = v1v2 : : : vn

if and only if there exist wi;j 2M (1 � i � m, 1 � j � n) such that

� ui = wi;1wi;2 : : : wi;n for every 1 � i � m,

� vj = w1;jw2;j : : : wm;j for every 1 � j � n, and

� wi;j I wk;l if 1 � i < k � m and 1 � l < j � n.

3

The situation in the lemma can be visualized by the diagram below, where
n = m = 5. The i{th column corresponds to ui, the j{th row corresponds to
vj and the intersection of the i{th column and the j{th row represents wi;j .
Furthermore wi;j and wk;l are independent if one of them is north{west of the
other one.

v5 w1;5 w2;5 w3;5 w4;5 w5;5

v4 w1;4 w2;4 w3;4 w4;4 w5;4

v3 w1;3 w2;3 w3;3 w4;3 w5;3

v2 w1;2 w2;2 w3;2 w4;2 w5;2

v1 w1;1 w2;1 w3;1 w4;1 w5;1

u1 u2 u3 u4 u5

Proof. We use induction on m + n. The case m = 1 or n = 1 is trivial. Thus
let m > 1 and n > 1. Levi's lemma applied to the identity (u1 � � �um�1)um =
(v1 � � � vn�1)vn gives four traces x, u, v and wm;n such that

u1u2 � � �um�1 = xv; v1v2 � � � vn�1 = xu; um = uwm;n; vn = vwm;n; u I v.

Next we apply the induction hypothesis to the identity u1u2 � � �um�1 = xv. We
obtain traces y1; y2; : : : ; ym�1 and w1;n; w2;n; : : : wm�1;n such that

x = y1y2 � � � ym�1; v = w1;nw2;n � � �wm�1;n;

ui = yiwi;n (1 � i � m� 1); yk I wi;n if 1 � i < k � m� 1.

Similarly, by the induction hypothesis applied to the identity v1v2 � � � vn�1 = xu
there exist traces z1; z2; : : : ; zn�1 and wm;1; wm;2; : : : wm;n�1 such that

x = z1z2 � � � zn�1; u = wm;1wm;2 � � �wm;n�1;

vj = zjwm;j (1 � j � n� 1); zi I wm;j if 1 � j < i � n� 1.

Thus y1y2 � � � ym�1 = x = z1z2 � � � zn�1. The induction hypothesis applied to
this identity gives traces wi;j (1 � i � m� 1, 1 � j � n� 1) such that

� yi = wi;1wi;2 : : : wi;n�1 for every 1 � i � m� 1,

� zj = w1;jw2;j : : : wm�1;j for every 1 � j � n� 1, and

� wi;j I wk;l if 1 � i < k � m� 1 and 1 � l < j � n� 1.

Altogether we now obtain the following:

� ui = yiwi;n = wi;1wi;2 : : : wi;n�1wi;n for every 1 � i � m� 1.

� um = uwm;n = wm;1wm;2 � � �wm;n�1wm;n

� vj = zjwm;j = w1;jw2;j : : : wm�1;jwm;j for every 1 � j � n� 1.

� vn = vwm;n = w1;nw2;n � � �wm�1;n; wm;n

4

Finally we have to verify that wi;j I wk;l if 1 � i < k � m and 1 � l < j � n.
For the case k < m and j < n this was already stated above.

� 1 � i < k � m � 1 and 1 � l < n: Since yk I wi;n and wk;l is a factor of
yk it holds wi;n I wk;l.

� 1 � i < m and 1 � l < j < n: It holds zj I wm;l. Since wi;j is a factor of
zj it holds wi;j I wm;l.

� 1 � i < m and 1 � l < n: Then wi;n is a factor of v and wm;l is a factor
of u. Since u I v we have wi;n I wm;l.

Now we have covered all possibilities.

A trace rewriting system, briey TRS, over the trace monoid M is a non{empty
�nite subset ofM�M . In the rest of this section let R be an arbitrary TRS over
the trace monoid M = M (�; I). If I = ;, i.e., M ' ��, then R is also called a
semi{Thue system, briey STS, over �� (see [BO93] for a detailed introduction
into the theory of semi{Thue systems). On the other hand if I = (���)nId�,
i.e., M ' Nj�j , then R is also called a vector replacement system, briey VRS,
over �� (or a VRS in the dimension j�j). An element (l; r) 2 R is also denoted
by l ! r. The set fl j 9r 2 M : (l; r) 2 Rg of all left{hand sides of R is
denoted by dom(R). The set fr j 9l 2 M : (l; r) 2 Rg of all right{hand sides
of R is denoted by ran(R). Given c = (l; r) 2 R and s; t 2 M , we write s!c t
if s = ulv and t = urv for some u; v 2 M . We write s !R t if there exists
a c 2 R with s !c t. The transitive (reexive and transitive) closure of !R

is denoted by !+
R (!�

R). The transitive, reexive and symmetric closure of
!R is denoted by $�

R. It is a congruence relation on M . We say that R is
terminating if there does not exist an in�nite chain u1 !R u2 !R u3 !R � � �
in M . We say that a pair (u; v) 2 M �M is conuent (with respect to R)
if there exists a w 2 M such that u !�

R w and v !�
R w. We say that R is

conuent on the trace u 2 M if for all v1; v2 2 M with u!�
R v1 and u !�

R v2
there exists a w 2M with v1 !

�
R w and v2 !

�
R w. We say that R is conuent

if R is conuent on all u 2 M . We say that R is locally conuent if for all
u; v1; v2 2M with u!R v1 and u!R v2 there exists a w 2 M with v1 !

�
R w

and v2 !
�
R w. If R is terminating then by Newman's lemma [New43] R is

conuent if and only if R is locally conuent. A trace u is irreducible (with
respect to R) if there does not exist a v 2M with u!R v. The set of all traces
in M that are irreducible with respect to R is denoted by IRR(R). The trace
v is a normalform of u if u !�

R v and v 2 IRR(R). We say that R is length{
reducing if jlj > jrj for every (l; r) 2 R. Obviously, if R is length reducing then
R is also terminating. We say that R is monadic if R is length{reducing and
ran(R) � f1g [�. We say that R is special if ran(R) = f1g and 1 62 dom(R).
Let COLR(M) (COMO(M), COSP(M)) denote the set of all conuent TRSs
overM that are length{reducing (monadic, special). The uniform word problem

for a class C of TRSs over M is the following decision problem: Given a R 2 C
and two traces u; v 2M , does u$�

R v hold?

5

Since we will investigate the complexity of algorithms that take a TRS as
input, we have to de�ne the length jjRjj of the TRS R. First assume that I 6=
(���)nId�. In this case in general the best possible coding of a rule from R is
to simply write down words over � that represent the left- and right{hand side of
the rule. Thus we de�ne jjRjj =

P
fjlj+ jrj j (l; r) 2 Rg. But if I = (���)nId�,

i.e., if R is a VRS over �� we can code R more eÆciently by using the binary
notation. Therefore in this case we de�ne jjRjj =

P
fbit(l) + bit(r) j (l; r) 2 Rg.

In this paper we always assume that a TRSR is represented as a string of length

(jjRjj) (since the di�erent rules of R must be separated by special markers, we
use the
{notation).

3 Semi{Thue systems

For terminating STSs conuence is known to be decidable [BO81]. This classical
result is based on the so called critical pairs of a STS. Let R be a STS over ��.
The set of critical pairs CP(R) is the set

CP(R) =f(sr1t; r2) j (l1; r1); (sl1t; r2) 2 Rg [

f(r1u; sr2) j (st; r1); (tu; r2) 2 R; t 6= 1g.

Note that CP(R) is �nite. It is well known that R is locally conuent if and only
if all critical pairs are conuent [NB72]. Since the last property can be decided
e�ectively for the class of terminating STSs, conuence is decidable for this
class. For length{reducing STSs, conuence can be even decided in polynomial
time [BO81]. To the knowledge of the author, the best known algorithm for
deciding COLR(��) is the O(jjRjj3) algorithm from [KKMN85]. In this section
we prove that COLR(��) is moreover P{complete if j�j � 2. Thus, COLR(��)
seems to be inherently sequential. But this situation changes for the monadic
case. At the end of this section we show that COMO(��) is contained in AC1.

In order to prove that COLR(��) is P{complete if j�j � 2 we will �rst prove
that the conuence problem is P{complete for the class of all STSs (without
restriction on the cardinality of the underlying �nite alphabet). Afterwards we
will use the following lemma.

Lemma 3.1. Let k > 2 and � = fa1; : : : ; akg. Let R be a length{reducing
STS over �. Let the injective morphism � : �� ! fa; bg� be de�ned by �(ai) =
abai+1bk�i+2 for i 2 f1; : : : ; kg and let �(R) = f(�(l); �(r)) j (l; r) 2 Rg. Then

(1) �(R) is length{reducing and can be calculated from R in AC0.

(2) If �(s)!�(R) u then u = �(t) and s!R t for some t 2 �.

(3) �(s)!�(R) �(t) if and only if s!R t.

(4) R is conuent if and only if �(R) is conuent.

6

Proof. The �rst statement of the lemma is obvious (note that j�(ai)j = k+5 for
all i 2 f1; : : : ; kg). The second statement follows from the following statement,
where s and t are non{empty words:

If �(s) = u1�(t)u2 then u1 = �(v1) and u2 = �(v2) for some v1; v2 2 ��. (1)

Note that this statement does not hold for t = 1. Since we need (1) only for the
case that t 2 dom(R) and since R is length{reducing, the restriction t 6= 1 does
not matter. The if{direction from the third statement is obvious and the only
if{direction follows from the second statement of the lemma and the injectivity
of �. The if{direction of the fourth statement follows from the second statement
of the lemma as follows. Let �(R) be conuent and let s; t; u 2 �� such that
s !R t and s !R u. Thus �(s) !�(R) �(t) and �(s) !�(R) �(u). Conuence
of �(R) implies �(t) !�

�(R) w and �(u) !�
�(R) w for some w 2 fa; bg�. An

inductive generalization of the second statement of the lemma implies w = �(v)
and t !�

R v, u !�
R v for some v 2 ��. Thus R is conuent. Finally, the

only if{direction of the fourth statement of the lemma follows from (1) and the
following statement:

If �(s) = uv, �(t) = vw then 9x; y; z 2 ��: u = �(x), v = �(y), w = �(z).

Together with (1), this statement implies that every overlapping of two left{
hand sides of �(R) results from an overlapping of two left{hand sides of R. In
particular if (s; t) 2 fa; bg� is a critical pair of �(R) then s = �(u), t = �(v)
for some u; v 2 �� and (u; v) is a critical pair of R. Thus if R is conuent then
(u; v) is conuent and thus also (s; t) is conuent with respect to �(R).

Theorem 3.2. COLR(��) is P{complete under AC0{reductions for every �nite
alphabet � with j�j � 2.

Before we prove Theorem 3.2 we will �rst investigate the uniform word problem
for the class of conuent and length{reducing STSs. It is known that for a
conuent and length{reducing STS the word problem is decidable in polynomial
time [Boo82].

Theorem 3.3. The uniform word problem for the class of conuent and length{
reducing STS over fa; bg� is P{complete under AC0{reductions.

Proof. Our starting point for the proof of the theorem is the Generic Machine

Simulation Problem, briey GMSP, see e.g. [GHR95]. GMSP is the following
decision problem.
INPUT: A deterministic Turing machineM, an input word w forM, and a word
t 2 f#g�, where # is a new symbol which does not occur in the description of
M.
QUESTION: Does M terminate on input w after � jtj steps ?

It is known that GMSP is P{complete under AC0{reductions [GHR95]. In
GMSP the Turing machine M is represented by its transition table. We will

7

(1a) qfx! qf for all x 2 �
(1b) xqf ! qf for all x 2 �

(2a) �q3i/! �blp
3(i�1)/ if Æ(q;�) = (p; b; R), 1 � i � m+ 1, � 2 �l [f.g

(2b) �q3iar ! �blp
3(i�1) if Æ(q; a) = (p; b; R), 1 � i � m+ 1, � 2 �l [f.g

(2c) alq
3i/! p3(i�1)arbr/ if Æ(q;�) = (p; b; L), 1 � i � m+ 1

(2d) .q3i/! .p3(i�1)�rbr/ if Æ(q;�) = (p; b; L), 1 � i � m+ 1

(2e) clq
3iar ! p3(i�1)crbr if Æ(q; a) = (p; b; L), 1 � i � m+ 1

(2f) .q3iar ! .p3(i�1)�rbr if Æ(q; a) = (p; b; L), 1 � i � m+ 1

Figure 1: The STS P(M;m), where a; b; c 2 �, q 2 Qnfqfg, and p 2 Q.

reduce GMSP to the uniform word problem for conuent and length{reducing
STSs over fa; bg�. Thus let (M; w;#m) be an instance of GMSP. Here M =
(Q;�;�; Æ; q0; qf) is a deterministic Turing machine, where Q is the �nite set of
states, � is the tape alphabet, � 2 � is the blank symbol, Æ : Qnfqfg � � !
Q � � � fL;Rg is the total transition function, q0 2 Q is the initial state,
and qf 2 Q is the unique �nal state. The word w 2 (�nf�g)� is an input for
M. Note that M terminates if and only if it reaches the �nal state qf . Let
�l = fal j a 2 �g and �r = far j a 2 �g be two disjoint copies of � with
�l \Q = ; = �r \Q. The word wr results from w by replacing every a 2 � by
ar. Let . (left{end marker) and / (right{end marker) be additional symbols and
let � = Q [�l [�r [f.; /g. We de�ne the STS P(M;m) over �� by the rules
of Figure 1. The rules (1a) and (1b) make qf absorbing. The rules (2a) to (2f)
simulate the machine M. Note that the state symbol is represented 3i times
on the left{hand side and 3(i � 1) times on the right{hand side. This makes
P(M;m) length{reducing. It is also easy to see that P(M;m) can be computed
from M and #m in AC0 (for this it is necessary that m is given in the unary
representation #m since jjP(M;m)jj increases exponentially with bit(m)).
Claim: P(M;m) is length{reducing and conuent. FurthermoreM terminates

on input w after � m steps if and only if .q
3(m+1)
0 wr/ !

�
P(M;m) qf .

Conuence of P(M;m) is obvious, since only the rules (1a) and (1b) generate
critical pairs. Since qf is absorbing, these critical pairs are conuent. Now
assume that M does not terminate on input w after � m steps. By simulating

m + 1 steps of M we obtain .q
3(m+1)
0 wr/ !m+1

P(M;m)
.uv/ 2 IRR(P(M;m))

for some u 2 ��l , v 2 ��r . But then .q
3(m+1)
0 wr/ !�

P(M;m) qf cannot hold

since also qf 2 IRR(P(M;m)) and P(M;m) is conuent. Now assume that
M terminates on input w after � m steps. Then for some j � 1, u 2 ��

l
, and

v 2 ��r it holds .q
3(m+1)
0 wr/ !�

P(M;m) .uq
3j
f
v/. By applying the rules (1a)

and (1b), the word .uq
3j
f
v/ can be reduced to qf . Thus, the claim is proved.

Now consider the STS �(P(M;m)) over the alphabet fa; bg, where � is
the coding function from Lemma 3.1. Then �(P(M;m)) is also conuent and
length{reducing and can be calculated from P(M;m) (and hence from M and

8

#m) in AC0. Furthermore �(.q
3(m+1)
0 wr/) $�

�(P(M;m)) �(qf) if and only if

�(.q
3(m+1)
0 wr/) !

�
�(P(M;m)) �(qf) (since �(P(M;m)) is conuent and �(qf)

irreducible with respect to �(P(M;m))) if and only if .q
3(m+1)
0 wr/ !

�
P(M;m) qf

if and only ifM terminates on w after � m steps. This proves the theorem.

Proof of Theorem 3.2. As mentioned above, COLR(��) belongs to P. In order
to prove the P{hardness of COLR(��) for j�j � 2 it suÆces to prove the P{
hardness of COLR(fa; bg�).

Let (M; w;#m) be an instance of GMSP and let n = 3(m+1)+jwj+2. Let �
be the alphabet from the previous proof and let P(M;m) be the length{reducing
and conuent STS from the previous proof. Let A and B be symbols which are
not in � and de�ne the length{reducing STS R(M; w;m) over (�[fA;Bg)� by

R(M; w;m) = P(M;m) [fAnB ! .q
3(m+1)
0 wr/; AB ! qfg.

With the rule AnB ! .q
3(m+1)
0 wr/ we generate an initial con�guration for M.

Since the initial state q0 is represented 3(m+1) times in the initial con�guration,
at most m+1 steps ofM will be simulated with the rules (2a) to (2f). Of course
also R(M; w;m) can be computed from M, w, and #m in AC0.

By the claim form the proof of Theorem 3.3 the machine M terminates on

input w after � m steps if and only if .q
3(m+1)
0 wr/ !

�
P(M;m) qf which clearly

holds if and only if .q
3(m+1)
0 wr/ !

�
R(M;w;m) qf .

Claim : R(M; w;m) is conuent if and only if .q
3(m+1)
0 wr/ !

�
R(M;w;m) qf .

First assume that R(M; w;m) is conuent. Since

AnB !R(M;w;m) A
n�1qf !

n�1
(1b)

qf and AnB !R(M;w;m) .q
3(m+1)
0 wr/

and since qf 2 IRR(R(M; w;m)) it must hold .q
3(m+1)
0 wr/ !�

R(M;w;m) qf .

Now assume that .q
3(m+1)
0 wr/ !�

R(M;w;m) qf holds. Then the critical pair

(An�1qf ; .q
3(m+1)
0 wr/) is conuent. In all other critical pairs one of the rules

(1a) or (1b) must be involved. Since qf is absorbing these critical pairs are also
conuent. This proves the claim.

Now consider the STS �(R(M; w;m)), where � is the coding function from
Lemma 3.1. Then �(R(M; w;m)) is conuent if and only if R(M; w;m) is

conuent if and only if .q
3(m+1)
0 wr/ !

�
R(M;w;m) qf if and only ifM terminates

on input w after � m steps.

In the rest of this section we will show that Theorem 3.2 does not hold any longer
for monadic STSs unless NC = P. More precisely, we prove that COMO(��) is
contained in AC1. To the knowledge of the author this result was never stated
explicitly, but it easily follows from known results. We start with the uniform

word problem for 1{free CFGs which is the following problem:
INPUT: A 1{free CFG G over a terminal alphabet � and a word s 2 ��.
QUESTION: Is s 2 L(G) ?

9

The following result was implicitly proven in [Ruz80], see also [GHR95], pp.
176.

Lemma 3.4. The uniform word problem for 1{free CFGs is in AC1.

In [BJW82] it was shown that the question whether a pair (s; t) of words is
conuent with respect to a monadic STS can be reduced to the word problem
for CFGs. We present the construction from [BJW82] for completeness and in
order to convince the reader that it can be carried out in AC0. Let R be a
monadic STS over ��. With R we associate a 1{free CFG GR in the following
way. Let �l = fal j a 2 �g and �r = far j a 2 �g be two disjoint copys of �
and let # be an additional symbol. For a word s 2 ��, sl and sr are de�ned
in the obvious way. Then GR = (�l [�r [fS; Sl; Srg;� [f#g; P; S), where P
contains all productions of the form

S) alSar j SSr j SlS j # for a 2 �, al) a, ar) a for a 2 �
Sl) sl, Sr) srevr for (s; 1) 2 R, al) sl, ar) srevr for a 2 �, (s; a) 2 R,
x) Slx j xSl for x 2 �l [fSlg, x) Srx j xSr for x 2 �r [fSrg.

Obviously, GR can be constructed from R by an AC0{circuit. Furthermore
L(GR; Sl) = fs 2 �+ j s !�

R 1g, L(GR; al) = fs 2 �� j s !�
R ag and

L(GR; Sr) = fs 2 �+ j srev !�
R 1g, L(GR; ar) = fs 2 �� j srev !�

R ag. Thus

L(GR) = fs#trev j s!�
R u and t!�

R u for some u 2 ��g.

Now the following theorem is easy to prove.

Theorem 3.5. COMO(��) is in AC1.

Proof. Let R be a monadic STS over ��. First we construct an AC0{circuit
that calculates from R the set of all critical pairs. This is possible, since in
parallel we can test for each pair of rules l1 ! r1 and l2 ! r2 and for each
factorization l1 = st with t 6= 1 whether l2 is a pre�x of t or t is a pre�x of l2
(using unbounded fan{in this is clearly possible in constant depth). If this is
the case, we obtain a critical pair. In a second step we have to test in parallel
whether each critical pair (s; t) 2 CP(R) is conuent. For this we construct in
AC0 from R the 1{free CFG GR and test whether s#trev 2 L(GR) which can
be done in AC1 by Lemma 3.4.

4 Vector replacement systems

In [VRL98] it was shown that conuence is decidable but EXSPACE{hard for
the class of all vector replacement systems. Based on critical pairs, more feasible
upper bounds can be obtained for the length{reducing case. Similarly to STSs,
also VRSs yield �nite sets of critical pairs [BL81]. Let R be a VRS over ��.
The set CP(R) of critical pairs of R contains exactly all pairs (s; t) 2 �� ���

such that there exist rules (k; p); (l; r) 2 R such that for all a 2 � it holds
jsja = max(jkja; jlja)� jkja + jpja and jtja = max(jkja; jlja)� jlja+ jrja. Then R

10

is locally conuent if and only if all critical pairs are conuent. Note that there
are at most jRj � (jRj � 1) many critical pairs that are not trivially conuent.
For the length{reducing case, testing all critical pairs for conuence leads to
a straight{forward PSPACE{algorithm for deciding conuence. In this section
we will prove that conuence is moreover PSPACE{complete for the class of all
VRSs (without restriction on the dimension), i.e.,

S
k>0 COLR(N

k) is PSPACE{
complete. Note that the calculation of a normalform of a s 2 �� with respect
to a length{reducing VRS may involve a number of steps that is exponential in
bit(s). Therefore the calculation of normalforms for the �nitely many critical
pairs does not lead to a polynomial time algorithm (as it is the case for STSs).

Theorem 4.1.
[

k>0

COLR(Nk) is PSPACE{complete.

Proof. The following problem is known to be PSPACE{complete [Kar72]:
INPUT: A deterministic linear bounded automaton M and an input w for M.
QUESTION: Does M accept w ?
Let us �x a deterministic linear bounded automaton M = (Q;�; .; /; Æ; q0; qf)
and an input w 2 (�nf.; /g)� for M, where Q is the �nite set of states, � is
the tape alphabet, . 2 � is the left{end marker, / 2 � is the right{end marker,
Æ : (Qnfqfg) � � ! Q � � � fL;Rg is the transition function, q0 2 Q is the
initial state, and qf is the unique �nal state. The transition function must be
de�ned such that

� the read{write head never moves to the left (right) of . (/) and

� does not overwrite . (/) by a symbol di�erent from . (/) and

� does not overwrite a tape symbol a 2 �nf.; /g by . or /.

We identify each tape cell of M with a number from f0; : : : ; jwj + 1g, where
cell 0 always contains the left{end marker . and cell jwj + 1 always contains
the right{end marker /. We assume that M starts with the read{write head
scanning cell 0. Note that M accepts w if and only if it terminates on w if
and only if it reaches the �nal state qf . Furthermore we may assume that the
read{write head is always in cell 0 if the �nal state qf is reached.

We will construct a VRS R(M; w) such that R(M; w) is conuent if and
only if M accepts the input w, which proves the theorem. Our construction
is based on the simulation of a linear bounded automaton by a Petri net from
[JLL77]. Let us de�ne the alphabet � by

� = (f0; : : : ; jwj+ 1g �Q) [(f0; : : : ; jwj+ 1g � �) [fA; $g.

Note that we consider pairs (i; q) 2 f0; : : : ; jwj + 1g � Q and pairs (i; a) 2
f0; : : : ; jwj + 1g � � as single symbols. The symbol (i; q) means that M is in
the state q and the read{write head is scanning cell i, whereas the symbol (i; a)
means that cell i contains the tape symbol a. Since cell 0 always contains . and
cell jwj+ 1 always contains /, the symbols (0; .) and (jwj+ 1; /) will be always

11

(1a) $(i; q)(i; a)! (i+ 1; p)(i; b) if Æ(q; a) = (p; b; R), q 6= qf , i � jwj
(1b) $(i; q)(i; a)! (i� 1; p)(i; b) if Æ(q; a) = (p; b; L), q 6= qf , i � 1
(2) (0; qf)x! (0; qf) if x 2 �
(3a) (i; a)(i; b)! (0; qf)
(3b) (i; p)(j; q)! (0; qf)
(4a) An ! $m(0; q0)(0; .)(1; a1) � � � (jwj; ajwj)(jwj + 1; /)
(4b) A2 ! (0; qf)

Figure 2: The VRS R(M; w), where p; q 2 Q, 0 � i; j � jwj+ 1, and a; b 2 �.

present. Moreover since we assumed thatM terminates if and only if it reaches
the �nal state qf and the read{write head is in cell 0, the presence of the symbol
(0; qf) indicates that M has terminated. The VRS R(M; w) over �� is shown
in Figure 2, where we assume that w = a1a2 � � � ajwj andm = jQj � j�jjwj �(jwj+2)
and n = m+ jwj + 4 (we did not �x a linear ordering on �, which is necessary
for ��, but this can be done in an arbitrary way).

The rules (1a) and (1b) simulateM where the additional $ on the left{hand
side is necessary in order to make these rules length{reducing. Rule (2) makes
(0; qf) absorbing. With the rules (3a) and (3b) it is possible to resolve critical
pairs that result from the rules (1a) and (1b). In particular it is easy to see that
the VRS that consists of the rules (1a), (1b), (2), (3a) and (3b) is conuent.
With the rules (4a) and (4b) we intentionally create a critical pair. The �rst
rule (4a) produces the encoding of the initial con�guration of M. Since each
simulation step of R(M; w) consumes a $, we have to make enough $'s available
for the initial con�guration. Since there are at most m = jQj � j�jjwj � (jwj + 2)
di�erent con�gurations for M, the automaton M either terminates after � m
steps or loops forever. Thus m many $'s suÆce. Note that in the binary
representation of R(M; w) the m many $'s are represented by O(ld(m)) =
O(ld(jQj) + jwj � ld(j�j) + ld(jwj + 2)) many bits, which is polynomial in jwj
and the length of the description of M. The same holds also for the number
n = m+ jwj+4 in the left{hand side of rule (4a) which is chosen such that (4a)
is length{reducing. Finally rule (4b) writes the absorbing symbol (0; qf).

The proof that R(M; w) is conuent if and only ifM accepts w is similar to
the proof of Theorem 3.2. First note that An !(4b) A

n�2(0; qf)!
n�2
(2)

(0; qf) 2

IRR(R(M; w) and An !(4a) $
m(0; q0)(0; .)(1; a1) � � � (jwj; ajwj)(jwj+1; /). IfM

does not accept w, i.e., ifM does not terminate on input w, then by simulating
m steps of M we obtain

$m(0; q0)(0; .)(1; a1) � � � (jwj; ajwj)(jwj + 1; /)!m
R(M;w)

(i; q)(0; .)(1; b1) � � � (jwj; bjwj)(jwj+ 1; /) 2 IRR(R(M; w))

for some i 2 f0; : : : ; jwj + 1g, q 2 Qnfqfg, and bj 2 �nf.; /g (1 � j � jwj).
Thus R(M; w) is not conuent. On the other hand if M accepts w, then M

12

reaches after k � m steps the �nal state qf and terminates in cell 0. Hence

$m(0; q0)(0; .)(1; a1) � � � (jwj; ajwj)(jwj + 1; /)!k
R(M;w)

$m�k(0; qf)(0; .)(1; b1) � � � (jwj; bjwj)(jwj+ 1; /)!+
(2)

(0; qf).

Since all other critical pairs ofR(M; w) are conuent,R(M; w) is conuent.

One might ask whether conuence is also PSPACE{complete for VRSs in a suÆ-
ciently large but �xed dimension. The usual technique of coding several symbols
into two symbols that we applied for STSs does not work for VRSs. On the
other hand there exists a simulation of a 3{counter machine with exponentially
bounded counters (for which the acceptance problem is PSPACE{complete) by
a VRS in the dimension 6 [Huy85]. But in this simulation unwanted critical
pairs arise and it does not seem to be obvious whether these critical pairs can
be resolved by adding a polynomial number of additional rules (like the rules
(3a) and (3b) in the previous proof).

The following theorem follows easily from the previous proof by using the
same arguments that we applied for the proof of Theorem 3.3.

Theorem 4.2. The uniform word problem for length{reducing and conuent
VRSs is PSPACE{complete.

Similarly to the semi{Thue case, also for VRSs the complexity of the con-
uence problem decreases for the monadic case. This is the content of the next
theorem.

Theorem 4.3.
[

k>0

COMO(Nk) is in NP.

Proof. The theorem follows easily from the results of [Huy83, Esp97], which
state that the reachability problem for communication{free Petri nets is in NP
(in fact it is NP{complete). In terms of VRSs, a VRS R is communication{free,
if for each left{hand side l 2 dom(R) it holds jlj = 1. Using this result, we can
decide

S
k>0 COMO(Nk) in NP as follows. Given a monadic VRS R over ��

we �rst construct the set of all critical pairs, as de�ned at the beginning of this
section. Let (s; t) 2 �� � �� be one of these critical pairs. We now guess a
u 2 �� with juj � jsj and juj � jtj. It suÆces to check in NP whether s !�

R u
and t !�

R u. In order to verify whether s !�
R u we proceed as follows. Let P

be the following communication{free VRS over (� [f$g)�, where $ 62 � is a
new symbol:

P = f(r; l) j (l; r) 2 R; jrj = 1g [f($; l) j (l; 1) 2 Rg

Then s!�
R u if and only if u$i !�

P s for some 0 � i � jsj� juj. Thus we simply
have to guess such a number i (note that bit(i) is bounded by a polynomial
in bit(s)) and check whether u$i !�

P s, which is possible in NP by the results
mentioned above. This concludes the proof.

13

Whether
S

k>0 COMO(Nk) is also NP{complete is left as an open question. If
we further restrict the input to be a special VRS, then we can even give a simple
deterministic polynomial time algorithm that decides conuence.

Theorem 4.4.
[

k>0

COSP(Nk) is in P.

Proof. Let R be a special VRS over ��, where � = fa1; : : : ; ang. In order
to check whether R is conuent it suÆces to calculate for each critical pair
(s; t) 2 ����� normalforms of s and t and to check whether these normalforms
are equal. Thus we have to prove that a normalform of a s 2 �� can be
calculated in P. Let l1; : : : ; lm be the left{hand sides of R. Let s0 = s and for
1 � i � m let si be a normalform of si�1 with respect to the special one{rule
VRS fli ! 1g. Then it is easy to see that sm is a normalform of s. Thus we
have to show that the normalform of ad11 � � �adnn 2 �� with respect to a rule
ae11 � � �aenn ! 1 can be calculated in P. But this is easy. For each 1 � i � n
we have to calculate the integer{quotient qi = bdi=eic and take the minimum
q = minfq1; : : : ; qng of these quotients. For 1 � i � n let fi = di � q � ei. Then

the normalform is af11 � � � afnn .

Also the problem whether
S

k>0 COSP(N
k) is P{complete must be left as an

open question.

5 Special trace rewriting systems

In contrast to the decidability results of the last two sections, there exists a trace
monoid M such that COLR(M) is undecidable [NO88]. This result was sharp-
ened in [Loh98], where it was shown that COLR(M) is decidable if and only if
M is a free monoid or a free commutative monoid. In particular this implies
that in general TRSs cannot have �nitely many critical pairs (in contrast to
STSs and VRSs). Furthermore these undecidability results lead to the question
whether there exist restricted but non trivial classes of (length{reducing) TRSs
for which conuence is decidable. In particular, in [Die90b] it was asked whether
conuence is decidable for special TRSs and monadic TRSs, respectively. For
the special case we answer this question positively in this section. In fact we
will prove that conuence is decidable for a broader class of TRSs that satisfy
the following condition, which we call condition (A): A TRS R over M (�; I)
satis�es condition (A) if

(1) for all (l1; r1); (l2; r2) 2 R and all factorizations l1 = p1q1, l2 = p2q2
with pi 6= 1 6= qi for i 2 f1; 2g, p1 I p2, and q1 I q2 it holds: There exist
factorizations r1 = s1t1, r2 = s2t2 such that a I pi implies a I si and a I qi
implies a I ti for all a 2 �, i 2 f1; 2g.

(2) for all (l1; r1); (l2; r2) 2 R and all factorizations l1 = p1sq1, l2 = p2sq2 with
s 6= 1, p1 I p2, and q1 I q2 it holds: a I s implies ar1 = r1a and ar2 = r2a
for all a 2 �.

14

Input: A length{reducing TRS R over M (�; I) that satis�es condition (A)
begin

forall ((l1; r1); (l2; r2))) 2 R�R do

forall factorizations l1 = p1sq1, l2 = p2sq2 with
s 6= 1, p1 I p1, q1 I q2 do

nf1 := NF(p1r2q1;R); nf2 := NF(p2r1q2;R);
if nf1 6= nf2 then

(�) return \R not conuent"
else

u := nf1(= nf2);
forall a 2 � with a I p2sq1 or a I p1sq2 do

nf1 := NF(au;R); nf2 := NF(ua;R);
if nf1 6= nf2 then

(��) return \R not conuent"
endfor

endfor

endfor

(���) return \R conuent"
end

Figure 3: The algorithm CONFL

Note that condition (A2) implies that for every rule (l; r) 2 R if a I l then
ar = ra.

Theorem 5.1. The following problem is decidable for every trace monoid M :
INPUT: A length-reducing TRS R over M that satis�es condition (A).
QUESTION: Is R conuent?

Proof. LetM = M (�; I) be a trace monoid and let R be a length{reducing TRS
over M that satis�es condition (A). Let NF be an algorithm that computes an
arbitrary normalform NF(u;R) of a given input trace u with respect to R.
Consider the algorithm CONFL in Figure 3. We claim that CONFL outputs
\R conuent" if and only if R is conuent. First we prove that R is not
conuent if CONFL outputs \R not conuent". If CONFL executes line (�)
then there exist rules l1 ! r1 and l2 ! r2 in R and factorizations l1 = p1sq1,
l2 = p2sq2 such that s 6= 1, p1 I p2, and q1 I q2. Furthermore there exists a
normalform u1 of p1r2q1 and a normalform u2 of p2r1q2 such that u1 6= u2.
But then R is indeed not conuent since p2p1sq1q2 !R p2r1q2 !

�
R u2 and

p2p1sq1q2 = p1p2sq2q1 !R p1r2q1 !
�
R u1. Now assume that CONFL executes

line (��). Then it holds u1 = u2 = u but there exists an a 2 � such that either
a I p2sq1 or a I p1sq2 and there exist a normalform v1 of au and a normalform
v2 of ua such that v1 6= v2. Assume that a I p2sq1. Since R satis�es condition

15

(A2) it follows ar1 = r1a and ar2 = r2a. Hence

p2p1sq1aq2 !R p2r1aq2 = ap2r1q2 !
�
R au!�

R v1 and

p2p1sq1aq2 = p1p2sq1aq2 = p1ap2sq2q1 !R p1ar2q1 = p1r2q1a!
�
R ua!�

R v2.

Thus, again R is not conuent. The case that a I p1sq2 can be dealt similarly
by considering the trace p2ap1sq1q2 instead of p2p1sq1aq2.

Now assume that CONFL outputs \R conuent" in line (���). We have
to show that R is conuent. By induction on the length of traces it suÆces to
prove the following implication:

If R is conuent on all traces t0 with jt0j < jtj then R is conuent on t.

Thus, let t 2 M and assume that R is conuent on all traces t0 with jt0j < jtj.
We have to prove that all pairs (t1; t2) such that t!i

R t1 and t!j

R t2 for some
i; j � 0 are conuent. Of course the case i = 0 or j = 0 is trivial. Let us
assume for a moment that we have already considered all cases with i = 1 = j.
Then we can apply the same arguments as in the (standard) proof of Newman's
lemma: t !R s1 !

�
R t1 and t !R s2 !

�
R t2 imply that there exists a trace

s with si !
�
R s (i 2 f1; 2g). Since js1j < jtj and s1 !

�
R t1, s1 !

�
R s it holds

t1 !
�
R u and s !�

R u for some trace u. Since also js2j < jtj and s2 !
�
R t2,

s2 !
�
R s !�

R u it holds t2 !
�
R v and u !�

R v, i.e., t1 !
�
R u !�

R v for some
trace v.

Thus, it suÆces to consider arbitrary factorizations t = u1l1v1 = u2l2v2
where (l1; r1); (l2; r2) 2 R. We have to prove that the pair (u1r1v1; u2r2v2) is
conuent. Lemma 2.1 applied to the identity u1l1v1 = u2l2v2 gives nine traces
yi; pi; qi (i 2 f1; 2g) and s such that (see also the diagram below)

� l1 = p1sq1, l2 = p2sq2,

� u1 = y1p2w2, u2 = y1p1w1,

� v1 = w1q2y2, v2 = w2q1y2,

� t = y1p1w1p2sq2w2q1y2 = y1p2w2p1sq1w1q2y2,

� p1 I p2, q1 I q2, w1 I p2sw2q1, w2 I p1w1sq2.

v2 w2 q1 y2
l2 p2 s q2
u2 y1 p1 w1

u1 l1 v1

We have to show that the pair (y1p1w1r2w2q1y2; y1p2w2r1w1q2y2) is conuent.
First assume that either y1 6= 1 or y2 6= 1. For the trace t0 = p1w1p2sq2w2q1 =
p2w2p1sq1w1q2 it holds jt

0j < jtj and

t0 = p1w1l2w2q1 !R p1w1r2w2q1, t0 = p2w2l1w1q2 !R p2w2r1w1q2.

Thus the pair (p1w1r2w2q1; p2w2r1w1q2) is conuent. But then the same also
holds for the pair (y1p1w1r2w2q1y2; y1p2w2r1w1q2y2). Thus we may assume that
y1 = y2 = 1 and we have to consider the pair (p1w1r2w2q1; p2w2r1w1q2).

Next assume that s = 1, i.e., l1 = p1q1 and l2 = p2q2. First assume that also
p1 = 1, i.e., l1 = q1. We have to show that the pair (w1r2w2q1; p2w2r1w1q2) is

16

conuent. Since w1r2w2q1 = w1r2w2l1 !R w1r2w2r1 it suÆces to prove that
also p2w2r1w1q2 !R w1r2w2r1. This can be deduced as follows: Since q1 I w1q2,
i.e., l1 I w1q2, condition (A2) (more precisely the remark after condition (A2))
for R implies w1r1 = r1w1 and q2r1 = r1q2. Thus

p2w2r1w1q2 = p2w2w1q2r1 (since r1w1q2 = w1q2r1)

= w1p2q2w2r1 (since w1 I w2, w1 I p2, and w2 I q2)

!R w1r2w2r1

Thus, we may assume that p1 6= 1. Similarly we may assume that also q1 6= 1,
p2 6= 1, and q2 6= 1. But then condition (A1) implies that there exist factoriza-
tions r1 = s1t1, r2 = s2t2 such that a I pi implies a I si and a I qi implies a I ti
for all a 2 �. In particular it holds

p2 I s1, w2 I s1, p1 I s2, w1 I s2, q2 I t1, w1 I t1, q1 I t2, w2 I t2.

Furthermore p2 I s1 implies s2 I s1 and q2 I t1 implies t2 I t1. Thus, we obtain

p2w2r1w1q2 = p2w2s1t1w1q2 = s1w1p2q2w2t1 !R s1w1s2t2w2t1 = s2w2s1t1w1t2,

p1w1r2w2q1 = p1w1s2t2w2q1 = s2w2p1q1w1t2 !R s2w2s1t1w1t2.

In the rest of the proof we assume that s 6= 1. But then we have one of the
situations that are considered in the two outermost forall{loops of CONFL.
Since we assume that CONFL outputs \R conuent" we know that there exists
a trace u such that p1r2q1 !

�
R u and p2r1q2 !

�
R u. Furthermore since R

satis�es condition (A2) and s I w1w2 it holds riwj = wjri for i; j 2 f1; 2g. Hence
p1w1r2w2q1 = w2p1r2q1w1 !�

R w2uw1 and p2w2r1w1q2 = w1p2r1q2w2 !�
R

w1uw2 and it suÆces to prove that the pair (w2uw1; w1uw2) is conuent. The
case w1 = 1 = w2 is trivial. Thus assume w.l.o.g. w1 = wa, where a 2 �. Since
w1 I p2sw2q1 it follows a I p2sq1. Thus a 2 � is one of the symbols that are
considered in the innermost forall{loop of CONFL. It follows that there exists
a trace v such that au!�

R v and ua!�
R v. Thus

wuaw2 !
�
R wvw2 and w1uw2 = wauw2 !

�
R wvw2. (2)

Next let us consider the trace t0 = p1wp2sq2w2q1 = p1wl2w2q1 (t0 results from
t by replacing the factor w1 = wa by w). It holds jt0j < jtj and since w satis�es
the same independencies as w1 it holds t

0 = p2w2p1sq1wq2 = p2w2l1wq2. Thus
we obtain (note that wr1 = r1w and wr2 = r2w)

t0 !R p1wr2w2q1 = w2p1r2q1w !�
R w2uw and

t0 !R p2w2r1wq2 = wp2r1q2w2 !
�
R wuw2.

Hence there exists a trace x such that w2uw !�
R x and wuw2 !

�
R x. It follows

w2uw1 = w2uwa!
�
R xa and wuaw2 = wuw2a!

�
R xa. (3)

17

Finally since wuaw2 !
�
R wvw2 by (2) and wuaw2 !

�
R xa by (3) and jwuaw2j =

jw1uw2j � jw1p1r2q1w2j < jp1w1p2sq2w2q1j = jtj (where the strict inequality
follows from jr2j < jp2sq2j) there exists a trace z such that wvw2 !

�
R z and

xa !�
R z. Now we obtain w1uw2 !

�
R wvw2 !

�
R z from (2) and w2uw1 !

�
R

xa!�
R z from (3). Thus the pair (w1uw2; w2uw1) is conuent and the correct-

ness of CONFL is proved.

Theorem 5.2. COSP(M) is in P for every trace monoid M .

Proof. For special VRSs we already proved the statement of the theorem. On
the other hand if I 6= (� � �)nId� then CONFL runs in polynomial time.
This follows from the following two facts: (i) For a �xed independence alphabet
(�; I), the number of di�erent factorizations l = psq of a trace l is bounded by
a polynomial in the length of jlj. This follows from the fact that the number
of pre�xes of a trace t is bounded by a polynomial in jtj [BMS89]. (ii) A
normalform of a trace t with respect to a length{reducing TRS R, which is not
a VRS, can be calculated in time bounded by a polynomial in jtj and jjRjj, see
[Die90c, Die90a, BD95, Ber95, BD96] for the normalform problem 1.

One might further ask, whether conuence can be decided for arbitrary monadic
TRSs. We leave this as an open question.

We close this section with a simple problem that is decidable for monadic
STSs but in general undecidable for special TRSs. A trace u 2 M (�; I) is said to
be connected if there does not exist a factorization u = vw such that v 6= 1 6= w
and v I w. A set L � M (�; I) is connected if every trace in L is connected.
A set L � M (�; I) is recognizable if the set fs 2 �� j 9u 2 L : u = [s]Ig
of all words that represent a trace in L is recognizable. This is just one of
several di�erent possibilities of de�ning recognizable trace languages, see e.g.
chapter 6 of [DR95]. A fundamental result of Ochma�nski [Och85], states that
the class of all recognizable trace languages in M (�; I) is the smallest class C
that contains all singleton subsets of M (�; I) and that is closed under (i) union,
(ii) concatenation of two languages (where the concatenation of L1 and L2 is
L1L2 = fu1u2 j u1 2 L1; u2 2 L2g) and (iii) the star{operator restricted to
connected languages, i.e., if L 2 C is connected then also L� = fu1u2 � � �un j
n � 0; u1; u2; : : : ; un 2 Lg 2 C. Given a TRS R over M and a set L � M we
denote by ��

R(L) = fv 2 M j 9u 2 L : u!�
R vg the set of all descendants of L

with respect to R. It is known that if L � �� is a recognizable word language
and R is a monadic STS then also ��

R(L) is recognizable [BO85]. But already
for special TRSs that contain only one rule this fact does not hold in general,
as the following example shows.

Example 5.3. Let � = fa; b; cg and I = f(a; c); (c; a)g. Since the trace u =
[abc]I is connected, the language fug� is recognizable. Let R be the special
TRS fb! 1g. Assume that ��

R(fug
�) is recognizable. Since recognizable trace

languages are closed under intersection, also the language ��
R(fug

�)\fa; cg� =

1The algorithms in [Die90c, Die90a, BD95, Ber95, BD96] are all non uniform, i.e., the

TRSs is �xed. But it is easy to see that they run also in the uniform case in polynomial time.

18

f[ancn]I j n � 0g would be recognizable. But this is not the case, see e.g.
[DR95], pp 172.

For a class C of TRSs over a trace monoid M we de�ne the extended word

problem for C and M as follows [BO85]:
INPUT: A TRS R 2 C and two recognizable languages L1 and L2 of M .
QUESTION: Do there exist u1 2 L1 and u2 2 L2 such that u1 $

�
R u2?

A simple consequence of the above mentioned closure of recognizable word
languages under the operator ��

R for a monadic STS R is that the extended
word problem for monadic and conuent STSs is decidable [BO85]. In contrast
to this, the following theorem holds.

Theorem 5.4. There exists a trace monoid M = M (�; I), a special TRS R
over M of the form R = fa ! 1g, where a 2 �, and a recognizable language
L1 �M such that the following problem is undecidable.
INPUT: A recognizable language L2 �M .
QUESTION: Do there exist u1 2 L1 and u2 2 L2 such that u1 $

�
R u2?

Proof. It is well{known that the Post Correspondence Problem, briey PCP,
is undecidable over a two{element alphabet. Furthermore it can be required
that every solution of the PCP has to start with a distinguished pair. Thus the
following problem is undecidable, which is called the modi�ed PCP over fa; bg:
INPUT: A set f(s1; t1); : : : ; (sn; tn)g of pairs with si; ti 2 fa; bg

� for 1 � i � n.
QUESTION: Does there exist a i1i2 � � � ik 2 f1; : : : ; ng

� with s1si1si2 � � � sik =
t1ti1ti2 � � � tik?

Let P = f(s1; t1); : : : ; (sn; tn)g be an instance of the modi�ed PCP over
fa; bg. Let fa; bg be a copy of fa; bg and let # be an additional symbol. Let
� = fa; b; a; b;#g and de�ne an independence relation I on � by the following
graph:

b

a

a

b #

Thus the symbols in fa; bg and fa; bg pairwise commute whereas # is dependent
from all symbols. For a word s 2 fa; bg� the word s is de�ned in the obvious
way. Let L1 = f[a#a]I ; [b#b]Ig

� and L2 = f[s1#t1]Igf[si#ti]I j 1 � i � ng�.
By Ochma�nski's theorem both L1 and L2 are recognizable subsets of M (�; I).
Let R = f# ! 1g. Thus R is special and conuent. Now the PCP P has a
solution if and only if

9u1 2 L1; u2 2 L2; v 2 IRR(R) : u1 !
�
R v; u2 !

�
R v if and only if

9u1 2 L1; u2 2 L2; v 2 M (�; I) : u1 !
�
R v; u2 !

�
R v if and only if

9u1 2 L1; u2 2 L2 : u1 $
�
R u2

where the last equivalence holds since R is conuent.

19

It might be an interesting problem to characterize those trace monoids for which
the extended word problem for conuent and monadic (or special) TRSs is
decidable.

6 Conclusion

In this paper we have investigated the complexity of the conuence problem for
restricted kinds of semi{Thue systems, vector replacement systems and general
trace rewriting systems. We would like to close this paper with a list several
questions that remain unsolved.

� What is the complexity of the conuence problem for length{reducing
vector replacement system if the dimension is �xed? Note that in Theorem
4.1, the dimension is not �xed.

� Are the upper bounds given in Theorem 4.3, Theorem 4.4 and Theorem
5.2 sharp, i.e., are the decision problems, considered in these theorems,
also hard for the given complexity classes?

� Is conuence decidable for general monadic trace rewriting systems. This
question was already asked in [Die90b]?

References

[BD95] M. Bertol and V. Diekert. On eÆcient reduction-algorithms for
some trace rewriting systems. In H. Common and J.-P. Jouannaud,
editors, Term Rewriting., number 909 in Lecture Notes in Com-
puter Science, pages 114{126, Berlin-Heidelberg-New York, 1995.
Springer.

[BD96] M. Bertol and V. Diekert. Trace rewriting: Computing normal
forms in time O(n logn). In C. Puech and R. Reischuk, editors,
Proceedings of the13th Annual Symposium on Theoretical Aspects

of Computer Science 1996, number 1046 in Lecture Notes in Com-
puter Science, pages 269{280, Berlin-Heidelberg-New York, 1996.
Springer.

[Ber95] M. Bertol. EÆcient rewriting in cograph trace monoids. In H. Re-
ichel, editor, Proceedings of the10th Fundamentals of Computation

Theory (FCT '95), Dresden (Germany) 1995, number 965 in Lec-
ture Notes in Computer Science, pages 146{155, Berlin-Heidelberg-
New York, 1995. Springer.

[BJW82] R.V. Book, M. Jantzen, and C. Wrathall. Monadic thue systems.
Theoretical Computer Science, 19:231{251, 1982.

20

[BL81] A. M. Ballantyne and D. S. Lankford. New decision algorithms for
�nitely presented commutative semigroups. Comput. and Maths.

with Appls., 7:159{165, 1981.

[BMS89] A. Bertoni, G. Mauri, and N. Sabadini. Membership problems for
regular and context free trace languages. Information and Compu-

tation, 82:135{150, 1989.

[BO81] R.V. Book and C.P. O'Dunlaing. Testing for the church-rosser prop-
erty (note). Theoretical Computer Science, 16:223{229, 1981.

[BO85] R.V. Book and F. Otto. Cancellation rules and extended word
problems. Information Processing Letters, 20:5{11, 1985.

[BO93] R.V. Book and F. Otto. String{Rewriting Systems. Springer{Verlag,
1993.

[Boo82] R.V. Book. Conuent and other types of Thue systems. Journal of
the ACM, 29(1):171{182, January 1982.

[BS90] R.P. Boppana and M. Sipser. The complexity of �nite functions. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer Science

(Volume A: Algorithms and Complexity). Elsevier and MIT Press,
1990.

[CP85] R. Cori and D. Perrin. Automates et commutations partielles.
R.A.I.R.O. | Informatique Th�eorique et Applications, 19:21{32,
1985.

[Die90a] V. Diekert. Combinatorial rewriting on traces. In C. Cho�rut et al.,
editors, Proceedings of the7th Annual Symposium on Theoretical

Aspects of Computer Science (STACS'90), Rouen (France) 1990,
number 415 in Lecture Notes in Computer Science, pages 138{151,
Berlin-Heidelberg-New York, 1990. Springer.

[Die90b] V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes
in Computer Science. Springer, Berlin-Heidelberg-New York, 1990.

[Die90c] V. Diekert. Word problems over traces which are solvable in linear
time. Theoretical Computer Science, 74:3{18, 1990.

[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World
Scienti�c, Singapore, 1995.

[Esp97] J. Esparza. Petri nets, commutative context{free grammars, and
basic parallel processes. Fundamenta Informatica, 30:23{41, 1997.

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel

Computation: P -Completeness Theory. Oxford University Press,
1995.

21

[Huy83] D. T. Huynh. Commutative grammars: The complexity of uniform
word problems. Information and Control, 57:21{39, 1983.

[Huy85] D. T. Huynh. Complexity of the word problem for commutative
semigroups of �xed dimension. Acta Informatica, 22:421{432, 1985.

[JLL77] N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some
problems in petri nets. Theoretical Computer Science, 4:277{299,
1977.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Com-

putations, pages 85{103. Plenum Press, New York, 1972.

[KKMN85] D. Kapur, M. S. Krishnamoorthy, R. McNaughton, and P. Naren-
dran. An O(jT j3) algorithm for testing the Church-Rosser prop-
erty of Thue systems. Theoretical Computer Science, 35(1):109{114,
January 1985.

[Loh98] M. Lohrey. On the conuence of trace rewriting systems. In
V. Arvind and R. Ramanujam, editors, Foundations of Software

Technology and Theoretical Computer Science, volume 1530 of Lect.
Notes Comput. Sci., pages 319{330, 1998.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their interpre-
tations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[NB72] M. Nivat and M. Benois. Congruences parfaites et quasi{parfaites.
Seminaire Dubreil, 25(7{01{09), 1971{1972.

[New43] M. H. A. Newman. On theories with a combinatorial de�nition of
\equivalence". Annals Mathematics, 43:223{243, 1943.

[NO88] P. Narendran and F. Otto. Preperfectness is undecidable for Thue
systems containing only length-reducing rules and a single commu-
tation rule. Information Processing Letters, 29:125{130, 1988.

[Och85] E. Ochma�nski. Regular behaviour of concurrent systems. Bul-

letin of the European Association for Theoretical Computer Science

(EATCS), 27:56{67, October 1985.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison Wesley,
1994.

[Ruz80] W. L. Ruzzo. Tree{size bounded alternation. Journal of Computer

and System Sciences, 21:218{235, 1980.

[VRL98] R. M. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and
reductions for rewriting problems. In Proceedings 9th Conference

on Rewriting Techniques and Applications, Tsukuba (Japan), vol-
ume 1379 of Lecture Notes in Computer Science, pages 166{180.
Springer-Verlag, 1998.

22

