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ABSTRACT
Detecting the task at hand can often be improved when
it is also known what object the user is holding. Several
sensing modalities have been suggested to identify handheld
objects, from wrist-worn RFID readers to cameras. A crit-
ical obstacle to using such sensors, however, is that they
tend to be too power hungry for continuous usage. This
paper proposes a system that detects grasping using first
inertial sensors and then Electromyography (EMG) on the
forearm, to then selectively activate the object identification
sensors. This three-tiered approach would therefore only at-
tempt to identify in-hand objects once it is known a grasping
has occurred. Our experiments show that high recall can be
obtained for grasp detection, 95% on average across par-
ticipants, with the grasping of lighter and smaller objects
clearly being more difficult.

CCS Concepts
•Human-centered computing → Gestural input;
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1. INTRODUCTION
In wearable gesture- and activity recognition, researchers

aim at designing efficient and accurate systems that are able
to detect what activities a person is performing automati-
cally, by applying pattern detection and machine learning
methods on the data of body-worn sensing units. These
wearable units often are centered around inertial sensors
that measure pose and motion; Such sensors have become
not only popular because of their decreasing size and cost,
they have also become very power efficient, allowing record-
ings of days to weeks on miniature batteries. This has led to
numerous research platforms and systems being designed in
the past decade, mostly to perform activity recognition in
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Figure 1: This paper presents a three-tiered sys-
tem, in which grasps are detected through inertial
and EMG measurements, after which the system ac-
tivates the more energy-demanding unit for identi-
fying what object or tool was grasped.

unconstrained settings, and often using just a single, minia-
ture wrist-worn device. One obstacle that remains for wear-
able activity recognition with inertial sensors, however, is
that for many physical gestures and motions, inertial sensors
do not always exactly capture the essence of an activity.

An object or tool being used by the user is often a valu-
able piece of information, in addition to what gestures are
made (see e.g., [20]). By knowing what is being interacted
with, i.e., what is being held in the user’s hand, the estima-
tion of user activity has been known to be improved con-
siderably [14]. Such objects detection systems have been
shown to work well in principle, though one major hur-
dle remains: The modalities available for detecting in-hand
objects, such as wrist-worn Radio Frequency Identification
(RFID) or cameras, tend to require a considerable amount
of power for realistic deployments. This paper focuses on
a system design (Figure 1) that can efficiently detect the
type of object that is held in the hand, by using a wearable
RFID scanner in combination with an inertial measurement
unit (IMU) and eight EMG units placed on the lower arm.
Since the searching of nearby RFID tags is the most energy-
demanding sensing tasks, we propose to minimize this ac-
tion only to instances when the user is about to grab a new
object, thus leaving the RFID-scanning mostly turned off.
Grasping of an object is only tested for when sufficient evi-
dence is provided from the more power-efficient IMU.



This paper is structured as follows: After situating our
research within related research in grasp and object detec-
tion approaches, we present our system’s main concepts and
system implementation. The following section then will fo-
cus on the selection and data analysis of the two specific
sensor modalities, EMG and inertial data, after which our
experiments and their results will be presented. The final
conclusions section will then present our main findings and
suggest several future directions for this work.

2. RELATED WORK
Research in HCI and wearable systems has proposed a

wide diversity of approaches that are capable of automat-
ically detecting objects in the user’s hands. The motiva-
tion for systems that detect in-hand objects can range from
improving basic interaction by using tangible and familiar
tools [3, 19], to tracking of where users might have left ob-
jects from where they last grasped them [17], to obtaining
and tracking the user’s daily activities through any activity-
dependent held objects [9, 13, 14, 15]. Earlier work of wear-
able object detection proposed the use of RFID tags com-
bined with a tag reader in a wearable setting to detect basic
interactions and activities [3, 4, 5, 9, 13, 14, 16, 19]. More
recently, wearable research has suggested alternative, but
equally power-demanding sensing modalities such as wrist-
worn camera systems as a basis for performing in-hand ob-
ject detection from wrist-worn devices (as in [1, 11, 12, 17]).

One of the challenges in designing wrist-worn RFID read-
ers is that tags need to be detected from a relatively large
range (between 10 and 25 cm are reported in the aforemen-
tioned research), requiring either a large and well-calibrated
antenna (as for instance detailed in [3]) or amplification.
The latter implies that either more battery power is needed
on the receiver’s end, i.e., on the wrist, or that an additional
battery is provided at every tagged object. Want remarks
in [18] that passive RFID, where tags are kept cheap, small,
and robust since they lack a battery, is by far the more in-
teresting class.

For camera-based object detection from the wrist, two
obstacles present themselves from an energy perspective:
First, the camera needs to perform constant capturing of
images, which even for miniature and low-resolution cam-
eras requires about 80-100 mA of current consumption1.

Second, the images need to be analyzed for potential ob-
jects present at different scales, orientations, and being pos-
sibly partially occluded by the user’s hand. A major benefit
of this modality is that objects do not have to be tagged be-
forehand and that systems as presented in [11], [12] and [17]
could be used with a larger diversity of objects. The combi-
nation of these two requirements, however, means that the
power requirements, along with the components’ cost and
size, are very large.

A third alternative modality for sensing in-hand objects
that has been suggested recently is capacitive sensing [7, 8]
from wrist-worn electrodes; Although this approach charac-
terizes object types only roughly through capacitive prox-
imity sensing, the authors have shown that recognition of
interaction and activities is improved when adding this infor-
mation. The lack of exact object identification in this work

1This estimate was taken from a range of commercially avail-
able 2M JPEG Color Camera modules with TTL level in-
terface.

is countered by this approach’s considerably more power-
efficient operation, with a reported 1 mA draw at 3.3V.

Early work by Schmidt et al. [16] suggested a wearable
RFID reader for detecting the objects in the environment
as they are handled by the user. Their design suggested
the implementation of the antennas as coils inside clothing,
in particular gloves. They also show how the detected tags
within objects can trigger applications implicitly, and sug-
gest use cases in inventory managment and data warehous-
ing. Work by Fishkin et al. [5] followed up on such work,
showing how to integrate wearable RFID readers in gloves
(iGlove) and suggesting wrist-worn, bracelet-like (iBracelet)
systems as an alternative and less-obtrusive solution.

Philipose et al. [14] demonstrated the possibility of de-
tecting activities of daily living with wearable object detec-
tion. They used a glove based RFID reader with a sampling
rate of 2 Hz which lasted for 2 hours. They collected a se-
ries of tags, corresponding to an activity, and calculated the
probability that one activity is executed. Besides modeling
errors, they also identified sensor errors (missed tags) as a
source of ambiguity. They achieved a recall of 73% with a
precision of 88%. They also reported a recall of 33% for
their worst recorded activity. As a reason for missed detec-
tions, they mentioned the absorption of the RFID signals by
the environment. Patterson et al. [13] showed in a similar
setup for fine-grained daily activity recognition, that incor-
porating the knowledge of aggregate objects leads not only
to good accuracy but also requires less training data to learn
the activties’ models.

Berlin et al. [3] designed an open-source RFID reader
with an oval, wrist-worn antenna. The project addresses
the questions of increasing the range of an antenna, obtain-
ing the optimal sampling frequency for the reader, and how
3D acceleration patterns can be approximated efficiently for
detecting gestures of interest. Because of the relatively large
distance of the wrist to the tagged objects in the hand, the
RFID antenna was enlarged and tuned. The antenna and
RFID reader unit was described with 60 mA while reading,
15 mA in idle mode, and 60 µA in sleep state. One read-
ing needed between 20 and 68.4 ms, depending on tag type
and whether the reading is successful. With one reading
per second, it was possible to decrease the average current
consumption to approximately 18.23 mA. In the tests, the
hit rate started at 100% with 16 Hz (full duty cycle) and
decreased to 65% with 1 Hz.

An approach to use wearable in-hand object detection to
interact with the environment was shown by Wolf et al. [19],
who introduced an interaction device with a wearable ob-
ject pick-up detection system. The work sought to switch
devices from standby to active mode when taking into hand
instead of a manual activation technique. The system uses
a combination of a RFID ring with an embedded gyroscope
(”PickRing”) and the gyroscope data of the devices. Gyro-
scope data is sent via Bluetooth to all coupled devices and
compared with their gyroscope data. The entirely wearable
part of the system, with microcontroller and Bluetooth ac-
tive, has a reported runtime of 15 hours on a 9V battery.

Common to all these research efforts is that object de-
tection from the wrist is shown to have a lot of advantages
and would open up new interaction possibilities or improved
recognition and tracking systems. Power efficiency, however,
is without exception identified as a main obstacle to achieve
such systems in real-world applications. In the following sec-



tions, we will describe our proposed approach, which adds
two sensing modalities to make such object detection sys-
tems more power-efficient by turning the in-hand object de-
tection on, only when actual grasping gestures are spotted.

3. SYSTEM CONCEPTS
Since the runtime of wearable activity sensors is dictated

mostly by their battery, achieving a minimal power con-
sumption is a primary goal. Furthermore, obtaining the
sensor readings requires a significant portion of current sys-
tems that are able of detecting in-hand objects. To this
end, we argue for adding a mechanism to leave the object
detection unit turned off when no objects are expected to
be in the user’s hand, to decrease the power consumption
of the entire system. As a result, such systems could be
made reduced in size and weight (not unimportant, since
they have to be worn at the wrist) and longer-lasting on a
single battery charge.

3.1 Method Overview
The detection of grasping is thus added to the system, to

enable to flexibly activate object detection as soon as a grasp
is detected (as depicted in Figure 1). It is important to note
here that adding this additional system only makes sense if
this in turn does not require a similar amount of power. We
propose to employ in our system a combination of EMG sen-
sors and a low-power IMU unit, which combined need much
less power than either RFID or camera-based units. We fur-
thermore use the same technique in the grasp detection part
of the system: The only sensor which is consistently active
is the accelerometer for motion detection. As soon as suffi-
cient motion is detected, the EMG sensors are switched on
to guarantee a sufficiently accurate detection of grasps.

As in most classification problems, our system’s detection
performance cannot be expected to be flawless. It is more
critical that all grasps are recognized, while occasional false
positives (i.e., when grasps are detected when the user was
not grasping an object) are less problematic. From a mod-
eling perspective, the aim is thus to maximize the recall
performance of the detection system, while allowing for less
optimal precision figures. This would result in a system that
sporadically has the RFID tag reading unit activated, at ev-
ery occasion once a grasp gesture is detected. The system
loses some energy whenever other gestures are misclassified
as grasps, but this we argue is much better than missing
grasps (and therefore objects) altogether. Whether we are
able to construct our detection system in this way, is what
will be focused on in the evaluation section. First, though,
we will describe the used hardware in the next section.

3.2 Implementation Details
Our grasp detection system’s prototype is based on EMG

and IMU data. As sensor we used a commercial system,
the Myo from Thalmic Labs2. The IMU sensor contains a
3D accelerometer, a 3D magnetometer, and a 3D gyroscope,
all sampled at 50 Hz. EMG data is collected via 8 units
at 200 Hz. The EMG units are worn on the upper part
of the forearm (see Figure 2), a few centimeters away from
the elbow. All EMG electrodes are equidistantly distributed
around the forearm. The Myo has a built-in Bluetooth Low-
Energy (BLE) unit that can be accessed as a serial port

2https://developer.thalmic.com, [last accessed Dec. 2015]

Figure 2: Our prototype uses a commercial EMG
and IMU sensor (Myo from Thalmic Labs, depicted
right), which is through BLE connected to a wrist-
worn RFID reader (left). Only once a grasping ges-
ture is detected from IMU and EMG data, our sys-
tem instructs to activate the RFID reader and read
any nearby tags, via BLE.

from another host unit. In our case, we used the design
from [3] to obtain an RFID unit with a wide reading range,
with an integrated RFduino3 processing unit that includes
a BLE tranceiver as well. This way, both modules form one
system, with the main point of control at the RFID reader
side (due to the fact that the Myo’s microcontroller cannot
be altered), being able to function for about 9 hours on full
battery charges. To avoid the constant sending of sensor
data between the two modules, and thus obtain a much more
energy-efficient configuration, one could move this control to
the Myo’s side. This paper’s focus is however in the grasp
detection methods and the reliabilty thereof, for which this
system’s runtime is more than adequate enough.

For the experiments, the logging of the raw sensor data has
been implemented via a C++ program on a laptop nearby
connected via BLE to the system. Matlab from MathWorks
has been used for postprocessing the data, extracting the
features, and visualization. A real time grasp detection
method has also been developed in Matlab. Based on the
specific example of the hardware prototype described above,
the next section will enumerate the typical energy consump-
tion figures for each of the individual components in the sys-
tem, to motivate why our proposed three-tiered approach
can be expected to lead to considerable power savings.

3.3 Energy Requirements for Components
With the prototype system in place, using state-of-the-

art components, we can now investigate the current con-
sumption of each of the components as an illustration of
the energy saving opportunities that lie in the appropri-
ately switching off of sensing modules (RFID and EMG)
when they are not needed. For typical energy consump-
tion, the following estimations are made, based on available
datasheets of the main components and with an operating
voltage at 3V:

• Accelerometer (InvenSense MPU9150): . . . . . . <0.2 mA

• Gyroscope (InvenSense MPU9150): . . . . . . . . . . . . . ˜3 mA

• 8 channel EMG (based on ST 78589 VA1814): . . ˜8 mA

• Processing (Freescale K21 Cortex M4 MCU): . ˜7.7 mA

• RFID (SkyeTek SkyeModule M1-Mini): . . . . . . . ˜60 mA

3http://www.rfduino.com/ [last accessed Dec. 2015]



The estimates show that for each additional tier, the sens-
ing modules draw one order of magnitude more current than
those in the one before: Accelerometers typically draw far
less than 1 mA, the EMG sensors are estimated to require
around 8 mA, while an active RFID reader uses 60 mA.

The first layer of our grasp detection model is based on
acceleration data alone and observes the patterns present in
the data from the inertial sensor to test whether they would
support the presence of grasps. The underlying idea here is
that grasping is unlikely to take place when the user is not
moving his hand (such as during resting or sleeping) or when
an activity can be recognized that inhibits grasping (such as
while walking or running). Since the gyroscope data has in
previous experiments led to similarly potent features as the
acceleration data, the 3 mA can be neglected by using solely
the accelerometer for detecting sedentary behavior and spe-
cific activities that inhibit grasping. By thus neglecting the
gyroscope’s influence and assuming a normal resting and
walking activity, the system would draw an overhead cur-
rent of 12 mA.

Energy consumption of RFID readers is mostly depending
on their duty cycle (reading all nearby tags) and possible
detection range. With a full duty cycle over short ranges,
a nominal current consumption can reach over 100 mA. In
[3], the M1 with a wrist-worn antenna design was shown to
consume 18.23 mA during a low 1 Hz duty cycle, although
tags were much more reliably read at 16 Hz with a higher
current consumption. Improvements could include using a
more powerful RFID reader unit between the RFID antenna,
leading to larger units that require more energy, however.

4. THE GRASP DETECTION MODEL
For the detection of the grasps, a three-layered model has

been implemented to decrease the level of abstraction from a
detection in the whole system to a detection in smaller sub-
systems. In the first layer, we perform a basic type of activ-
ity recognition, where a person’s activity is estimated for a
period larger than one second. Examples for such situations
are resting, walking or working. In the second layer, typical
features for the actual task of grasping are extracted. These
features are calculated over a time period of a few hundred
milliseconds to achieve a high reactivity of the system. Be-
cause of a wide variation of grasps and movements, similar
to grasps, single features by themselves tend to be rather
weak. In the third layer, the chronological sequence of de-
tected features is matched and classified. This layer ensures
a good combination of the detected features which supports
the grasp estimate, and therefore keeps the precision high.
The high precision allows to collect a lot of weak features in
the second layer which enables the system to detect a wide
variation of grasps to achieve a high recall in real world ap-
plications. To highlight where the features, especially those
from the EMG data, occur during the grasping sequence,
we will in the next section list the main steps during the
grasping of an object.

4.1 Steps for a Grasping Sequence
In the third layer of the model, the grasping action can

be divided into different steps, with each of the steps invok-
ing different features. Typically, however, there is no clear
border between these steps that would make it easier to flag
the detection of a feature for a period of time. For fea-
ture extraction, the steps ”Moving hand to object”, ”Closing

the hand around object”, ”Holding object” and ”Releasing
object” were used. The collection of features for a step is
typically detected within a short time interval, but different
steps can be spread in time. For this situation, it can be ex-
pected that features before a grasp are further away from the
actual grasp than features for the holding step. The steps
have been depicted in Figure 3: The pictures demonstrate a
typical sequence for a grasp. The first picture (Figure 3.1)
illustrates a resting posture just before (and typically also
present after) the grasp. Data associated to this step should
not be detected as part of a grasp, and is thus part of the
null class.

Moving hand to object is shown in Figure 3.2. This
step can use motion features for changing the position of
the lower arm, a directed movement of the arm and hand
towards the object and, very typically, also a rotation of
the hand. The EMG features are typically representing the
opening of the hand and a slight pulling back of the back of
the hand.

Closing hand around object is shown in Figure 3.3.
This often tends to contain strong accelerometer signals go-
ing in the opposite direction of the previous movement by
the slowing down of the hand or its colliding with the object.
Specific muscle activation for a flexion can also be detected.

Holding object is illustrated in Figure 3.4. This step
of the grasping action can be detected by continuous strong
signals coming from muscular activity used for closing the
hands. Light-weight and fragile objects can be problematic
to detect in this step since a strong grasp is not necessary
or impossible.

Releasing object is shown in Figure 3.5. Typically, sim-
ilar features to the ”Moving hand to object” step are invoked
during this step. Since this occurs after the grasp has taken
place, it has no direct use to activate the RFID reader. How-
ever, it does contain valuable information about the ending
of the grasp (and therefore stopping the object detection).

For extracting features, the eight EMG signals, the three
acceleration channels and three gyroscope channels were an-
alyzed in the time domain, as well as in low frequency energy
and entropy and in (spectral) frequency bands. The acceler-
ation data was both represented with and without the grav-
ity factor (to get rid of the gravity factor a high pass filter
is used).

4.2 Feature Selection
Since the hardware prototype contains a full IMU, we ini-

tially evaluated the gyroscope’s output, as well as using the
IMU’s pre-computed Euler angles. Surprisingly, the result-
ing features from these modalities were found to be less dis-
tinctive than those from the basic 3D acceleration modality.
Inertial measurement units have the advantage that they
are more common, cheaper to integrate into designs, and
smaller and thus more comfortable to wear. However, in
case of grasping, IMU signals alone were found to be not
specific enough to accurately detect grasping gestures in our
first studies.

For the EMG features, we used methods similar to those
used in related work such as [10] and [2]. In case of EMG
features, it is helpful to get an idea about the muscle po-
sitions and functions. Roughly spoken the extensors of the
wrist and fingers can be used to get the step before a grasp,
while the flexors are a better detection for the grasp itself.
Flexors are typically more on the anterior and extensors are



Figure 3: Illustrating the sequence of steps during a complete grasp. The figures illustrate the modelled steps
during the grasp, as also indicated in the text and in Figure 4: (1) Start/stop posture, (2) Moving hand to
object, (3) Closing hand around object, (4) Holding object, and (5) Releasing the object.

Figure 4: Activation signals of the eight EMG sensor units over time in a series of seven grasps of different
objects, from the same participant. Grasping steps are numbered according to the steps in Figure 3. Colored
bars indicate a step change, where step 3 is a relatively short period of time. The EMG sensor units have
been worn equidistantly on the right forearm, near the elbow, with a clockwise numbering starting on the
anterior side.

more on the posterior side of the forearm. Each of the fea-
tures should be checked statistically across multiple persons,
because some muscles only show an activation under a lot
of stress. It is important to note that measurements on
the skin can also lowpass-filter the signals and decrease the
signal strength. As such, EMG features should be rather
checked for an activation than for static values, since the
EMG signals not only differ by person but also for the du-
ration of wearing the sensors.

Figure 4 shows a series of seven typical grasps. The num-
bering on top of the figure matches the numbers in Figure 3.
The EMG sensors are worn equidistantly around the right
forearm, around 4-5 centimeters away from the elbow. The
numbering of the sensors is made clockwise: Sensors 8, 1
and 2 are worn on the anterior side and sensors 4 till 6 are
worn on the posterior side of the arm. Steps 1, 2, 4 and 5 are
shown between the bars, step 3 is a very short time period
marked with the second magenta bar of each grasp. Step 1 is
part of the null class and is not used when building a detec-
tor, however the features should be distinguishable from it.
Step 2 is the arm movement to the object with the intention
to grasp: Usually, sensors 5 and 6 show a voltage increase
because of the extension of the wrist and fingers. Step 3
marks the closing of the hand around the object: Mostly,
short spikes in the voltages of the flexor sensors 1 and 8 can

be seen. Step 4 marks the holding of the object: Depending
on the strength of the grasp, all sensors, but mainly sensor
4, show an increased voltage. Step 5 marks the letting go
of the object which can, but must not, start with a flexion
of the wrist, shown by a spike in the corresponding sensors
and then an extension with an increased voltage in sensor 4,
5 and 6.

The IMU features can be derived by the typical arm move-
ments. Usually a directed movement towards the object, a
very common twist of the arm and a change of the location
of the hand (seen in the gravity factor of the acceleration)
can be detected. Features were here limited to a window
of 0.2 seconds and consisted of the basic statistics (mini-
mum, maximum, difference thereof, mean and variance) in
the time domain. The required calculation frequency of the
features should not be too fast to save processing power but
also shouldn’t be too slow in case of short grasps. Assuming
a minimum grasping length of 650 ms and a maximal search-
ing time for tags of 70 ms, a mode switching delay of the
reader of 100 ms and a maximum of 2 calculation steps after
the grasp, a delay between the calculations of 220 ms is ap-
propriate. For feature selection and classification, we opted
for using decision stumps as a basic classifier, with finally
detecting the grasping by a boosting approach. As an alter-
native, PCA has been tested to decrease the feature space,



but it was found that it needs roughly four till six compo-
nents to reach a certainty of above 95% for classifying the
step of the grasping gesture. We finally also evaluated sev-
eral other classification methods available through GRT [6]
in leave-one-participant-out cross-validation, though these
did not deliver better results.

5. EXPERIMENT
In order to evaluate how well a system such as ours can

generally detect grasps, especially as these grasps are under-
way, we will present in this section a feasibility study, using
our hardware prototype in a set of controlled experiments.

5.1 Experiment Setup
For the evaluation, a set of scripted tasks were performed

by twelve participants. They were told before the experi-
ment how to wear the hardware prototype and to try to use
their right hand for all tasks. In order to achieve an as nat-
ural as possible behavior from the participants, they were
not told that the experiment’s goal was to monitor grasps
specifically, and tasks were instead about fetching objects
from a variety of places, at a variety of heights, with inter-
leaved activities such as walking or drinking from a bottle.
No instructions on how to move the arm or how to perform
grasps was made, so the participants were free to use any
grasping sequence.

Before each experiment, care was taken that the orienta-
tion of the IMU unit and the placement of the EMG elec-
trodes were near-identical for each participant. The experi-
ments did not contain a calibration phase, the sensors were
used straight away. The task included RFID-tagged objects
as similar as possible to the box test reported in [3], includ-
ing a cardboard box including a hammer, a screwdriver, a
craft knife, a filled 0.5-litre plastic water bottle, an empty
1-litre plastic bottle and a USB stick. These items are also
depicted in Figure 5.

The first two tasks involved the grasping interleaved be-
tween walking around in the room. For this, the participants
were asked to walk to a water bottle, grab the bottle, bring
it back, drink a bit and put it on the table. Afterwards they
were told to bring a cardboard box to the table, filled with
tools needed for the next tasks. After this, the participants
were asked to perform several basic tasks, involving getting
several objects out of the box and putting them back after
use. A nail was for instance hammered into a wooden board,
a screw was screwed, some cuts were made in a paper sheet,
other objects like the empty bottle or the USB stick were
moved around between box and table. Afterwards the box
was put on its side so that the opening pointed towards the
participant, after which several more tasks followed.

As a baseline method for comparing against, we chose to
use a basic classifier from the Gesture Recognition Toolkit [6]
using the Random Forest Algorithm to train for individual
steps on a range of features (mean, range, variance, median,
zero crossings, root mean square) that were z-normalized.

5.2 Experiment Results
For evaluating the proposed system, the log files of the

experiments have been postprocessed with the same con-
figurations as one would use for real-time analysis. The
timestamps of the recognition have been synchronized with
ground truth annotations from video data taken during the
experiments. For this ground truth, we used the time when

Figure 5: Selected items used in the experiment
were tagged with RFID tags and were chosen to be
similar with the objects reported in [3].

the hand or fingers start touching the object with enough
force so that the object would not fall off when moving. For
an accepted true positive instance, the found timestamp had
to be between 50 ms before and 350 ms after the ground
truth mark.

Per participant, a total of 18 grasps should have occurred.
Because of a relatively loose usage of the objects and due
to extra gestures between the grasps, this number was often
slightly higher. For instance, some participants were putting
down the hammer first for grasping a nail. Grasping other
objects, like the nails, has also been detected but since it
was sometimes hard to distinguish whether a touch should
be counted as a grasp, only moving of the mentioned objects
was counted. Other gestures for which it was hard to decide
whether they could be counted as grasps, were for example
the laying down of the hand on the leg.

Since the number of grasps differed per participant and
per object, we received three different recall rates. A recall of
95.20% was achieved when counting every grasp, 95.50% was
achieved when taking the mean recall over the participants
for every grasp and 95.54% when taking the mean of the
objects’ recall results for all participants. The single results
can be seen in Figure 6. Five of twelve participants received
a recall of 100%. The two worst results were close above
85%. Recall results for the objects can be seen in Figure
7. The cardboard box and the filled water bottle received
the best results with 100%. The more light-weight or easier
to handle objects (USB stick, screwdriver and craft knife)
received the worst results between 89.29% and 92%.

Results are primarily expressed as recall, as detecting ev-
ery grasp is the most crucial for our system. A slightly lower
precision (all true positives versus all positives) is not as crit-
ical, as it will ’just’ cause the object detection system to be
activated needlessly (as there is no object to detect). As
long as this does not occur too frequently, the impact on the
entire system’s energy consumption is minimal. Most false



Figure 6: Recall for each of 12 participants with all
used objects, either across all grasps (red) or dis-
tributed evenly over the objects (blue).

Figure 7: Recall results for grasps of the objects
across all participants, either across all grasps (red)
or distributed over participants (blue).

positives were furthermore found to occur around the grasp,
when performing strong movements or when strengthening
a grasp.

5.3 Experiment Discussion
Using our proposed set of IMU and EMG features gen-

erally performed better than the baseline classifier (which
resulted in an across-objects recall range of 68-84% and pre-
cision range of 68-78%, for the 12 study participants).

The false positives can be categorized into three main
classes. Right before and after the actual grasp, often some
detections can be found. This number could be reduced by
disabling the detection for some time after finding an ob-
ject by the object detector. Strong movements of the arm
can also be detected as grasps if the walk detection does
not filter them out. Strengthening of a grasp is also often
detected. This can also get filtered out by a disabling af-
ter object detection or by checking for an end of the grasp
before enabling a new detection.

A system based on acceleration (or gyroscope data) alone
is hard to implement since the found accelerometer (and gy-
roscope) features are hard to distinguish from many other
movements. Moreover, the change in the time signals of
a grasp movement is much weaker than most other move-
ments. The most problematic issue with using IMU data
only is that the step ”Holding object” is hard to model.
Therefore, a high recall is only possible with a very low pre-

cision, which would result in object detection that is nearly
always on.

Some grasps differ strongly from the typical grasps in the
resulting sensor values and therefore should use different fea-
tures. To overcome this problem, more universal features
can be used which results in a higher false positive rate. An
alternative can be a second detection routine with differ-
ent features. Grasps of light-weight and fragile objects are
harder to be found. Persons are more careful when moving
towards these objects and only weak acceleration changes
are found. Since persons needs less strength or be more care-
ful when touching these objects, the EMG data do not have
such strong differences in the signal. Lastly, when tight-
ening a grasp slowly, the short-time EMG signals do not
differentiate much. To detect grasping this type of objects,
the detector has to react on weaker changes, which would
increase the false positive rate and would thus lead to a less
efficient system.

Even if we tuned the parameters generally with an accept-
able result, the functionality of the system is user-dependent.
It is entirely possible that people might prefer grasps that
are less typical and harder to detect. The EMG signals differ
per person and as the hardware is worn. The IMU parame-
ters worked well in the tests, but it is possible that they have
to be altered for some persons. We also found during initial
experiments that participants act unnaturally when getting
immediate feedback. It could be possible that this reaction
can also be observed when using it in real life applications.
Achieving a fixed sensor orientation is straightforward, but
placing the EMG sensors on identical positions on the fore-
arm across all participants is hard to achieve. A more accu-
rate position would result in better responses, so designing
the sensors to fit uniformly (e.g., from a fixed distance from
the elbow), or having feedback for EMG signal quality while
fitting would likely increase grasp detection as well.

6. CONCLUSIONS
A system that is able to identify objects in the user’s hand

has been suggested for interaction, tracking user objects, and
improving the recognition of user activities. A major obsta-
cle remains that such systems are far from energy-efficient;
The cheapest solution that will deliver immediate object
identification, using wrist-worn RFID readers, requires still
too much battery power for realistic or non-obtrusive de-
ployment. In this paper we have focused on a solution that
is based on the addition of two modalities that are an order
of magnitude cheaper in terms of power consumption: By
first detecting whether grasping is taking place by means of
an IMU and an array of EMG sensors, the RFID reading is
only switched on when the user makes a grasping gesture.

We developed a grasp detection system based on efficient
analysis of EMG and IMU data, which is connected to an
RFID reader unit via BLE. In this paper, we focused on
the ability of a grasp detection system to correctly iden-
tify grasps with a priority on spotting every grasp, allowing
also for the occasional false positive (as this turns the RFID
reader on for a short time although no grasp occurred).

In a set of experiments, we asked 12 participants to wear
our system and perform a series of tasks, including several
grasping tasks from a variety of positions, with interleaved
other activities, and with a variety of objects to grasp. The
overall recall (grasps that were detected by our system) was
above 95%, with 100% for five out of twelve participants



and also for the heavier two out of seven objects. We found
that false positives (motions that were detected as a grasp
but were not) are limited and can be categorized in three
classes: Those that occur very close to the grasp, those that
are associated with single strong arm gestures, and those
that occur when strengthening a grasp. We identified two
hurdles that remain before such a system can be adopted:
First, grasping light-weight objects tends to be less reliable
to detect. Second, the effectivity of grasp detection with
EMG fluctuates strongly across persons due to skin type,
wear, and positioning.

A real time version of the prototype has also been imple-
mented, which gives vibration and visual feedback for de-
tected grasps. We are currently implementing the presented
features and detection routines on an embedded hardware
prototype similar to the one presented here, and are inves-
tigating possible ways of integrating the whole system in a
single wrist-worn unit, so that the BLE link present in the
current prototype can be avoided. This would enable future
research to include both more realistic and more prolonged
user experiments.
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