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ABSTRACT
The physical activities we perform throughout our daily lives
tell a great deal about our goals, routines, and behavior, and
as such, have been known for a while to be a key indicator for
psychiatric disorders. This paper focuses on the use of a wrist-
watch with integrated inertial sensors. The algorithms that deal
with the data from these sensors can automatically detect the
activities that the patient performed from characteristic motion
patterns. Such a system can be deployed for several weeks con-
tinuously and can thus provide the consulting psychiatrist an
insight in their patient’s behavior and changes thereof. Since
these algorithms will never be flawless, however, a remaining
question is how we can support the psychiatrist in assigning
confidence to these automatic detections. To this end, we
present a study where visualizations at three levels from a
detection algorithm are used as feedback, and examine which
of these are the most helpful in conveying what activities the
patient has performed. Results show that just visualizing the
classifier’s output performs the best, but that user’s confidence
in these automated predictions can be boosted significantly by
visualizing earlier pre-processing steps.

CCS Concepts
•Human-centered computing→ Visualization; Ubiquitous
and mobile computing;

Author Keywords
Context-aware services; Activity recognition; Interaction
design; Visualization methods

INTRODUCTION
Automated recognition of a person’s activities has in the past
decade often been suggested as an attractive system for moni-
toring patients that suffer from a wide range of disorders. By
relying on observations from sensors in the environment or
from body-worn sensors, performed activities can be inferred
through a ubiquitous system. Activity recognition is moti-
vated by establishing a more effective dialogue between user
and computer, reducing cognitive load in pervasive computing
scenarios, and delivering an improved service by proactively
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Figure 1. An activity recognition system (top) uses long-term inertial
data from a patient’s wrist-worn motion logger to find typical patterns
matching that activity. These data are visualized and presented to con-
sulting medical staff (right). This paper investigates what combinations
of visualizations are the most helpful to convey past activities.

responding to given situations. Numerous applications have
been suggested to benefit from this: Philipose et al. [27] for
instance demonstrate how Activities of Daily Living (ADLs)
can be detected, to estimate the quality of self-care for elderly
users. Further application scenarios for activity recognition
include detecting office activities [24], maintenance tasks per-
formed by engineers [28] and specific sports activities [32, 13],
finding appropriate advertising based on the user’s physical
activity [25] and eating and drinking activities [1]. Depending
on the application, algorithms can go beyond recognition of
activities and detect certain characteristics, such as the number
of counts for selected gym workouts [5].

This paper’s approach is targeting a class of applications that
remains challenging: Among the more recent of activity recog-
nition scenarios is psychiatric patient monitoring, which aims
at following mood and behavioral trends by recording activ-
ity data over a period of typically several months. Existing
commercial actigraphy solutions such as the MotionWatch
[4] are able to record activity levels and to detect sleep and
wake cycles for such long deployments, and come with tools
for facilitating the recording of basic physical activity. In this
scenario, some general problems in activity recognition are
bypassed: Patients already keep detailed diaries of their ac-
tivities so that supervised learning methods can be employed,
and only a few physical activities linked to daily routine are of
interest in the logged data. Other requirements, however, form
novel challenges: Sensors should record for long stretches of
time, a large amount of logged data needs to be analyzed, and
detection needs to be robust against a lot of background data.
This leads to recognition systems that will not always predict
with 100% accuracy when an activity of interest happened. We
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argue that this can be reflected in the way the detections are
visualized, by adding lower-level information visualizations.

Figure 1 illustrates the paper’s healthcare scenario, based on
collaborations with psychiatrists and psychologists guiding
bipolar patients. Data are recorded per patient over several
weeks and, after downloaded, can be visualized to the medical
staff on three levels: (1) by plotting the raw data acquired by
the wrist-worn inertial sensor (recording 3D accelerometer
readings at 100Hz), (2) by displaying which sections of these
data were identified as containing characteristic patterns for a
particular activity, and (3) the final classifications made by the
classification algorithm. We investigate which combination of
these three information visualizations is most appropriate.

The remainder of this paper is structured as follows: First, a
specific long-term monitoring scenario is described to moti-
vate the need for a detection system that estimates when a
user has performed certain physical activities. Then, the next
section is dedicated to related work in activity recognition,
with particular focus on methods that aim for long-term de-
ployments in healthcare with feedback to others. The third
section will present the details on our used method, and the
levels of information abstraction at which the data can be vi-
sualized. In section 4 (Evaluation), the study is described, that
uses a 33 participant, week-long patient dataset to visualize
activities to a set of 15 medical staff independent participants,
investigating the applicability of combinations of the three
proposed visualizations for detected activities. The paper is
wrapped up with the conclusions section enumerating the key
results of this paper, as well as the future research potential.

CASE STUDY: BIPOLAR PATIENT MONITORING
We focus first and foremost on a practical capturing and de-
tection system that is able to recognize particular activities
within large stretches of time that tend to include a massive
amount of motion and posture data, generally holding weeks
of activity data at a time. As a case study of in which areas
such a system would be applied, we start this section with a
description of long-term monitoring of bipolar patients.

Research in mood disorders (such as attention deficit hyper-
activity disorder (ADHD) and bipolar disorder [8]) relies fre-
quently on the patients’ self-reports, as well as semi-structured
interviews with a psychiatrist, during diagnosis and therapy.
Work with actigraphy tools in psychiatry [34, 30] has started to
deploy wrist-worn sensors in conjunction with these tools that
are recording the activity intensities observed for the patient
from several seconds to minutes at a time.

Characterized by severe mood swings between manic or hypo-
manic, mixed, as well as depressive episodes, it is important
in the diagnosis of a bipolar disorder to record the patient’s
activities over multiple weeks to months at a time. For ma-
nia for instance, energy levels tend to be high and activities
tend to be performed in an interleaved fashion or especially
vigorously. Similarly, depressions tend to correlate with lower
activity levels, or in shortened stretches for physical activities,
from not performing them at all or sparsely, to abandoning
them. Apart from daily activities such as sleep and food in-
take, especially physical and leisure activities are very likely

to be impacted: Patients might for instance decrease physical
exercise during depressions, or vigorously practice playing a
musical instrument for several hours in a manic episode.

The representation of performed activities over multiple weeks
to a consulting psychiatrist is challenging not only because the
activity recognition system cannot be guaranteed to work per-
fectly, but also because the person inspecting the results will
have limited knowledge about the person who was wearing the
sensor unit. Additionally, it is generally not feasible to rely on
the self-recall of the patient over the course of several weeks
for any corrections in the activity detections, since these can
be expected to be biased.

As a precursor to our work, a series of interviews with psychi-
atrists resulted in a list of basic requirements that an activity
recognition method should adhere to. These were grouped in
three categories that are important to consider when designing
a recognition system for psychiatric trials:

• Supervised learning. Patients are typically interviewed at
regular intervals of several weeks, and provide log entries
to report on performed tasks and their mood. Current acti-
graphs combine these reports with sensor data, so that the
reports can be used to train patient-specific classifiers.

• Week-long, 24/7 data. Data needs to be captured at all
hours of the day, as patients that go through depression or
manic episodes are known to perform activities irregularly,
including at night. The sensor units thus need to be robust
and power-efficient to keep recording continuously, and the
amount of data will be substantial to process.

• Selected activities. The number of activity classes to rec-
ognize is relatively small and can be determined by medical
staff during the first set of interviews. This makes it eas-
ier for patients to keep a diary of which selected activities
were performed, and means only few activities need to be
detected amongst a large amount of background data that
might produce false positives.

The next section will review literature on activity recognition
methods that tackle similar approaches in wearable sensing
and research on feedback about activity recognition results in
a medical context.

RELATED WORK
Activity recognition has previously been suggested as a
promising instrument for use in behavioral studies that capture
events automatically beyond self-reports [23]. Both [33] and
[29] have pointed out that the use of automatically monitored
activities would be useful to support the diagnosis of bipo-
lar disorder and detect onsets of depression and mania. In
particular the so called Hamilton Depression Scale (HAMD)
and Bech-Rafaelsen Mania scale (BRMS) [2] tools contain
elements where physical activities are of considerable interest.
To our knowledge no research has yet focused on an activity
recording method that can be worn at the wrist for weeks and
allows almost-instant analysis at the psychiatrist’s office.

A significant amount of work in the context of activity recog-
nition has focused on automatic feature selection for inertial
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data and using strong classifiers upon these features to detect
activities. Common candidates that have proven worthwhile
in previous studies (e.g., [15], [19]) have found basic statistics,
especially mean and variance, and frequency-based features
(FFT and Cepstral Coefficients, spectral entropy and energy)
over a sliding window to be distinctive features to characterize.
Lester et al. [19] use in a combined discriminative-generative
classification approach the AdaBoost algorithm to automati-
cally select the best of these features and to learn an ensemble
of static classifiers to recognize different activities. Strong
classifiers that have proved valuable in activity recognition
include Naïve Bayes, Bayesian Networks, Hidden Markov
Models (HMMs) or Support Vector Machines (SVMs) [27, 24,
28, 13, 25, 1, 5, 19, 21, 26].

The use of motif discovery has been suggested as an alterna-
tive approach in activity recognition that is especially useful
when a fully supervised method is not feasible, or when short
characteristic gestures need to be spotted that are hard to an-
notate individually by the system’s users. [22] use motifs to
automatically discover gym work-out gestures in inertial data
recorded form body-worn sensors, by mapping the sensor data
to symbols and using a suffix tree to search efficiently through
the resulting large symbolic strings. Similarly, [12] analyze
activities in an instrumented kitchen, and [31] use motif dis-
covery to detect activities such as walking and falling without
supervision. We use motif discovery primarily because (1)
the annotations that describe which activity was done when
are provided by the system’s wearer using self-recall and are
thus only approximate, (2) we assume that a variety of physi-
cal activities can typically be characterized by occurrences of
certain short gestures, and (3) because it is an especially fast
method that allows parsing of large datasets at once.

Approaches on visualization methods have thus far played a
less prominent role in activity recognition and are still under-
represented in the research. However, especially in a medical
setting, in our case in which psychologists use activities as
indicators for the behavior of patients, it is essential to have
a valid presentation. A focus on the concepts of visualiza-
tions in the research can especially found in approaches where
beside the facilitation of personal data also a further interest
of motivation and persuasion is addressed. Examples can be
found in “Fish’n’Steps”, [20] a fish in a virtual tank which
grows when doing fitness activity (step counter) as well as
UbiFit Garden [7] which does the same with a flourishing
garden. An alternative approach is done by [17] who visualize
physical activity using 3D prints as habitual feedback. These
projects can also be seen as gamification aspects of activity
recognition. In most activity recognition publications, focus
lies predominantly on improving the detection.

A systematic analysis and survey of existing personal data visu-
alizations is done in [9] where different visualization heuristics
are provided, especially for personal activity and behavior. As
a suggestion for how visualization can support the understand-
ing of the detected information, they use financial analytics.
Other projects focus on alternative ways how to visualize phys-
ical activity data, for instance as a spiral view on the activities
which enables a data survey over a long period of time [18]. As

Figure 3. The custom-built logging platform has form factor and func-
tion of a wristwatch, logging inertial motion data at 100Hz for weeks.

well [10] investigate different visualizations in self-tracking
applications with the focus on comparing results and finding
correlations. All these examples are approaches that highlight
the role of visualization in activity recognition; Projects ad-
dressing health care applications in a broader sense are mostly
about the motivation aspect which is realized with concepts of
gamification. One project which has a similar constellation is
these of [14] focusing on physical therapy by tracking activity
data and visualizing it for a therapist.

Another important aspect of our research is the long-term
recording of inertial data, in an unobtrusive manner. This has
been stressed in several key publications on activity recog-
nition (most notably [6, 16]). Although datasets have been
recorded over similar time frames as in this paper, none so far
have recorded 24/7 for many days consecutively. Actigraphy
has as an advantage that it does log for extended periods of
time, but it abstracts the inertial data on the sensor unit and
does not retain the original time series at a resolution that
facilitates fine-grained activity modeling.

DETECTING ACTIVITIES WITH A WRIST-WORN LOGGER
This section gives an overview of the functionality of the
detection system which is the base for the three types of vi-
sualization shown in Figure 1. The amount of raw data is
reduced by a preprocessing step to make it easily presentable
to the user and processable in the next steps. The second step,
performing pattern recognition, is based on automatically de-
tecting characteristic motifs. Motifs are typical substrings for
an activity of interest, the preprocessed data is searched. In a
last step, the actual classification into activities, the accumu-
lated motifs are used to find out whether a certain activity has
taken place at that time. We will present the technical back-
ground of the recognition process regarding these three steps.
A detailed description of the method and a study regarding the
detection accuracy can be found in [3].

Data Logging Platform
The hardware (see Figure 3) was designed to capture inertial
data at a relatively fast rate of 100Hz for long-term deploy-
ments, where the user can wear the logger day and night. At
the center of the platform is a low-power microcontroller (Mi-
crochip 18F46j50) that obtains 3D acceleration readings by
an attached ADXL345 accelerometer, which are then suitably
compressed and stored on a micro-SD card for later analysis.
The unit can be connected via its mini-USB port to a host
computer for data downloading and recharging its 180mAh
miniature battery. The display can be activated by double-
tapping to show the current time and date (though for our
experiment other, display-less units were also used that tended
to be more robust for everyday use).

Raw Inertial Data (mSWAB)
The first abstraction step is essential from an efficiency point
of view: Since the accelerometer sensor is sampled at 100Hz
for capturing the essence of the gestures and typical motions
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Figure 2. The raw inertial data (top plot) are transformed by a piecewise linear approximation algorithm into segments (bottom plot) that preserve the
shape of the signal to facilitate storage and analysis. The segments are subsequently abstracted in discrete symbols to allow fast discovery and matching
of motifs. Occurrences for four motifs are highlighted by colored boxes; Note that we allow overlaps and variations in length.

performed by the sensor’s wearer, this also means that the
dataset size grows quickly and becomes computationally chal-
lenging, both for analysis and for visualization. We argue that
for discovering characteristic gestures within inertial activity
data, primarily the shape of the signal is important to retain.

For our system we use a modification of the Sliding Window
and Bottom-Up algorithm (mSWAB) that has been verified
to perform well on body-worn accelerometer data [32]. The
result of this step is a linear approximation of the raw inertial
data that is typically an order of magnitude smaller than the
raw data [3]. An example of such a transformation can be
found in top part of Figure 2.

Finding recurring characteristic patterns (Motifs)
After the abstraction of the raw acceleration data to linear seg-
ments, the pattern recognition is realized by first mapping the
segments to a symbolic representation and second detecting
efficiently recurring substrings within this string of symbols
as characteristic patterns (also called motifs in data mining lit-
erature). The symbolic representation and the merging motifs
are illustrated in the second plot in Figure 2. The mapping
of segments to a symbols uses subsequent angles between
pairs of the linear segments to efficiently represent peaks in
the data. Having mapped the raw acceleration data to a sym-
bol sequence, an approach called motif discovery can now be
used to find substrings that occur multiple times in the target
class. This is above all an efficiency problem: searching for
all occurrences of every motif in a long string in an exhaustive
and brute-force fashion will result in a slow discovery process
that is not scalable, as large sets of motifs are expected to be
present. Instead, a data structure called suffix tree is used,
which can be constructed in linear time and is able to represent
all possible suffixes in the string as a tree: Determining motifs
is thus reduced to traversing the tree from root to a certain
depth, at which the suffix tree has stored all possible instances
at which this substring is found.

Classification of Activities (Dense Motif Discovery)
Using the most discriminant motifs for a given activity class
during a training phase, classification is performed by local
evidence of all motifs that support an activity. This is imple-
mented using a bag-of-words classifier over a sliding time
window that traverses the time series and accumulates local

evidence by straightforward counting of the motif occurrences.
As the activities tend to last approximately 60 minutes, a win-
dow size of 10 minutes was chosen. The resulting classifier
has shown to produce results in line with state-of-the-art ac-
tivity recognition research with good predictions for many
physical activities [3]; Important to note is also the fact that
the execution of the above three-step process for classifying
raw inertial data to activities takes maximally a few minutes on
a standard computer, thus enabling an almost immediate visu-
alization after the data is uploaded when the patient visits the
consulting psychiatrist. A more detailed listing of detection
measures can be found in Table 1.

Visualization of the Abstraction Steps
The previous three abstraction steps used by the system to
convert raw inertial data to activity classes can be visualized
on a horizontal time axis as already illustrated in Figure 2.
We have opted to keep the visualizations as clean as possible
without annotations to the axes, and have unified all plots to
keep the x axis span to exactly 24 hours (see Figure 4). In the
evaluation, we will refer to these single visualizations as A, B,
and C respectively, and will note combined visualizations with
the + operator (e.g., we refer to A+C when the raw inertial data
and the classification were shown). In the evaluation section
of this paper, we thus investigate which of these combinations
helps the user the most to assess when an activity occurred.

EVALUATION
We are in this study especially interested in how medical staff,
mostly people that are unfamiliar with body-worn inertial sen-
sors, tend to interpret basic time-series visualizations from an
activity recognition system for monitoring patients. To make
our study as realistic as possible, we gathered the inertial data
and according visualizations from a set of 33 patient partici-
pants that were unknown to the 15 medical staff participants
that were shown the visualizations. The predictions of activi-
ties from the patient set data were obtained from the explained
detection system. Figure 5 illustrates the main steps of the
evaluation. The following describes the basic steps taken for
the experiment in more detail:

• We recorded inertial data from 33 participants, our patient
data set, that each wore a wrist-worn data logger for 5
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Figure 4. The three basic visualization types we have investigated as feedback to the medical staff examining a patient’s activity data: (top, A) raw
inertial data from a 3D accelerometer, (middle, B) motif occurrences for an activity, and (bottom, C) classification of an activity. In this figure we used
the example of a person performing the activity badminton.
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Figure 5. This paper’s evaluation uses the data from 33 participants that
were monitored for a week each, 24 hours a day, to represent the patients’
data (left), which were visualized at three levels of abstraction (bottom
plots) to 15 further participants without prior knowledge of inertial data
or activity recognition to represent the medical staff (right).

days continuously and performed a regular (usually leisure)
activity for about an hour every day.
• This data set was analyzed by our dense motif discovery

system and visualizations were made at three different lev-
els of abstraction within the system: (1) raw 3D inertial
data, (2) motifs discovered in the data, and (3) the system’s
predictions for an activity (as per Figure 5).
• 15 participants, generating our medical staff data set, with

no connection to the 33 patient participants, were presented
with these visualizations, and were asked to mark where in
these a given activity occurred. They were also asked to
fill in a questionnaire, e.g., asking about their confidence in
each of their estimates.

Figure 4 shows an example of the visualization of these three
levels over 24 hours, which in this case includes the activity
badminton. The three axes of the raw data are shown over
time in the top plot, the middle plot contains occurrences in
time of the motifs (as markers), and the predictions of the
system are shown in the bottom plot (black boxes). In the
study, one of these visualizations is either shown individually

or in combination with one or two others, leading to 7 possible
combinations of visualizations.

For obtaining realistic performance figures for the activity
recognition, the dataset from each participant was split into
separate blocks of about a full day (24 hours ±50 minutes)
each to facilitate 5-fold cross validation. Each activity instance,
depending on the actual activity, generally lasted between 30
and 90 minutes, except for the fishing activity, where the
activity instances lasted approximately 4 hours each. The
target activities that were to be recognized by the system
within the data on average consist of ±5% of the entire day,
with the rest being other daily activities (details in Table 1).

The Patient Data Set
The long-term patient data used in the following visualiza-
tion experiment comes from 33 volunteers or whom a regular
physical leisure activity was known before the recording phase,
which they would do once each day, over the course of a whole
working week. We argue that this closely resembles the type
of data that would be gathered by a psychiatric patient over
the course of several weeks in-between interviews, although
in our data set all participants were volunteers with no known
psychiatric disorders, and with no known connections to any
participants in the medical staff set. For most, this turned out
to be a leisure activity or sports, for some a household related
activity that was part of their daily schedule. The data was
logged by an open-source wrist-worn sensor as introduced be-
fore, recording 3D acceleration at 100 Hz on a local microSD
card and worn continuously for a working week.

Table 1 gives an overview of all participants who wore our
sensor day and night for about a week, specifying their gen-
der, age and the chosen target activity which will be used
for testing the detection accuracy of the chosen approaches.
The performance of the system, represented in the common
performance measurement methods lays at an average of 76%
(using the F1 detection rate measure).
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Table 1. For every participant in the experiment’s patient dataset, one
physical target activity was chosen prior to the study, to be performed
once every day of the week. The activity recognition performance of
the dense motif discovery approach is given by precision, recall, and F1-
score (in %).

subj. gender age target activity precision recall F1

1 male 30 badminton 95.2 90.0 92.5
2 male 32 badminton 94.4 89.6 91.9
3 male 31 basketball 96.2 92.4 94.3
4 female 26 canoeing 82.5 76.5 79.4
5 male 32 cooking 38.9 42.0 40.4
6 male 35 cycling 87.8 89.0 88.4
7 male 30 dancing 92.2 92.0 92.1
8 female 14 dancing 84.6 86.4 85.5
9 female 16 dancing 44.9 63.5 52.6
10 male 20 drums 91.5 97.6 94.4
11 male 31 fishing 62.6 77.0 69.1
12 male 53 fishing 47.0 81.1 59.5
13 female 26 flamenco 62.7 61.1 61.9
14 male 27 guitar 83.7 79.8 81.7
15 female 27 guitar 94.2 91.0 92.6
16 male 23 guitar 77.6 73.3 75.3
17 male 28 gym 61.6 67.6 64.5
18 male 32 gym 86.1 77.5 81.6
19 male 30 gym 59.6 62.7 61.1
20 female 28 gym 76.4 52.2 62.0
21 male 31 ironing 93.4 84.5 88.7
22 female 27 keyboard 91.7 85.6 88.6
23 female 28 knitting 58.8 73.7 65.4
24 male 30 lunch 26.7 30.1 28.3
25 male 25 soccer 98.1 93.2 95.6
26 female 25 squash 92.0 74.1 82.1
27 male 27 squash 90.4 77.4 83.4
28 male 29 streetdance 66.4 65.8 66.1
29 female 30 streetdance 58.4 69.1 63.3
30 male 32 washing car 81.3 79.9 80.6
31 female 28 xbox 95.5 96.2 95.9
32 female 28 yoga 66.6 43.2 52.4
33 female 30 zumba 96.8 97.6 97.2

average 76.8 76.1 76.0

Study Methodology
In total, 15 participants (5 male, 10 female) took part in the
study, evaluating the visualizations based on the results of
the dataset. The participants were chosen to fit as closely to
the medical staff scenario as possible, with a non-technical
background and no experience in interpreting activity data.
Most of the participants were recruited at the university, at non-
engineering faculties, with their age varying between 23 and 57
(mean 32) years old. During the experiment, each participant
was shown one of the visualizations for an activity which
was chosen randomly out of the 33 leisure activities from the
patient dataset. The order of showing the types of visualization
was divided into three phases: (1) the first includes only single
visualizations, (2) the second all combinations of two, and (3)
the third all visualizations combined. Inside of the phases, the
order was also randomized, whereby overall every type was
shown twice during each participant’s experiment (resulting
in 14 visualization iterations per participant). We chose the
two runs to increase the amount of data without overloading
the concentration of the participants.

At the start of the study, each participant was briefly introduced
to the types of visualizations and was given basic information
on the underlying abstractions, including the fact that the

system’s detection rate is on average 76% for any activity in the
data set. The information about the detection rate should give
the participants a potential hint how to evaluate the system’s
performance.

The main task for each participant was to estimate where in
a given visualization a certain activity had taken place. The
name of the activity and the average duration were provided;
The participants had to draw in the interval on the printed
out visualizations. The participants’ estimates were evaluated
by comparing the given interval times to the ground truth
provided in the data set: if both had an overlap of at least 50%,
the estimate was accepted as right, if not, it was rejected as
wrong. We use an overlap threshold of 50% as it is commonly
used in computer vision object detection (e.g., as used in [11]).
Additionally, the participants were asked how certain they
were with their estimation and about how intense they thought
this activity was performed, using a 7-point Likert-scale.

After the study participants had interpreted all 14 visualiza-
tions in this manner, they were asked to answer additional
questions on how helpful they found the different combina-
tions, and how much they trusted their judgments based on
the different types of visualization. For both, they were asked
to rank the three best-performing (combinations of) visualiza-
tions. As a final question, they were asked to characterize the
activities and their ability to successfully estimate the interval
where the activity had taken place.

Results
We start with the quantitative results, more specifically the
evaluation of how well the study participants were able to
estimate where the activity happened in each visualization
and how confident they were in doing so. In addition we also
show some qualitative results, where the focus was put on
investigating how participants interpreted the different types
of visualizations, both based on the study questionnaires, well
as on the experimenters’ observations made during the study
and noted down in a study protocol.

The following are the overall quantitative results for the esti-
mation of activities and participants’ confidence therein:

Visualizing the activity recognition system’s prediction
alone leads to the best overall accuracy: The average per-
formance of the participants’ estimation of where the activity
took place for the different types of visualization is depicted
in Figure 6. The barplot shows that the estimations made were
most accurate when only the system prediction (C) is presented
to the participant. This was followed by the combination of all
three visualizations (A+B+C) and motifs in combination with
the system predictions (B+C). The estimation performance on
the raw data visualization (A) is particularly poor.

Confidence levels similar to accuracy but with slight dif-
ferences: When asked about how confident they were in their
estimate, the participants showed a similar trend: Figure 7
shows the average participant confidence in their estimate,
per combination of visualizations (from low, 1, to high, 7).
The self-evaluation of the participants was good, because the
predictions alone and the motifs plus predictions were here
the top three favorites, though it is interesting to note that the
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combination of all visualizations made the participants the
most confident overall (even when the difference is too little
to be seen as significant in relation to the amount of examined
data).

Participants appreciate raw data and motifs: After obtain-
ing the estimates for the 14 chosen activities, the participants
were asked to provide a ranking of the three best visualiza-
tions. Figures 8 and 9 show the preferred visualizations and
their ranking for all participants as a stacked bar visualization.
The outcome is as follows: The raw data plus predictions
(A+C) and the combination of all three (A+B+C) are the most
helpful visualizations, followed by the raw data plus motifs
(A+B). It is interesting to note here that what the participants
marked as helpful is often contrary to the results of the esti-
mate performance and confidence. Most noticeable are the
predictions seen as least helpful, although these had the best
performance in using this visualization. The types of visualiza-
tion which include raw data (A, A+B, A+C, A+B+C) have in
both questions reached the highest ratings. Many participants
also mentioned in the comments section of the questionnaire
that they preferred the inclusion of the raw data visualization.

On a qualitative level, some interesting aspects could be ob-
served as well, regarding how the participants worked during
the experiment. We were specifically interested in how the
study data was evaluated and how participants were able to
reflect on the different levels of the automated recognition
system. The last question of the questionnaire was asking how
the activities could be characterized which had to be answered
in free-form by the participants. The responses give a good
insight in the participants’ understanding of the data and the
activity recognition system.

Intensive physical activities are easiest to grasp: The most
common answer was that they can detect sport activities (6)
best. The answers mentioning the intensity of activities (4) or
fast movements (2) also point in the same direction. Only two
study participants turned out to be very different by saying
that they can detect best activities with no continuous move-
ments (1) or saying that they can detect movements with very
different orientations of the movements (1). One participant
pointed out that she has not at all considered activities or their
characteristics, but was just orienting herself on the patterns
in the visualizations shown to her.

Time of day would help: Equally interesting was the fact that
many study participants were thinking about the time of the
day a lot while forming their estimations. The time axis on ev-
ery graph was slightly randomized and had no timescale, so the
only possibility to use knowledge about the time of the day is
to recognize the sleeping activities in the visualization, which
can be done implicitly from the raw data visualization. Two
participants mentioned this explicitly and interpreted, based
on approximate times, that they were especially confident in
detecting activities which are normally done in the evening.

Discussion of the Results
The most significant and interesting result of our study is that
there is a big difference between the estimation results and the
perception of what the participants think is helpful for them.
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Figure 6. The participants’ overall accuracies in estimating when an
activity occurred, given (a combination of) visualizations as per Fig. 3.
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Figure 7. The participants’ confidence levels (7-point Likert scale) as-
signed by themselves on each of their estimates of when an activity oc-
curred.

We can also find a similar difference from the estimation re-
sults to the trust, participants have in the visualizations as well
(less clear) to the participant’s confidence on their estimations.
There is a correlation between confidence, trust and helpful-
ness from which we do not know how the participants have
specified it in their evaluation.

To be more precise, adding raw data or motifs to the prediction
visualization for the user provides no benefit in the quality
of the users’ estimations. The results of the study show that
independently from that the participants feel more comfortable
in their estimates, as well as are thinking of the additional
information as more helpful and trust the visualizations even
more.

That the quality of the estimation is decreasing seems odd at
first because there is extra information added. Though this can
be explained by the fact that some participants, when at some
point distrusting the recognition system, might get stronger
hints at estimating something else when motifs or raw data are
provided. This means, even when users do not trust the results
of the recognition system, but are confronted with only the
systems estimations (C), they have only the change to belief
the recognition system is right this time or guess something
fully random. When, instead, the system additionally provides
insight in raw data or motifs, the users start thinking about
it and may guess more often something different from the
system’s prediction what was in average more often wrong
than just following the prediction of the system. This could be
an argument for not providing additional visual information,
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Figure 8. The top three visualizations mentioned by the study partici-
pants as being the most helpful in pin-pointing the physical activity.
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Figure 9. The top three visualizations mentioned by the study partici-
pants as the most trustful to rely upon when estimating when the activity
happened.

but we think that the fact of users feeling more confident and
having more trust, which would lead to a better user acceptance
of such a system, should be considered as important.

The trustfulness increases especially when the users have ac-
cess to the original acceleration data (raw data visualization).
Having a visualization of motifs as the intermediating stage
can help to get an indicator of how the system works and
reaches it results. Reflecting on this was not as important than
having the raw data though.

What we consider to be very interesting to investigate in future
work is the influence of training effects. In this study we have
tried to avoid training effects to keep the set of influencing
factors small (which was done by randomizing the order and
the data presented, although this could have still happened
over several visualization runs). With respect to the described
scenario, we would assume that with training of doctors the
additional information (like raw data) can help raising trust
and convenience without the quality downside. It may help
detecting misclassification of the system or assessing the con-
ditions of a patient more accurately when, for example, having
an indication on the the intensity of activities based on the raw
acceleration data.

CONCLUSIONS AND FUTURE WORK
What happens when engineers devise an activity recognition
system that can track what activities psychiatric patients are
performing over the course of several weeks? This paper has
investigated how laypeople would be able to use such a sys-

tem, with a particular focus on what information to visualize:
(A) the raw inertial data, (B) the detected motifs, or (C) the
classification estimated from the system.

We have performed a study with a state-of-the-art activity
recognition system and evaluated it on a large dataset of 33
participants that recorded their inertial wrist data over a week.
Under constraints similar to that of psychiatry monitoring, we
asked 15 additional participants without ties to the aforemen-
tioned 33, to estimate when an activity was performed, using
combinations of the three (A, B, and C) visualizations.

Instead of following a visualization strategy which is indepen-
dent from the recognition system design, the chosen approach
follows a design strategy which reflects the detection system.
The visualization includes three levels based on the detection
process that includes, besides the results of the used activity
classifier, an approximation of the original data on which the
detection is based (raw data) and a glance at the “inner” func-
tions of the detection system (motifs, or characteristic motion
patterns). The detection accuracy is state of art relative to the
high amount of data that is gathered. As any such activity
recognition system, it is not perfect, however, and there re-
mains thus a responsibility on the interpreter’s side to trust or
not to trust the results.

Our user study has shown several interesting results. Having
additional visualizations along the classification, such as also
presenting the raw data or data from detection steps, is not
always a guarantee that people will be able to read the activity
data better. In fact, participants performed slightly better when
they were presented with just the results from the classifier.

On the other hand, most people especially liked the presence
of the raw and intermediate data visualizations and the results
showed that these additions helped them trust the data more.
Having a means to look at the activity detections at a lower
level, therefore might be especially helpful when confidence in
the system’s prediction is low (e.g., when the system does not
detect a particular activity, but the patient insists she performed
it that day). The possibility for the medical staff to reflect on
activity data on different levels of the detection system is
therefore promising and has clear advantages for a trustful use
and interpretation of the system’s results.
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