
Complexity Results for Confluence Problems

Markus Lohrey

Universität Stuttgart, Institut für Informatik
Breitwiesenstr. 20–22, 70565 Stuttgart, Germany

e–mail: lohreyms@informatik.uni-stuttgart.de

Abstract. We study the complexity of the confluence problem for re-
stricted kinds of semi–Thue systems, vector replacement systems and
general trace rewriting systems. We prove that confluence for length–
reducing semi–Thue systems is P–complete and that this complexity
reduces to NC2 in the monadic case. For length–reducing vector re-
placement systems we prove that the confluence problem is PSPACE–
complete and that the complexity reduces to NP and P for monadic sys-
tems and special systems, respectively. Finally we prove that for special
trace rewriting systems, confluence can be decided in polynomial time
and that the extended word problem for special trace rewriting systems
is undecidable.

1 Introduction

Rewriting systems that operate on different kinds of objects have received a lot
of attention in computer science. Two of the most intensively studied types of
rewriting systems are semi–Thue systems [BO93], which operate on free monoids,
and vector replacement systems (or equivalently Petri–nets), which operate on
free commutative monoids. Both of these types of rewriting systems may be
seen as special cases of trace rewriting systems [Die90]. Trace rewriting systems
operate on free partially commutative monoids, which are in computer science
better known as trace monoids. Trace monoids were introduced by [Maz77] into
computer science as a model of concurrent systems.

Confluence is a very desirable property for all kinds of rewriting systems
since it implies that the order in which rewrite steps are performed is irrelevant.
Several decidability and undecidability results are known for the confluence prob-
lem for the different types of rewriting systems mentioned above: For length–
reducing semi–Thue systems confluence can be decided in polynomial time, see
e.g. [BO93], Corollary 3.2.2. On the other hand there exists a trace monoid such
that confluence is undecidable for length–reducing trace rewriting systems over
this trace monoid [NO88]. In [Loh98] this result was even sharpened. It was
shown that unless the underlying trace monoid is free or free commutative, con-
fluence is undecidable for length–reducing trace rewriting systems. Concerning
vector replacement systems it was shown in [VRL98] that confluence is decidable
but EXPSPACE–hard for the class of all vector replacement systems.

In this paper we will continue the investigation of the confluence problem for
different kinds of rewriting systems. In Section 3 we will prove that confluence for

length–reducing semi–Thue systems is not only solvable in polynomial time but
furthermore P–complete, which roughly means that it is inherently sequential.
On the other hand for the more restricted class of monadic semi–Thue systems
(where monadic means that all right–hand sides consist of at most one symbol)
there exists an efficient parallel algorithm that decides confluence. Concerning
vector replacement systems we prove in Section 4 that for the length–reducing
case, confluence is PSPACE–complete and that this complexity reduces for the
monadic case and the special case (where special means that all right–hand sides
are empty) to NP and P, respectively. Finally in Section 5 we prove that conflu-
ence is decidable for special trace rewriting systems in polynomial time which
solves a question from [Die90]. We end this paper by showing that in contrast
to semi–Thue systems the extended word problem, see [BO85], is undecidable
even for special trace rewriting systems that contain only one rule. Proofs that
are omitted in this paper can be found in the long version [Loh99].

2 Preliminaries

In this section we introduce some notations that we will use in this paper. For
an alphabet Σ, Σ∗ denotes the set of all finite words of elements of Σ. The
empty word is denoted by 1. The length of the word s is denoted by |s|. As
usual Σ+ = Σ∗\{1} and Σn = {s ∈ Σ∗ | |s| = n}. The set of all letters
that occur in the word s is denoted by alph(s). For a natural number n ∈ N
let ld (n) denote the logarithm of n to the base 2. Let bit(n) = bld (n)c + 1 if
n > 0 and bit(0) = 1, i.e., bit(n) is the length of the binary representation of
n. For a vector n = (n1, . . . , nk) ∈ Nk let bit(n) = bit(n1) + · · · + bit(nk). We
assume that the reader is familiar with the basic notions of complexity theory, in
particular with the complexity classes P, NP, and PSPACE, see e.g. [Pap94]. Let
us just briefly mention the definition of the parallel complexity class NCk where
k ≥ 1, see [GHR95] for more details. A language L ⊆ {a, b}∗ is in NCk if for
every n ≥ 1 there exists a Boolean circuit with n linearly ordered inputs that (i)
can be calculated from n in deterministic logarithmic space, (ii) contains nO(1)

many gates of fan–in at most two, (iii) has depth O(ld k(n)), and (iv) accepts
the language L∩{a, b}n, where a (b) corresponds to the truth value true (false).

In the following we introduce some notions concerning trace theory, see
[DR95] for more details. An independence alphabet (Σ, I) consists of a finite
alphabet Σ and an irreflexive and symmetric relation I ⊆ Σ ×Σ, called an in-
dependence relation. Given an independence alphabet (Σ, I) we define the trace
monoid M(Σ, I) as the quotient monoid Σ∗/≡I , where ≡I denotes the least
equivalence relation that contains all pairs of the form (sabt, sbat) for (a, b) ∈ I
and s, t ∈ Σ∗, which is a congruence on Σ∗. An element of M(Σ, I), i.e., an
equivalence class of words, is called a trace. The trace that contains the word s
is denoted by [s]I . The empty trace [1]I will be also denoted by 1. Concatenation
of traces is defined by [s]I [t]I = [st]I . Since for all words s, t ∈ Σ∗, s ≡I t implies
|s| = |t| and alph(s) = alph(t), we can define |[s]I | = |s| and alph([s]I) = alph(s).
We write u I v if alph(u)× alph(v) ⊆ I. For the rest of this section let (Σ, I) be

an arbitrary independence alphabet and let M = M(Σ, I). If I = (Σ ×Σ)\IdΣ ,
where IdΣ = {(a, a) | a ∈ Σ}, then M is isomorphic to the free commutative
monoid N|Σ| over |Σ| many generators and we identify traces from M with
|Σ|–dimensional vectors over N. On the other hand if I = ∅ then M is isomor-
phic to the free monoid Σ∗. The following lemma is a simple generalization of
the well known Levi’s lemma for traces [CP85], see [Loh99] for a proof of this
generalization.

Lemma 1. Let u1, u2, u3, v1, v2, v3 ∈ M . Then u1u2u3 = v1v2v3 iff there exist
wi,j ∈ M (1 ≤ i, j ≤ 3) such that (i) ui = wi,1wi,2wi,3 for 1 ≤ i ≤ 3, (ii)
vj = w1,jw2,jw3,j for 1 ≤ j ≤ 3, and (iii) wi,j I wk,l if i < k and l < j.

The diagram on the right visualizes the situation in the
lemma. The i–th column represents ui, the j–th row rep-
resents vj , the intersection of the i–th column and the
j–th row represents wi,j , and wi,j and wk,l are indepen-
dent if one of them is north–west of the other one.

v3 w1,3 w2,3 w3,3

v2 w1,2 w2,2 w3,2

v1 w1,1 w2,1 w3,1

u1 u2 u3

A trace rewriting system, briefly TRS, over the trace monoid M is a finite
subset of M ×M . In the rest of this section let R be a TRS over M . If I = ∅,
i.e., M ' Σ∗, then R is also called a semi–Thue system, briefly STS, over Σ, see
[BO93] for more details on STSs. On the other hand if I = (Σ × Σ)\IdΣ , i.e.,
M ' N|Σ|, then R is also called a vector replacement system, briefly VRS, in
the dimension |Σ|. Vector replacement systems are easily seen to be equivalent
to Petri–nets. An element (`, r) ∈ R is also denoted by ` → r. The set {` |
∃r ∈ M : (`, r) ∈ R} of all left–hand sides of R is denoted by dom(R). The set
ran(R) of all right–hand sides of R is defined analogously. Given c = (`, r) ∈ R
and s, t ∈ M , we write s →c t if s = u`v and t = urv for some u, v ∈ M . We
write s →R t if s →c t for some c ∈ R. As usual, →+

R (→∗R) is the transitive
(reflexive and transitive) closure of →R and ↔∗R is the reflexive, transitive, and
symmetric closure of →R. The pair (u, v) ∈ M ×M is confluent (with respect
to R) if u→∗R w and v →∗R w for some w ∈M . The TRS R is confluent on the
trace u ∈M if for all v1, v2 ∈M with u→∗R v1 and u→∗R v2 the pair (v1, v2) is
confluent. The TRS R is confluent if R is confluent on all u ∈ M . The TRS R
is locally confluent if for all u, v1, v2 ∈ M with u →R v1 and u →R v2 the pair
(v1, v2) is confluent. The TRS R is terminating if there does not exist an infinite
chain u1 →R u2 →R u3 →R · · · . If R is terminating then by Newman’s lemma
R is confluent iffR is locally confluent. A trace u ∈M is irreducible (with respect
to R) if there does not exist a v ∈M with u→R v. The set of all u ∈M that are
irreducible with respect to R is denoted by IRR(R). The trace v is a normalform
of u if u→∗R v and v ∈ IRR(R). The TRS R is length–reducing if |`| > |r| for all
(`, r) ∈ R. Obviously, if R is length reducing then R is terminating. The TRS R
is monadic if R is length–reducing and ran(R) ⊆ {1}∪Σ. The TRS R is special
if ran(R) = {1} and 1 6∈ dom(R). Let COLR(M) (COMO(M), COSP(M))
denote the set of all confluent TRSs over M that are length–reducing (monadic,
special). The uniform word problem for a class C of TRSs over M is the following
decision problem: Given R ∈ C and u, v ∈M , does u↔∗R v hold?

Since we will investigate the complexity of algorithms that take a TRS as
input, we have to define the length ||R|| of the TRSR. If I 6= (Σ×Σ)\IdΣ then in
general the best possible coding of a rule from R is to simply write down words
over Σ that represent the left- and right–hand side of the rule. Thus in this case
we define ||R|| =

∑
{(|`|+ |r|) | (`, r) ∈ R}. But if I = (Σ ×Σ)\IdΣ , i.e., if R is

a VRS we can code R more efficiently by using the binary notation. Therefore
in this case we define ||R|| =

∑
{bit(`) + bit(r) | (`, r) ∈ R}. In this paper we

always assume that a TRS R is represented as a string of length Ω(||R||).

3 Semi–Thue systems

For terminating STSs confluence is decidable [BO81]. This classical result is
based on the critical pairs of a STS. Let R be a STS over Σ. The set of
critical pairs CP(R) contains exactly all pairs of the form (i) (sr1t, r2) where
(`1, r1), (s`1t, r2) ∈ R and (ii) (r1u, sr2) where (st, r1), (tu, r2) ∈ R and t 6= 1.
Note that CP(R) is finite. It is well known that R is locally confluent iff all crit-
ical pairs are confluent [NB72], which can be decided in the terminating case.
For length–reducing STSs, confluence can be even decided in polynomial time
[BO81,KKMN85]. In this section we prove that COLR({a, b}∗) is moreover P–
complete. Under reasonable assumptions from complexity theory this roughly
means that the problem COLR({a, b}∗) is inherently sequential.

Theorem 1. COLR({a, b}∗) is P–complete.

Proof. The following problem is known to be P-complete [GHR95]: Given a
deterministic Turing–machineM, an input w forM, and a word t ∈ {#}∗, does
M halt on w after ≤ |t| steps? Let M = (Q,Σ,�, δ, q0, qf) be a deterministic
Turing–machine, w ∈ (Σ\{�})∗ be an input for M, and m ≥ 0. Here Q is the
set of states, Σ is the tape alphabet (Q ∩ Σ = ∅), � ∈ Σ is the blank symbol,
δ : (Q\{qf}) × Σ → Q × Σ × {L,R} is the total transition function, q0 ∈ Q is
the initial state, and qf ∈ Q is the final state. M halts iff it reaches the final
state qf . Let Σ′ = {a′ | a ∈ Σ} be a disjoint copy of Σ with Σ′ ∩ Q = ∅.
Let . (left–end marker), / (right–end marker), A, and B be additional symbols
and let n = 3(m + 1) + |w| + 2. We define the length–reducing STS R over
Γ = Q∪Σ ∪Σ′ ∪ {., /,A,B} by the following rules, where a, b, c ∈ Σ, p, q ∈ Q,
q 6= qf :

(1a) qfx→ qf for all x ∈ Γ (2a) AnB → .q
3(m+1)
0 w/

(1b) xqf → qf for all x ∈ Γ (2b) AB → qf

(3a) αq3i/→ αb′p3(i−1)/ if δ(q,�) = (p, b, R), 1 ≤ i ≤ m+ 1, α ∈ Σ′ ∪ {.}
(3b) αq3ia→ αb′p3(i−1) if δ(q, a) = (p, b, R), 1 ≤ i ≤ m+ 1, α ∈ Σ′ ∪ {.}
(3c) a′q3i/→ p3(i−1)ab/ if δ(q,�) = (p, b, L), 1 ≤ i ≤ m+ 1
(3d) .q3i/→ .p3(i−1)�b/ if δ(q,�) = (p, b, L), 1 ≤ i ≤ m+ 1
(3e) c′q3ia→ p3(i−1)cb if δ(q, a) = (p, b, L), 1 ≤ i ≤ m+ 1
(3f) .q3ia→ .p3(i−1)�b if δ(q, a) = (p, b, L), 1 ≤ i ≤ m+ 1

The rules (1a) and (1b) make qf absorbing. The rules (3a) to (3f) simulate the
machine M. Note that the state symbol is represented 3i times on the left–
hand side and 3(i − 1) times on the right–hand side in order to make these
rules length–reducing. Furthermore since M is deterministic, these rules do not
generate critical pairs. The rule (2a) generates an initial configuration for M.
Since the initial state q0 is represented 3(m+1) times in the initial configuration,
at most m+1 steps ofM will be simulated with the rules (3a) to (3f). Note that
R can be computed fromM, w, and #m in deterministic logarithmic space. For
this it is necessary that m is given in the unary representation #m since ||R||
increases exponentially with bit(m). We claim that R is confluent iffM halts on
w after ≤ m steps.

IfM does not halt on w after ≤ m steps then by simulating m+1 steps ofM
we obtain AnB →(2a) .q

3(m+1)
0 w/ →m+1

R .u′v/ ∈ IRR(R) for some u, v ∈ Σ∗.
Since also AnB →(2b) A

n−1qf →n−1
(1b) qf ∈ IRR(R),R is not confluent. IfM halts

on w after ≤ m steps then AnB →(2a) .q
3(m+1)
0 w/ →∗R .u′q3jf v/ →∗R qf for

some j ≥ 1, u, v ∈ Σ∗. Hence the critical pair (An−1qf , .q
3(m+1)
0 w/) is confluent.

In all other critical pairs one of the rules (1a) or (1b) is involved. Since qf is
absorbing these critical pairs are also confluent.

Now assume that Γ = {a1, . . . , ak} and let P = {(φ(`), φ(r)) | (`, r) ∈ R},
where the morphism φ : Γ ∗ → {a, b}∗ is defined by φ(ai) = abai+1bk−i+2.
Then (i) P is length–reducing and can be calculated from R in deterministic
logarithmic space and (ii) P is confluent iff R is confluent, see [Loh99] for a
proof of this fact. This proves the theorem. ut

Using essentially the construction from the previous proof, the following result
for the uniform word problem for the class of confluent and length–reducing
STSs, which is known be in P by [Boo82], can be proven, see [Loh99].

Theorem 2. The uniform word problem for the class of confluent and length–
reducing STSs over the alphabet {a, b} is P–complete.

In contrast to the problem COLR({a, b}∗), which seems to be inherently sequen-
tial by Theorem 1, for the more restricted problem COMO(Σ∗) there exists an
efficient parallel algorithm, see [Loh99] for the proof of the following theorem.

Theorem 3. COMO(Σ∗) is in NC2 for every finite alphabet Σ.

This theorem follows from two facts: (i) The uniform word problem for ε-free
context free grammars can solved in NC2 [GHR95], p 176, and (ii) the problem
whether a given pair of words is confluent with respect to a monadic STS can
be reduced to the word problem for an ε-free context free grammar [BJW82].

4 Vector replacement systems

In [VRL98] it was shown that confluence is decidable but EXPSPACE–hard
for the class of all vector replacement systems. Based on critical pairs, more

feasible upper bounds can be obtained for the length–reducing case. Similarly
to STSs, also VRSs yield finite sets of critical pairs [BL81]. Let R be a VRS in
the dimension n. The set CP(R) of critical pairs of R contains exactly all pairs
((s1, . . . , sn), (t1, . . . , tn)) such that there exist rules (k1, . . . , kn) → (p1, . . . , pn)
and (`1, . . . , `n) → (r1, . . . , rn) in R and for all i ∈ {1, . . . , n} it holds si =
max(ki, `i) − ki + pi and ti = max(ki, `i) − `i + ri. Then R is locally confluent
iff all critical pairs are confluent. Note that there are at most |R| · (|R| − 1)
many critical pairs that are not trivially confluent. For the length–reducing case,
testing all critical pairs for confluence leads to a straight–forward PSPACE–
algorithm for deciding confluence. In this section we will prove that confluence
is moreover PSPACE–complete for the class of all VRSs (without restriction
on the dimension), i.e.,

⋃
k>0 COLR(Nk) is PSPACE–complete. Note that the

calculation of a normalform of a vector n with respect to a length–reducing
VRS may involve a number of steps that is exponential in bit(n). Therefore the
calculation of normalforms for the finitely many vectors that occur in the finitely
many critical pairs does not lead to a polynomial time algorithm (as it is the
case for STSs).

Theorem 4.
⋃
k>0 COLR(Nk) is PSPACE–complete.

Proof. The following problem is known to be PSPACE–complete [Kar72]: Given
a deterministic linear bounded automaton (briefly dlba) M and an input w for
M, does M accept w? Let us fix a dlba M = (Q,Σ, ., /, δ, q0, qf) and an input
w ∈ (Σ\{., /})∗ forM, where Q is the finite set of states, Σ is the tape alphabet,
. ∈ Σ is the left–end marker, / ∈ Σ is the right–end marker, δ : (Q\{qf})×Σ →
Q × Σ × {L,R} is the transition function, q0 ∈ Q is the initial state, and qf is
the unique final state.M accepts an input iff it finally reaches the final state qf .
The transition function must be defined such that (i) the read–write head never
moves to the left (right) of . (/) and (ii) does not overwrite . (/) by a symbol
different from . (/) and (iii) does not overwrite a tape symbol a ∈ Σ\{., /} by .
or /. We identify each tape cell ofM with a number from {0, . . . , |w|+1}, where
cell 0 always contains . and cell |w| + 1 always contains /. We assume that M
starts with the read–write head scanning cell 0 and that the read–write head is
always in cell 0 if the final state qf is reached.

We will construct a VRS R such that R is confluent iffM accepts the input
w, which proves the theorem. Our construction is based on the simulation of a
dlba by a Petri–net from [JLL77]. Let the alphabet Γ be

Γ = ({0, . . . , |w|+ 1} ×Q) ∪ ({0, . . . , |w|+ 1} ×Σ) ∪ {A, $}.

Note that we consider pairs (i, q) ∈ {0, . . . , |w| + 1} × Q and pairs (i, a) ∈
{0, . . . , |w| + 1} × Σ as single symbols. The symbol (i, q) means that M is in
the state q and the read–write head is scanning cell i, whereas the symbol (i, a)
means that cell i contains the tape symbol a. Since we assume thatM terminates
iff it reaches the final state qf and the read–write head is in cell 0, the presence
of the symbol (0, qf) indicates that M has terminated. Let w = a1a2 · · · a|w|,
m = |Q| · |Σ||w| · (|w| + 2), and n = m + |w| + 4. The |Γ |–dimensional VRS R

consists of the following rules, where p, q ∈ Q, 0 ≤ i, j ≤ |w| + 1, and a, b ∈ Σ
(we use commutative words over Γ instead of vectors from N|Γ | for the definition
of R in order to improve readability):

(1a) $(i, q)(i, a)→ (i+ 1, p)(i, b) if δ(q, a) = (p, b, R), q 6= qf , i ≤ |w|
(1b) $(i, q)(i, a)→ (i− 1, p)(i, b) if δ(q, a) = (p, b, L), q 6= qf , i ≥ 1

(2) (0, qf)x→ (0, qf) if x ∈ Γ
(3a) (i, a)(i, b)→ (0, qf)
(3b) (i, p)(j, q)→ (0, qf)

(4a) An → $m(0, q0)(0, .)(1, a1) · · · (|w|, a|w|)(|w|+ 1, /)
(4b) A2 → (0, qf)

The rules (1a) and (1b) simulateM where the additional $ on the left–hand side
makes these rules length–reducing. Rule (2) makes (0, qf) absorbing. Critical
pairs that result from the rules (1a) and (1b) can be resolved with the rules
(3a) and (3b). In particular it is easy to see that the VRS that consists of the
rules (1a), (1b), (2), (3a) and (3b) is confluent. With the rules (4a) and (4b) we
intentionally create a critical pair. The first rule (4a) produces the encoding of
the initial configuration of M. Since each simulation step of R consumes a $,
we have to make enough $ available for the initial configuration. Since there are
at most m = |Q| · |Σ||w| · (|w| + 2) different configurations for M, the dlba M
either terminates after ≤ m steps or loops forever. Thus m many $ suffice. Note
that in the binary representation of R(M, w) the m many $ are represented by
O(ld(m)) = O(ld(|Q|)+ |w| · ld(|Σ|)+ ld(|w|+2)) many bits, which is polynomial
in |w| and the length of the description of M. The same holds for the number
n = m+ |w|+ 4 in the left–hand side of rule (4a), which is chosen such that (4a)
is length–reducing. The proof that R is confluent iff M accepts w is similar to
the proof of Theorem 1, see [Loh99] for the details. ut

Whether confluence is also PSPACE–complete for VRSs in a sufficiently large
but fixed dimension is left as an open question. Similarly to the semi–Thue
case, also for VRSs the complexity of the confluence problem decreases for the
monadic and special case, see [Loh99]:

Theorem 5.
⋃
k>0 COMO(Nk) is in NP and

⋃
k>0 COSP(Nk) is in P.

5 Special trace rewriting systems

In [NO88] a trace monoid M is presented such that COLR(M) is undecidable.
This result was sharpened in [Loh98], where it was shown that COLR(M) is
decidable iff M is free or free commutative. These results imply that in general
TRSs do not have finitely many critical pairs (in contrast to STSs and VRSs).
Furthermore these results motivate the question whether there exist restricted
but non–trivial classes of (length–reducing) TRSs for which confluence is decid-
able. In particular, in [Die90], p 154, it was asked whether confluence is decidable
for special TRSs. We answer this question positively in this section.

Theorem 6. COSP(M) is in P for every trace monoid M .

Proof. For special VRSs the statement of the theorem is contained in Theorem
5. Thus let M = M(Σ, I) be a trace monoid where I 6= (Σ ×Σ)\IdΣ and let R
be a special TRS over M . Let NF be an algorithm that computes an arbitrary
normalform NF(u,R) of a given input trace u with respect to R. Consider the
following algorithm that we call SPECIAL:

Input: A special TRS R over M(Σ, I)
forall (p1sq1, p2sq2) ∈ dom(R)× dom(R) with p1 I p2, q1 I q2 do

nf1 := NF(p1q1,R); nf2 := NF(p2q2,R);
if nf1 6= nf2 then return “ R not confluent” (∗)
else

u := nf1 (= nf2);
forall a ∈ Σ with a I p2sq1 or a I p1sq2 do

nf1 := NF(au,R); nf2 := NF(ua,R);
if nf1 6= nf2 then return “R not confluent” (∗∗)

endfor
endfor

endfor
return “R confluent” (∗∗∗)

First we prove that R is not confluent if SPECIAL outputs “R not confluent”. If
SPECIAL executes line (∗) then there exist p1sq1, p2sq2 ∈ dom(R) with p1 I p2,
and q1 I q2. Furthermore there exists a normalform ui of piqi (i ∈ {1, 2}) with
u1 6= u2. But thenR is indeed not confluent since p2p1sq1q2 →R p2q2 →∗R u2 and
p2p1sq1q2 = p1p2sq2q1 →R p1q1 →∗R u1. Now assume that SPECIAL executes
line (∗∗). Then u1 = u2 = u but there exists an a ∈ Σ such that either a I p2sq1
or a I p1sq2 and there exist a normalform v1 of au and a normalform v2 of ua such
that v1 6= v2. Assume that a I p2sq1. Then p2p1sq1aq2 →R p2aq2 = ap2q2 →∗R
au →∗R v1 and p2p1sq1aq2 = p1p2sq1aq2 = p1ap2sq2q1 →R p1aq1 = p1q1a →∗R
ua→∗R v2. Thus, again R is not confluent. The case that a I p1sq2 can be dealt
similarly by considering the trace p2ap1sq1q2 instead of p2p1sq1aq2.

Now assume that SPECIAL outputs “R confluent” in line (∗∗∗). By induction
on the length of traces it suffices to prove for all t ∈ M that R is confluent on
t if R is confluent on all t′ with |t′| < |t|. Thus, let t ∈ M and assume that R
is confluent on all t′ with |t′| < |t|. We have to prove that all pairs (t1, t2) with
t →i

R t1 and t →j
R t2 for some i, j ≥ 0 are confluent. The case i = 0 or j = 0

is trivial. Assume for a moment that we have already considered all cases with
i = 1 = j. Then we can apply the arguments from the proof of Newman’s lemma:
t→R s1 →∗R t1 and t→R s2 →∗R t2 imply si →∗R s (i ∈ {1, 2}) for some s ∈M .
Since |s1| < |t| and s1 →∗R t1, s1 →∗R s it holds t1 →∗R u and s →∗R u for some
u ∈M . Since also |s2| < |t| and s2 →∗R t2, s2 →∗R s→∗R u it holds t2 →∗R v and
u →∗R v, i.e., t1 →∗R u →∗R v, for some v ∈ M and the pair (t1, t2) is confluent.
Thus, it suffices to consider arbitrary factorizations t = u1`1v1 = u2`2v2, where
`1, `2 ∈ dom(R), and to prove that the pair (u1v1, u2v2) is confluent. Lemma 1

applied to the identity u1`1v1 = u2`2v2 gives nine traces pi, qi, wi, yi (i ∈ {1, 2})
and s such that (see also the diagram below)
– `1 = p1sq1, `2 = p2sq2,
– u1 = y1p2w2, u2 = y1p1w1, v1 = w1q2y2, v2 = w2q1y2,
– t = y1p1w1p2sq2w2q1y2 = y1p2w2p1sq1w1q2y2,
– p1 I p2, q1 I q2, w1 I w2, w1 I p2sq1, w2 I p1sq2.

v2 w2 q1 y2
`2 p2 s q2
u2 y1 p1 w1

u1 `1 v1

We show that the pair (y1p1w1w2q1y2, y1p2w2w1q2y2) is confluent. If y1 6= 1 or
y2 6= 2 then for t′ = p2w2p1sq1w1q2 it holds |t′| < t and t′ →R p2w2w1q2, t′ =
p1w1p2sq2w2q1 →R p1w1w2q1. Thus the pair (p1w1w2q1, p2w2w1q2) is confluent
which therefore also holds for the pair (y1p1w1w2q1y2, y1p2w2w1q2y2). Thus it
suffices to show that the pair (p1w1w2q1, p2w2w1q2) = (w2p1q1w1, w1p2q2w2) is
confluent. We have one of the situations that are considered in the outer forall–
loop of SPECIAL. Since we assume that SPECIAL outputs “R confluent” we
know that piqi →∗R u (i ∈ {1, 2}) for some u ∈M . Hence w2p1q1w1 →∗R w2uw1,
w1p2q2w2 →∗R w1uw2 and it suffices to prove that the pair (w2uw1, w1uw2) is
confluent. The case w1 = 1 = w2 is trivial. Thus, assume w.l.o.g. w1 = wa, where
a ∈ Σ. Since w1 I p2sq1 it follows a I p2sq1. Thus, a ∈ Σ is one of the symbols
that are considered in the inner forall–loop of SPECIAL. It follows au →∗R v
and ua→∗R v for some v ∈M . Thus

wuaw2 →∗R wvw2 and w1uw2 = wauw2 →∗R wvw2. (1)

Next let us consider t′ = p1wp2sq2w2q1 = p1w`2w2q1 (t′ results from t by re-
placing the factor w1 = wa by w). It holds |t′| < |t| and since w satisfies the
same independencies as w1 it holds t′ = p2w2p1sq1wq2 = p2w2`1wq2. Thus
t′ →R p1ww2q1 = w2p1q1w →∗R w2uw, t′ →R p2w2wq2 = wp2q2w2 →∗R wuw2.
Hence w2uw →∗R x, wuw2 →∗R x for some x ∈M and

w2uw1 = w2uwa→∗R xa and wuaw2 = wuw2a→∗R xa. (2)

Finally since wuaw2 →∗R wvw2 by (1) and wuaw2 →∗R xa by (2) and |wuaw2| =
|w1uw2| ≤ |w1p1q1w2| < |p1w1p2sq2w2q1| = |t| (where the strict inequality
follows from `2 = p2sq2 6= 1) it holds wvw2 →∗R z and xa→∗R z for some z ∈M .
But then w1uw2 →∗R wvw2 →∗R z by (1) and w2uw1 →∗R xa→∗R z by (2). Thus
the pair (w1uw2, w2uw1) is confluent and the correctness of SPECIAL is proved.

Finally we have to show that SPECIAL runs in polynomial time. This follows
from the following two facts: (i) For a fixed independence alphabet (Σ, I), the
number of different factorizations ` = psq of a trace ` is bounded by a polynomial
in |`|. This follows from the fact that the number of prefixes of a trace t is
bounded by a polynomial in |t| [BMS89]. (ii) A normalform of a trace t with
respect to a length–reducing TRS R, which is not a VRS, can be calculated in
time bounded by a polynomial in |t| and ||R|| [Die90] (in the algorithms in [Die90]
the TRS R is not part of the input, but it is easy to see that they run also in
the uniform case, where the TRS is part of the input, in polynomial time). ut
We should mention that we proved a slight generalization of Theorem 6 in the
long version [Loh99] of this paper. One might ask, whether confluence can be
decided also for arbitrary monadic TRSs. We leave this as an open question.

We close this section with a simple problem that is decidable for monadic
STSs but in general undecidable for special TRSs. A trace u ∈ M(Σ, I) is said
to be connected if there does not exist a factorization u = vw with v 6= 1 6= w
and v I w. A set L ⊆ M(Σ, I) is connected if every u ∈ L is connected. A set
L ⊆ M(Σ, I) is recognizable if the set {s ∈ Σ∗ | ∃u ∈ L : u = [s]I} of all
words that represent a trace in L is a regular word language. This is just one of
several possibilities of defining recognizable trace languages, see e.g. chapter 6
of [DR95]. A fundamental result of Ochmański [Och85] states that the class of
all recognizable subsets of M(Σ, I) is the smallest class C that contains all finite
subsets of M(Σ, I) and that is closed under (i) union, (ii) concatenation of two
sets (where the concatenation of L1 and L2 is L1L2 = {u1u2 | u1 ∈ L1, u2 ∈ L2})
and (iii) the star–operator restricted to connected sets, i.e., if L belongs to C and
is connected then also L∗ = {u1u2 · · ·un | n ≥ 0, u1, u2, . . . , un ∈ L} belongs to
C. It is known that for two recognizable word languages L1, L2 ⊆ Σ∗ and a
confluent and monadic STS R it can be decided whether there exist u1 ∈ L1,
u2 ∈ L2 with u1 ↔∗R u2 [BO85]. This decision problem is known as the extended
word problem. For trace monoids the situation is quite different as the following
theorem shows.

Theorem 7. There exists a trace monoid M = M(Σ, I), a special TRS R over
M of the form R = {a→ 1}, where a ∈ Σ, and a recognizable language L1 ⊆M
such that the following problem is undecidable: Given a recognizable language
L2 ⊆M , do there exist u1 ∈ L1 and u2 ∈ L2 such that u1 ↔∗R u2?

Proof. It is well–known that the Post Correspondence Problem, briefly PCP,
is undecidable over the alphabet {a, b}. Let P = {(s1, t1), . . . , (sn, tn)} be an
instance of the PCP, where si, ti ∈ {a, b}∗. Let {a, b} be a copy of {a, b} and
let # 6∈ {a, b, a, b}. Let Σ = {a, b, a, b,#} and define an independence relation
I on Σ by I = {a, b} × {a, b} ∪ {a, b} × {a, b}. Note that # is depentant from
every symbol. For a word s ∈ {a, b}∗ the word s is defined in the obvious way.
Let L1 = {[a#a]I , [b#b]I}∗ and L2 = {[si#ti]I | 1 ≤ i ≤ n}+. By Ochmański’s
theorem L1 and L2 are recognizable. Let R = {#→ 1} which is confluent. Now
it is easy to see that the PCP P has a solution iff there exist u1 ∈ L1, u2 ∈ L2,
and v ∈ IRR(R) with u1 →∗R v, u2 →∗R v. Since R is confluent, the last property
holds iff u1 ↔∗R u2. ut

Acknowledgments I would like to thank Volker Diekert, Anca Muscholl, and
Friedrich Otto for valuable comments.

References

[BJW82] R.V. Book, M. Jantzen, and C. Wrathall. Monadic Thue systems. Theo-
retical Computer Science, 19:231–251, 1982.

[BL81] A. M. Ballantyne and D. S. Lankford. New decision algorithms for finitely
presented commutative semigroups. Comput. and Maths. with Appls.,
7:159–165, 1981.

[BMS89] A. Bertoni, G. Mauri, and N. Sabadini. Membership problems for regular
and context free trace languages. Information and Computation, 82:135–
150, 1989.

[BO81] R.V. Book and C.P. O’Dunlaing. Testing for the Church–Rosser property
(note). Theoretical Computer Science, 16:223–229, 1981.

[BO85] R.V. Book and F. Otto. Cancellation rules and extended word problems.
Information Processing Letters, 20:5–11, 1985.

[BO93] R.V. Book and F. Otto. String–Rewriting Systems. Springer, 1993.
[Boo82] R.V. Book. Confluent and other types of Thue systems. Journal of the

ACM, 29(1):171–182, January 1982.
[CP85] R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O.

— Informatique Théorique et Applications, 19:21–32, 1985.
[Die90] V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in

Computer Science. Springer, Berlin-Heidelberg-New York, 1990.
[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,

Singapore, 1995.
[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computa-

tion: P -Completeness Theory. Oxford University Press, 1995.
[JLL77] N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems

in Petri nets. Theoretical Computer Science, 4:277–299, 1977.
[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller

and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, New York, 1972.

[KKMN85] D. Kapur, M. S. Krishnamoorthy, R. McNaughton, and P. Narendran. An
O(|T |3) algorithm for testing the Church-Rosser property of Thue systems.
Theoretical Computer Science, 35(1):109–114, January 1985.

[Loh98] M. Lohrey. On the confluence of trace rewriting systems. In V. Arvind and
R. Ramanujam, editors, Foundations of Software Technology and Theoreti-
cal Computer Science, volume 1530 of Lecture Notes in Computer Science,
pages 319–330. Springer, 1998.

[Loh99] M. Lohrey. Complexity results for confluence problems. Technical
Report 1999/05, University of Stuttgart, Germany, 1999. Available via
ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart fi/TR-1999-05/.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[NB72] M. Nivat and M. Benois. Congruences parfaites et quasi–parfaites. Semi-
naire Dubreil, 25(7–01–09), 1971–1972.

[NO88] P. Narendran and F. Otto. Preperfectness is undecidable for Thue sys-
tems containing only length-reducing rules and a single commutation rule.
Information Processing Letters, 29:125–130, 1988.

[Och85] E. Ochmański. Regular behaviour of concurrent systems. Bulletin of the
European Association for Theoretical Computer Science (EATCS), 27:56–
67, October 1985.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[VRL98] R. M. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and reductions

for rewriting problems. In Proceedings 9th Conference on Rewriting Tech-
niques and Applications, Tsukuba (Japan), volume 1379 of Lecture Notes
in Computer Science, pages 166–180. Springer, 1998.

