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Abstract—In the participatory sensing model, humans may
serve as opportunistic sensors and flexible actuators while also
consuming sensing services. Integrating humans into sensing
systems has the potential to increase scale and reduce costs.
However, contemporary participatory sensing software provides
poor consideration of user dynamism, which includes: mobility
across networks, mobility across devices and context-awareness.
To address these limitations we propose the User Component and
User Bindings. The former represents the user as a first class re-
configurable element of evolving and shared participatory sensing
platforms. The latter allows the middleware to support multi-
ple communications channels including Online Social Networks
(OSN) to connect users with sensing applications. Our approach
increases user participation, reduces out-of-context interactions
and only consumes a limited amount of energy by sharing context
information between applications. We support these claims by
evaluating our approach on a two weeks experiment in which
three participants take part in three concurrent participatory
applications.

Keywords—Participatory Sensing, Online Social Networks,
Component-Based Software Engineering.

I. INTRODUCTION

Previous research [1], [2], [3] has illustrated the benefits
of participatory sensing [4] where the incorporation of human
participants [5], [6] with sensing systems is demonstrated to
extend the scope and scale of sensing infrastructure. In the
participatory sensing model, users contribute by providing and
managing smartphone platforms that host sensing software.
Furthermore, users may report observations that are difficult
to measure with hardware sensors [7] or generate content that
adds value to sensing scenarios, for example by validating
sensor readings [6]. However, a key problem when including
humans in sensing scenarios is managing the dynamism that
humans introduce, which includes: mobility across networks,
mobility across devices and changing operational contexts.

Contemporary participatory sensing applications [6], [3],
[5] are typically built on a case-by-case basis. Software is
developed to achieve a single static application goal for a
specific hardware platform and with support for a fixed set of
context assumptions. This monolithic approach to developing
participatory sensing applications incurs high development
effort due to a lack of support for software reuse. Furthermore,
interactions between the user and applications are implicitly
hard-coded into the application, making the resulting applica-
tions difficult to understand, modify or extend at runtime.

Recently, the research community has proposed several

frameworks for developing participatory sensing applica-
tions [1], [2], however, these frameworks assume a static
application goal and provide limited consideration of user
dynamism. Most importantly, these approaches give little con-
sideration to explicitly modelling interactions between users
and the sensing application. We argue that participatory sens-
ing applications should be built from assemblies of reusable
software components which can be reconfigured over time
to support evolving application requirements and changing
user contexts. User-application interactions must be explicitly
modelled in order to be able to understand, modify and extend
these interactions.

In this paper, we present @migo (pronounced AT-me-
go), a novel middleware solution to model and represent
users in participatory sensing applications. @migo provides
two key elements, the User Component and User Bindings.
The User Component allows users to be modelled as a first-
class software entities and to be dynamically reconfigured at
runtime, for example by connecting users to new applications
or disconnecting them based upon their current context. This
allows users to be managed using the same well known tools
used in Component-Based Software Engineering (CBSE) [8].

The User Binding is a complementary interaction mech-
anism that provides communication support between appli-
cations and users that exhibit mobility across both networks
and devices. This is achieved by leveraging on the widespread
availability of Online Social Networks (OSNs), such as Twitter
or Facebook, which provide an alternate communication chan-
nel to reach the user when no application software is available
or direct connectivity is restricted.

We implemented a prototype of the @migo middleware
for Android [9] and the Twitter [10] social network. We
evaluate the proposed solution via three participatory sensing
applications running in a smart office sensor network: thermal
comfort, heater monitoring and window state reporting. Our
evaluation demonstrates that @migo can be used to: (1) reduce
out-of-context interactions, (2) increase user availability and
(3) only consumes a limited amount of energy by sharing
context information between applications.

The remainder of this paper is structured as follows.
Section II provides an summary of participatory sensing
frameworks focusing on user’s support. Section III shows our
model of the user within participatory sensing applications.
Section IV details our proposal for supporting mobility be-
tween networks and devices. Section V illustrates the pro-
posed architecture, focusing on the case-study applications.
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Section VI evaluates the built prototype by showing the results
obtained from real applications. Finally, Section VII concludes
and discusses promising directions for future work.

II. RELATED WORK

Burke et al. [11] clearly state the classes of human interac-
tions participatory sensing applications should implement, and
identify the necessity of defining application-level mechanisms
for supporting participatory sensing applications, an argument
that is supported by Payton et al. [12]. In II-A we review
frameworks for building participatory sensing applications.
In II-B we review key participatory sensing applications.
Finally, in II-C we enumerate the middleware requirements
for supporting participatory sensing applications.

A. Participatory Sensing Frameworks

Several approaches for including users in distributed appli-
cations have been proposed in the literature. Ohmage [13], by
Tangmunarunki et al., offers a generic, modular and extensible
platform for participatory sensing applications including data
from both users and mobile phones’ sensors. The combination
of smartphones with web-based approaches, context-aware
interactions and new apps deployment at runtime are some
design decisions also present in our approach.

ParticpAct [14], by Cardone et al., proposes a mobile
crowdsending platform supporting multiple simultaneous cam-
paigns performing active sensing actions (i.e. involving ac-
tively the user) and passive sensing actions (i.e. from mobile
phone’s sensors). The latter can be directly reported to the
backend or can be used for inferring a user’s context (e.g.
activity recognition) in order to support user profiling, as we
also do. Evaluation shows that ParticipAct reduces the number
of out-of-context interactions as well as the number of users
that are required to be involved in a task.

PRISM [15], by Das et al., proposes a system balancing
generality, security and scalability. Its push model enables the
server to deliver a task to the group of nodes matching the
requirements. The server is periodically updated with context
information from the devices. Our approach also allows the
definition of user groups based on context, however, in contrast
to PRISM, we also allow mobile devices to autonomously
select which group they should join to.

Table I compares these three representative systems with
our proposal. Although all the platforms support contributions
from both users and sensors, only @migo offers a fine grained
identification schema supporting multiple devices belonging
the same user. Regarding with the set of interactions defined
to the user, Ohmage and @migo implements a full and
independent set meanwhile ParticipAct and PRISM only offer
a reduce set. Focusing on the triggering mechanisms for the
interactions, all platforms support time and context based
triggering. Additionally, Ohmage and PRISM offer context-
only triggered interactions due to their expressive language
for defining participatory sensing applications. Although all
frameworks support communication through an application,
only Ohmage and @migo also offer a web platform for
interacting with the user. To the best of our knowledge, @migo
is the only platform including OSNs. Furthermore, @migo also
supports mobility between devices. As summary, we find prior

systems provide poor support for managing user dynamism
as they provide little support for mobility between devices or
multiple communication channels as OSNs.

TABLE I. COMPARISON BETWEEN REPRESENTATIVE PARTICIPATORY

SENSING PLATFORMS AND @MIGO

Ohmage PartcipAct PRISM @migo

Sensors’ and users’
contributions � � � �

Multi device support �
Generic set of users’

interactions Full Partial Partial Full

Time and context
based interactions � � � �

Communication
channels

App and
Web

App App
App, Web
and OSNs

Users’ mobility
between devices �

Podnar et al. [16] illustrate the benefits of using a pub-
lish/subscribe middleware for supporting mobile crowdsensing
applications. In addition, they also explore several mechanisms
for supporting mobility between networks, including a REST
approach (but not for all kind of connections) and platform spe-
cific protocols (e.g. Google Cloud Messaging). Our proposal
offers similar features, but also includes mobility between
devices and support of multiple communication channels.

B. Participatory Sensing Applications

Balaji et al. [17] define a participatory sensing based
solution for bridging the gap between metering, monitoring
and control within a smart building context. They implemented
a web application for obtaining feedback from the users,
offering energy saving suggestions and modifying configura-
tion settings in the heating ventilation and air conditioning
(HVAC) system. As this paper is application-driven, it does not
explicitly define how a user can interact with the system, or
how to group users based on their context. @migo supports a
superset of the interactions necessary to realise this application
while providing more advanced support for user’s dynamism.

Hicks et al. [18] propose a system called AndWellness for
collecting data from users and phone sensors within a health-
care context. Although they define a platform for supporting
multiple campaigns (i.e. participating in a experiment), user’s
roles cannot change at runtime. Therefore, the organiser cannot
manually form a sub group of participants based on their role.
The concept of triggers allows delivery surveys at realtime,
however, this represents a subset of the interactions supported
by @migo. Finally, no specific support for user mobility is
provided.

Paxton et al. [6] perform two real word experiments that
include both values provided by sensors and human contribu-
tions within an environmental monitoring context. Although
they discuss the implications of including humans, no model
is proposed for supporting human interactions with a partici-
patory sensing application neither no support for users’ roles.
Furthermore, each experiment requires different applications
running in the mobile device without any software reusability.

Demirbas et al. [5] propose Twitter as an open platform for
running participatory sensing and crowdsensing applications.
Their approach is validated through a participatory weather
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monitoring application also within environmental monitoring
context. Based on real-world experiments, they model not
only the response time of the user but the quality of the
provided data. Nevertheless, no model for human participa-
tion is provided as they define a specific syntax for taking
part in the participatory sensing application, and no support
is provided for gathering data from mobile phone sensors
neither supporting different user roles. While using Twitter
as a communication channel handles user mobility between
devices, this approach provides no support for the execution
of local applications reducing its scope of applicability.

C. Middleware support for participatory sensing applications

Based on the frameworks and applications previously con-
sidered and on the analysis performed in [19], we first identify
the following set of middleware requirements to support the
creation and execution of participatory sensing applications.
We then motivate why component-based middleware addresses
these requirements.

Heterogeneity. Users within participatory sensing applica-
tions handle devices with different capabilities, features and
operating systems.

Interoperability is required between different mobile de-
vices, regular computers and powerful backend devices.

Reconfiguration support is demanded for adapting the
allowed user’s interactions according to his context.

Distributed Relationships are inherently needed to support
participatory sensing applications and, joint with local rela-
tionships support, enhances component reusability.

Energy Efficiency and Performance. Battery powered de-
vices handled by the user run multiple applications in addition
to the middleware, so a conservative behaviour is expected in
terms of battery and CPU consumption.

Component-based middleware provides a good fit to ad-
dress these challenges, as it introduces software components
as common abstraction to handle heterogeneity, while still
allowing the strengths of each platform to be fully exploited.
The use of common networking and data exchange standards
provides interoperability for facilitating components running
on heterogeneous devices into coherent applications. The mid-
dlware also supports reconfiguration of software functionality
and allows efficient reification of the current state (i.e. dis-
covery and analysis), including flexible binding modalities,
distributed relationships and a clean separation between local
and distributed functionality. Lastly, it is primarily designed to
consume minimal energy and offer good performance (even
on mobile devices as smartphones) while imposing minimal
burden on the component and application developer.

III. THE USER COMPONENT: A SOFTWARE ABSTRACTION

FOR MODELLING USERS

The goal of the User Component is to model and represent
a user in a participatory sensing application. At the core
of our approach is the conviction that the user should be
represented as a first-class software component and, as such,
developers should be able to reconfigure and inspect a user
using the same tools that are used to deal with software

entities. As shown in Figure 1, the User Component provides
four software interfaces: interfaces on the right (Request and
Notification) represent communication from the participatory
sensing system to the user and interfaces on the left (Reply
and Unsolicited Input) represent communication from the user
to the participatory sensing system. In the section, the model
will be analysed from the application plane (interactions) and
management plane (lifecycle) perspective.

User Component

Properties:
User ID

Device ID
Application List

Request

Notification

Reply

Unsolicited Input

Role

Fig. 1. The User Component provides four software interfaces (right and left)
allowing interaction from/to the participatory sensing system. The lifecycle
of the user in each participatory sensing system is supported by both the
properties and one software interface (bottom).

A. Supported interactions

The User Component defines two required interfaces and
two provided interfaces. All of these interfaces are unidirec-
tional, providing the fundamental mechanisms for commu-
nication between the user and the sensing application. The
interfaces may be accessed locally or remotely, they are:

• Request. This required interface provides a mechanism
to request input from a user.

• Reply. This provided interface provides a mechanism
for users to respond to queries received on the ‘Re-
quest’ interface.

• Unsolicited Input. This provided interface allows users
to push unsolicited information to a sensing system
(e.g. reporting that an traffic accident has occurred).

• Notification. This required interface enables sensing
systems to push unsolicited information to users with-
out requiring a reply from them (e.g. prompting the
user to close a window).

The interaction mechanisms provided by the User Compo-
nent map well with those proposed by Burke et al. [11] who
argue that the data gathering process in participatory sensing
applications can be triggered by the network (modelled by
the interfaces Request and Reply), by the user (modelled by
the interface Unsolicited Input), or is continuously running
to obtain data from mobile phone sensors (in which case the
interaction is realised by specific components running on the
device itself). In addition, the Notification interface allows the
sensing system to push information to its users, for example,
to close the feedback loop and interact with the user after he
provided a value to the application.

The User Component also supports an extensible set of
properties, each of which is a tuple composed of a key and a
value. Properties may be accessed remotely in a request/reply
fashion. The User Component defines a number of well-
known properties that: (i.) identify a user and link that user to
(ii.) their current device and (iii.) installed applications. This
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allows participatory sensing systems to reason over the current
context of their users and, where necessary, enact change
through the deployment of full applications, or individual
software components or the reconfiguration of communication
abstractions.

B. Supporting the software lifecycle

Users decide about which applications to participate in
and when start and stop participating in each one. As each
participatory sensing application may require not only the User
Component but also other auxiliary elements, users rely on
the User Component to manage the process of consistently
installing, updating or removing specific software pieces for
each participatory sensing application.

The Application List property allows to control the set of
applications a user is participating in. It is an array containing
the name of the participatory sensing applications that are
currently running on the device. Each element of the array also
contains a reference to all software components running on that
device that compose a particular participatory application.

Applications may be remotely installed, updated or modi-
fied by updating the Application List property, which causes
the supporting middleware to deploy, instantiate and configure
the required components.

C. Supporting user dynamism

We define user’s role as the available set of interactions
of the user within each participatory sensing application. For
example, only users with role ’running in the gym’ (based
on the GPS and output from activity recognition algorithm)
are allowed to contribute with an Unsolicited Input. The
array Application List contains the active user’s role for each
installed application. So, it allows any other component (e.g.
GPS or activity recognition) to inspect or modify the role by
only updating this property. Any change in the user’s role
requires reconfiguring the user inside the application. The
application-specific component called Reconfiguration Entity
performs those (re)configuration as requested by the User
Component through the interface Role. This approach makes
the user role’s detection independent of the User Component
maintaining a generic, modular and extensible design.

Reconfiguration 
Entity (App n)

…
…

..

Wires 
Control

Component Runtime

Reconfiguration 
Entity (App 1)

User Component

Properties:
User ID

Device ID
Application List

Role Wires 
Control

Fig. 2. The Reconfiguration Element prompts the middleware to perform the
required reconfiguration actions according to the user’s role.

IV. USER BINDINGS: AN INTERACTION MODEL FOR

EXTREME MOBILITY

It is increasingly common for users to use several devices
(e.g. computer, smartphones and tablet) in a sequential fashion.

The capabilities of those devices are heterogeneous in terms
of connectivity and available software.

The User Bindings provide a consistent communication
abstraction to the middleware that maps to multiple commu-
nication channels in order to support mobility between net-
works and devices. Our previous research [20], [21] revealed
that using Online Social Networks (OSNs) as higher level
communication channels significantly improves the availability
of the users in participatory sensing scenarios. We apply this
approach in the design of user bindings.

A. Identification schema

Network layer identifiers (e.g. IP address) are widely
used for representing non-mobile devices. Although several
protocols at the network layer have been defined for supporting
mobility between networks (e.g. Mobile IP), they are not yet
widely deployed. An application layer mechanism is therefore
required which allows for communication in the face of chang-
ing network layer addresses. These mechanisms usually rely
on an application specific device identifier. Additionally, state
of the art applications usually allow the user (represented by an
user identifier) to be logged in multiple devices simultaneously.
Although the user only actively uses one device at each
moment, these applications don’t offer proper mechanisms to
communicate selectively with that device. Hence, mobility be-
tween networks and devices requires an identification schema
to decouple the user identifier from the device identifier while
also separating the device identifier from its actual network
address.

We propose an inverted-tree identification schema (Fig-
ure 3) allowing the participatory sensing system to either
selectively communicate with the device the user is currently
operating, or to communicate with a user’s device without
regarding its network address. The root level is composed by
globally unique user identifiers (e.g. Twitter account identifier).
The following level is composed by device identifiers, unique
within user’s domain (e.g. smartphone). The last two levels,
component identifier and interface identifier are specific for
software entities and the services they provide.

User Identifiers

Device Identifiers

Component Identifiers

Interface Identifiers

A B

R T R S T

I J I K

X Y X Z

device identifiers namespace

Fig. 3. The identification schema relies on levels for adapting the granularity
of the identifier according to the element you want to communicate with.

B. Mobility across networks

Every time a device changes network, its network address
may also change. Furthermore, the device itself may not be
aware of its public IP address in cases where it is behind
a NAT box. As demonstrated by other protocols such as
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STUN [22], an external service on a public IP address is
required to mediate communication between devices behind
a NAT. Nevertheless, applying this approach to mobile and
battery-constrained devices (e.g. smartphones) reduces lifetime
and increases traffic as each application connects with its own
external service. So, state of the art operating systems offer
a platform specific, common for the applications and well-
integrated messaging cloud (e.g. Google Cloud Messaging for
Android) for connecting from a public external server to the
mobile device.

In order to support mobility between networks without
regarding the kind of devices, our proposal relies on an element
called Mobility Framework Resolver (MFR) for storing a
matching table between the (user identifier, device identifier)
and the (IP address, port) in case of regular devices or the
(platform specific identifier) in case of mobile devices.

As shown in Figure 4, the interaction update allows any
node to update its connectivity information to the MFR. The
interaction resolve queries the MFR with a user and device
identifier in order to obtain the actual IP address and port
or the platform specific identifier. Due to restrictions in the
Messaging Service, regular devices don’t directly access that
service. So, in case a regular device wants to communicate
with a mobile device, the interaction request asks the MFR
to send a message forward to the mobile device containing
regular device’s IP address and port. Therefore, the mobile
device can communicate back with the regular device based on
the message report from the MFR. Furthermore, the MFR acts
as relay between devices in case of connectivity limitations.

Internet

Messaging 
Service(f)

(e)

Interactions:
(a) update (user_id, device_id, 
                  platform_id)

(b) update (user_id, device_id, 
                   ip, port)

(c) resolve (user_id, device_id)

(d) request (platform_id, ip, port)

(e) forward (ip, port)

(f) report (user_id, device_id)

Mobile 
Device

Regular 
Device

MFR

(a)

(b), (d)

(c)

(c)

Fig. 4. User Bindings defines the Mobility Framework Resolver (MFR)
joint with a set of interactions for supporting mobility between networks at
middleware level.

C. Mobility across devices

Sending a message to a user means sending a message to
the device the user is currently using at that moment (i.e. where
the User Component is active). Based on the schema shown
in Figure 3, the middleware thus identifies that device with a
reserved device identifier (human) in addition to the identifier
assigned by the user. The procedure for supporting mobility
between devices at middleware level is composed by the
following steps: the destination device automatically notifies
the origin one, adds the identifier human to its denomination
and activates the User Component if available.

Nevertheless, mobility between devices is not fully ac-
complished at this moment as the user is supposed to move
between devices without regarding the connectivity limitations
or the software installed. Based on previous work [20], [21],

using Online Social Networks (OSNs) at the middleware level
to reach a user reduces the impact of those constraints, and
hence improves the availability of the user. Therefore, our
approach relies on OSNs to communicate with the user (a)
when the device used by the human is not reachable (e.g. due
to connectivity restrictions), (b) when the required software is
not installed in the device, or (c) when the user is not using
any device.

Lastly, our middleware supports the required granularity
for communicating selectively either with the user or with any
device using multiple communication channels for supporting
both mobility between networks and devices.

V. BUILDING PARTICIPATORY SENSING APPLICATIONS

WITH @MIGO

We implemented three representative @migo-based partic-
ipatory sensing applications: thermal comfort, heater monitor-
ing and window state reporting. We focus on the following
aspects: (i.) how to provide a 2-way information flow between
occupants and building manager, (ii.) ensuring that sensors
deliver information directly to the occupants and (iii.) dealing
with context awareness for improving occupant experience.
Additionally, the system also combines users’ contributions
with fixed infrastructure measurements (temperature, humidity
and windows state sensor), as shown in Figure 5(b).

Thermal comfort application: The goal of this application
is to obtain real time feedback from users as defined in [23]. An
additional contribution on the overall feeling is also requested
from the participants each day. Participants’ contributions
combined with the values from fixed sensors allow the system
to prompt users to perform certain actions (e.g. open or close a
window) in order to improve the experienced comfort level. In
this application, humans are used as both opportunistic sensors
and flexible actuators.

Heater monitoring application: The goal of the heater
monitoring app is to measure the state of heaters in each
room, so that the system can recommend appropriate actions
to the participants in the thermal comfort app. As heaters are
regulated by a manual dial, humans are used as opportunistic
sensors and actuators at lower cost than automated solutions.

Window monitoring application: The purpose of the
windows state reporting is to notify the user when the window
is open outside of business hours. If the window is detected
to be open, the system checks if any user is still in the office
by introspecting the User Component or relevant participants.
Then, the system prompts the participants to close the window.
Hence, humans are used as flexible actuators in this application
that increase security and environmental control.

As shown in Figure 5(a), each application defines its
own set of roles (based on geographical user’s position) and
interaction allowed in each one. Our implementation relies on
Google Services and WiFi as outdoor and indoor positioning
mechanisms. For this purpose, each room is provided with
a router beaconing a well-known value, so each participant
could configure the system to automatic recognise its own
room. Additionally, the system automatically disconnects those
mechanisms that are not used in that moment (e.g. GPS is
not accessed while the WiFi beacon is detected) to reduce the
consumption of energy.
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A. Stakeholders

We identify three stakeholders in our architecture: the
organisers create the applications (i.e. role definition, users’ in-
teractions allowed in each role and list authorised participants)
and schedule queries, the participants contribute with values
(opportunistic sensors) and actions (flexible actuators), and the
framework manager maintains the system (i.e. database server,
web front end and participatory sensing server) and processes
the results. Participants are requested to install the @migo
middleware. Specific software for each application may be
installed manually or automatically by the @migo middleware.
Organisers and the Framework Manager are also required to
run the @migo middleware.

B. System Architecture

The User Component together with the User Bindings
allows @migo to support participatory sensing applications.
Figure 5(a) shows the component diagram supporting these
three applications. The User Component represents uniquely
the user into all the participatory sensing application. Although
it runs in all @migo-enabled devices, it is only active in the
device the user is handling at each moment. The Reconfigura-
tion Entity component performs all the reconfiguration actions
according to the subset of allowed interaction for each role.
The Role Detection component may determine the user’s role
based on values from sensors (e.g. GPS) or processed data
(e.g. activity recognition algorithms). It establishes the user’s
role by modifying the property Application List in the User
Component. Other application specific components might also
run on the user’s device (e.g. log 3G signal strength).

Each participatory sensing application defines its own set
of graphical interfaces that communicates the User Component
with the user. These interactions are platform dependant. In
case of Android devices, the User Component starts an activity
according with the type of interaction (request or notification).
Reply from the user is sent back in a message through the
broadcast channel containing extra information (e.g. timestamp
of the request) to decouple the graphical interfaces from the
User Component.

C. Interfaces

Once the application is deployed and running, each stake-
holder interacts with the participatory sensing system (and
vice-versa) via dedicated user interfaces. The user obtains a
request or a notification from the system through the relevant
app or through Twitter. Contributions are reported through the
app or a web browser. Organisers requires a web browser
for querying the participants or for checking the results. The
framework manager controls the database and accesses the
management console of each participatory sensing application.

VI. EVALUATION

The @migo prototype extends the LooCI Middleware [19]
to include the User Component and the User Bindings. It
uses Twitter as the namespace for user identifiers and as
communication channel to the users. Although other OSNs are
also an option, Twitter provides the best support for automated
and semi-automated applications.

Table II shows the footprint of the User Component, the
User Bindings, the Mobility Framework Resolver together with
the size of the @migo middleware. Low footprint ensures good
performance even in low-end mobile devices. Note the JAR
files contain all required libraries for its execution.

TABLE II. FOOTPRINT OF @MIGO AND ITS ELEMENTS SUPPORTING

PARTICIPATORY SENSING APPLICATIONS

User
Component

User
Bindings @migo MFR

JAR file 21185 bytes 549589 bytes 725482 bytes 57010 bytes

JAR file for
Android 28014 bytes 738478 bytes 987870 bytes -

Table III shows the line of codes (LoC), cyclomatic com-
plexity (CC) [24] and footprint of the implemented compo-
nents for each participatory sensing application. Note that
’App Logic’ only refers to specific Java code for the Android
platform without including XML files or pictures included for
the GUI. It should be also noted that the heating and window
applications reuse the role detection component of the comfort
application and thus their footprint has reduced 39% and 43%
respectively. Furthermore, as these components are reused,
significant development effort is saved (32% and 37% of LoC
respectively).

TABLE III. REUSABILITY OF COMPONENTS BETWEEN APPLICATIONS

REDUCES THE FOOTPRINT OF THEM

LoC CC
(avg)

Jar File for
Android

Footprint/
LoC Red.

Thermal Reconfig.
Entity

654 8,57 18519 bytes

Comfort Role Detector 743 3,36 43107 bytes 0% / 0%

App App Logic 1487 1,90 84611 bytes

Heaters Reconfig.
Entity

467 6,29 17507 bytes 39% / 32%

App App Logic 1065 1,81 50041 bytes

Windows Reconfig.
Entity

439 5,70 17328 bytes 43% / 37%

App App Logic 795 2,09 39724 bytes

Table IV shows the size of the APK files that any par-
ticipant downloads and installs in his Android mobile devices.
The file also contains pictures and GUI specific code. Reduced
size guarantees reduced downloading times even for low speed
wireless connections (e.g. GPRS connections).

TABLE IV. REDUCED SIZE OF THE APK FILE OF EACH PARTICIPATORY

SENSING APPLICATION

@migo Comfort App Heaters App Windows App
3062 kB 527 kB 476kB 473kB

A. Avoiding Useless Messages

We evaluate our proposal by running the three applications
(thermal comfort, heaters monitoring and windows state report-
ing) for 3 participants over two weeks. The system randomly
generates 8 requests to participants with the roles In the office,
In the building and Close to the building. Additionally, once
per day, a request is sent to all participants asking for a general
overview of the thermal comfort experience during that day.
Other requests are sent on-demand to participants as required
by the experimental organizer.
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Organizer:
Windows App

(User D - Device T)

Thermal Comfort App

User Component

Properties:
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Fig. 5. (a) Component diagram supported by @migo. Each participant runs the User Component in addition to the application specific components Reconfiguration
Entity and Role Detection (it modifies the property Application List in the User Component) and other application components. Organisers runs a component per
context supporting with the allowed interactions. (b) Smartphone showing a request from the thermal comfort application close to fixed infrastructure sensors
(temperature, humidity, windows state).

Supporting mobility between contexts through reconfigu-
ration of the User Component avoid useless messages from
being sent to the users. During the experiment, 446 unique
requests were generated by the organisers. Only 219 of these
were disseminated to the participants, while the rest were out-
of-context and therefore discarded. This means that context-
awareness saved participants from receiving useless requests
in roughly half of the cases (50,90%).

B. Availability of users

Online social networks are used as a backup communi-
cation channel when standard application communication is
unavailable. 76% (166 out of 219 requests) were delivered
to the user’s device through @migo. The remaining 24% (53
of 219) were delivered directly by Twitter. The use of OSNs
therefore increased participant availability by 24%. Although
using OSNs significantly increases the delivery time as shown
in Table V, this remains well within the constraints of many
participatory sensing applications.

TABLE V. DELIVERY TIME FOR EACH COMMUNICATION CHANNEL

@migo Twitter
avg 983,185 ms 5022,925 ms

stddev 612,293 ms 23,269 ms

C. Resolution of tasks

Considering only the replies that were received one hour
after the request, 119 requests out of 219 requests (54%) were
replied to during the experiment. This finding is in line with
prior studies of user responsiveness by Crowley et al. [25].
Specifically, 109 (92%) of 119 replies were obtained through
the native app for @migo and 10 replies (8%) through the web
platform respectively. Therefore, offering multiple interfaces to
the users increases participation of the users.

Figure 6 shows users response times for each communica-
tion channel. It reveals that Twitter also fits the requirements
for participatory sensing applications.
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Fig. 6. Distribution of response time for each communication channel

D. Energy Consumption

We zoom into the energy consumption characteristics of
the proposed solution using the Power Tutor software [26]
for three Motorola Moto G smartphones running the comfort
application.

As @migo and other applications in the smartphone rely
on the positioning services offered by Google, it is not pos-
sible to determine which application is causing the energy
consumption of the GPS. However, without regarding to GPS
consumption, Table VI shows that @migo and the Thermal
Comfort App has only reduced less than 1% and roughly 3%
of battery lifetime respectively. Considering the worst case
where all GPS energy consumption (16,033%) was caused by
@migo, the experiment would have reduced battery lifetime
by 19,241%.

TABLE VI. ENERGY CONSUMPTION (COMFORT APP)

@migo Comfort App PowerTutor
CPU 0,030 0,011 3,989

LCD 0,022 3,119 0

3G 0,007 0 0

WiFi 0,015 0,004 0,067

Total (%) 0,074 3,134 4,056

The battery life improvements that arise from the reuse of
context components will be a subject of a future experiment.
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VII. CONCLUSION

Participatory sensing applications rely on humans for
acting as opportunistic sensors and flexible actuators. This
requires support for user dynamism including: mobility across
networks, mobility between devices and context-awareness.

We presented the User Component and the User Bind-
ings as essential elements of a comprehensive middleware
for supporting participatory sensing applications. The former
models the user as a first-class software component allowing
developers to reconfigure and introspect using Component-
Based Software Engineering tools, and hence, dealing with
mobility between contexts. The latter allows the middleware
to support multiple communication channels including OSNs
to connect users with sensing applications. This approach
also allows the application to selective communicate with the
user or with a device by offering an identification scheme
with multiple levels of granularity, and hence, dealing with
mobility between networks and devices. In the context of
smart buildings we implemented three participatory sensing
applications for improving adaptive thermal comfort issues.

We have evaluated our approach by running a two week
experiment involving the three applications and three users.
The obtained results confirm that our approach increases user
participation, reduce out-of-context interactions and decrease
energy consumption by sharing context information between
applications.

Our future work will include a more detailed assessment of
energy. In the short term, we will identify the specific savings
that arise from the reuse of context components. In the long
term, we will also explore how cloud balancing techniques for
saving energy can maximise battery lifetime. We also intend
to undertake a deep security analysis in order to develop a
security model for @migo. Finally, we will investigate the
scalability of our approach through long lived experiments with
more participants.
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