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Abstract
Exchanging data as comma-separated values (CSV) is
slow, cumbersome and error-prone. Especially for time-
series data, which is common in Activity Recognition, syn-
chronizing several independently recorded sensors is chal-
lenging. Adding second level evidence, like video record-
ings from multiple angles and time-coded annotations, fur-
ther complicates the matter of curating such data.

A possible alternative is to make use of standardized multi-
media formats. Sensor data can be encoded in audio for-
mat, and time-coded information, like annotations, as sub-
titles. Video data can be added easily. All this media can
be merged into a single container file, which makes the is-
sue of synchronization explicit. The incurred performance
overhead by this encoding is shown to be negligible and
compression can be applied to optimize storage and trans-
mission overhead.
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Introduction
At the heart of each Activity Recognition task is a dataset.
This dataset might be formed from multiple media streams,
like video, audio, motion and other sensor data. Recorded
at different rates, sparsely or uniformly sampled and with
different numerical ranges, these streams are challenging
to process and store. Commonly, datasets are published in
multiple comma-separated values (CSV) files, either with a
constant rate or time-coded. For small, independent time-
series this is a worthwhile approach, mostly due to its sim-
plicity and universality. However, when observing with multi-
ple independent sensors, synchronization quickly becomes
a challenge. Different rate recordings have to be resam-
pled, time-coded files have to be merged. Storing such data
in several (time-coded) CSV files hides this issue, until the
dataset is going to be used. Furthermore parsing CSV files
incurs a large performance and storage overhead, com-
pared to a binary format.

Examples of Activity
Recognition Datasets

HASC Challenge [8]: >100
subjects, time-coded CSV
files.

Box/Place-Lab [6]: A
sensor-rich home, in which
subjects are monitored for
long terms. Data is available
in time-coded CSV files.

Opportunity [12]: 12 sub-
jects were recorded with 72
on- and off-body sensors
in an Activities of Daily Liv-
ing (ADL) setting. Multiple
video cameras were used for
post-hoc annotations. Data
is published in synchronized
CSV files.

Kasteren’s Home [7]: 12
sensors in 3 houses. Data is
stored in matlab files.

Borazio’s Sleep [1]: 1 sen-
sor, 42 subjects. Data is
stored in numpy’s native
format.

Freiburg Longitudinal [9]: 1
sensor, 1 subject, 4 weeks of
continuous recording. Data
is stored in numpy’s native
format.

An alternative approach is to store time-series in exist-
ing multi-media formats. Encoding all multi-media data in
one file allows to merge streams, to synchronize them and
to store (meta-)data in a standardized format. In the next
section, we will first look at the formats commonly used to
exchange data in Activity Recognition, afterwards detail a
multi-media format and finally evaluate the incurred perfor-
mance and storage overhead.

Related Work
In the classic activity recognition pipeline [3], the first step
is to record and store sensor data. The observed activ-
ities, executed by humans, animals or other actors, are
recorded with different sensors. Each sensor generates a
data stream, whether this is a scene camera for annotation
purposes, a body-worn motion capturing system or binary
sensors like switches. Sampled at different rates, with dif-

fering resolutions, ranges, units and formats these streams
offer a large variety of recording parameters. These pa-
rameters are usually documented in an additional file that
resides next to the actual data [1, 6, 7, 8, 12]. The actual
data is commonly stored in a CSV file, in a binary format
for Matlab or NumPy, or in Machine Learning frameworks
specific ones like ARFF [5] or libSVM [4].

Synchronizing such multi-modal data, i.e. converting this
data to the same rate and making sure that recorded events
happened at the same time presents a major challenge
[12, 13, 16]. Possible approaches range from offline record-
ing with post-hoc synchronization on a global clock, to live
streaming with a minimum delay assumption - all but the
last one require some form of clock synchronization and
careful preparation. Storing events with timestamps on
a global clock is then one possible way to allow for post-
recording synchronization, i.e. each event is stored as a
tuple of <timestamp, event data>.

The following step of merging such time-coded streams
often requires to adapt their respective rates. Imagine, for
example, a concurrent recording of GPS at 3Hz and accel-
eration at 100Hz. To merge both streams: will GPS be up-
sampled or acceleration downsampled, or both resampled
to a common rate? Which strategy is used for this interpola-
tion, is data simply repeated or can we assume some kind
of dependency between samples? How is jitter and missing
data handled? These question need to be answered when-
ever time-coded sensor data is used. A file format which
makes the choice of possible solutions explicit is the goal of
this paper.

Multi-Media Container Approach
Sensor data commonly used in Activity Recognition is not
different from low-rate audio or video data. Common pa-
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rameters are shared, and one-dimensional sensor data
can be encoded with a lossless audio codec for compres-
sion. Rate, sample format and number of channels need
to be specified for an audio track. The number of chan-
nels is equivalent to the number of axis an inertial sensor
provides, as well as its sample rate. The sample format,
i.e. how many bits are used to encode one measurement, is
also required for such a sensor. Other typical parameters,
like the range settings or conversion factor to SI units (if not
encoded as such), can be stored as additional meta-data,
as those are usually not required for an audio track.

Lossless compression, like FLAC [17] or WavPack [2],
can be applied to such encoded data streams. This al-
lows to trade additional processing for efficient storage.
In the evaluation section several lossless schemes are
compared. These include the general LZMA2 and ZIP
compressors, and the FLAC [17] and WavPack [2] audio
compressors. All but the first two can be easily included in
multi-media container formats. To use audio streams, data
needs to be sampled at a constant rate, i.e. the time be-
tween two consecutive samples is constant and only jitter
smaller than this span is allowed. Put differently, the time
between two consecutive data samples ti and ti+1 at frame
i must always be less than or equal to the sampling rate r:
∀i ∈ N : ti+1 − ti ≤ 1

r . Compared to time-coded stor-
age, the recording system has be designed to satisfy this
constraint. Problems with a falsely assumed constant rate
recording setup will therefore surface faster. Especially in
distributed recording settings, where above mentioned con-
straints is checked only against local clock which might drift
away from a global clock.

Sparsely sampled events can be encoded as subtitles.
Here, each sample is recorded independently of its pre-
ceding event, i.e. the above mentioned constraint does not

hold. Each event needs to be stored with a time-code and
the actual event data. Depending on the chosen format, this
can also include a position in the frame of an adjacent video
stream or other information. For example, this can be used
to annotate objects in a video stream. A popular format is
the Substation Alpha Subtitle (SSA[10]) encoding, which
includes the just mentioned features. Since data is encoded
as strings, it is suitable for encoding ground truth labels. To
a limited extent, since no compression is available, it can
be used for sensor events as well. For example, low rate
binary sensors, like RFID readers could be encoded as a
subtitle.

Encoded sensor and subtitle data can then be combined
with audio and video streams in a multi-media container for-
mat. One such standard is the Matroska [11] format, that is
also available in a downgraded version called WebM [15]
for webbrowsers. Once the data streams are combined
into one such file, this data can be ”played” back in a syn-
chronous manner. This means that streams recorded at dif-
ferent rates, and in different formats, need to be converted
to a common rate and possibly common format. Meta-data
that contains additional information like recording settings,
descriptions and identifiers can be stored in addition to the
parameters already contained in the stream encoding. For
this task off-the-shelf software, like FFMpeg [14] can be
used, which also provides functionality like compression,
resampling, format conversion and filtering. Annotation
tasks can be executing with standard subtitle editing soft-
ware, discouraging the creation of yet another annotation
tool. Furthermore, video streaming servers can be used for
transporting live sensor data recordings to remote places.

The use of such a standard format for curating datasets al-
lows for re-using existing software, however not without lim-
itations. Asynchronous, also called sparsely sampled, data
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recorded at high rates is not supported. This mainly stems
from the simplifying assumption that streams are recorded
with a constant rate. Satisfying this constraint while record-
ing might be easier than handling asynchronicity later on.
For example, breaks, shifts or jitter due to firmware bugs
can be detected earlier. Another shortcoming is that struc-
tured data can not be stored transparently, each event is
assumed to consist of one data type only, e.g. multiple
channels of 8-bit integers in contrast to a mix of data types.
In general this is hard limitation, however different data
types can also be encoded in multiple streams. Also, the
en- and decoding overhead might be a limitation, which we
will look at in the next section.
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Figure 1: Fraction of storage
required for three datasets
compared to uncompressed CSV
files. Zip and LZMA2 text
compression, 32-bit binary,
WavPack [2] with 32/8-bits and
24-bit FLAC [17] audio encodings
are shown.

Compared to the de-facto standard of using CSV files,
encoding sensor data as audio, annotations as subtitle
and combining both with video- and audio-based provides
several improvements. Important parameters like sam-
pling rate, format and number of axes is included in the
file. Adding additional information as meta-data leads to
a self-descriptive format. Synchronous playback of multiple
streams, which requires re-sampling, is supported by off-
the-shelf software. Related problems, like un-synchronized
streams can be caught earlier, since this step is explicit.
The container format is flexible enough to support differ-
ent number formats, i.e. values can be encoded as floats
or integers of varying bit-size. Optional compression leads
to compact storage, which allows for efficient storage and
transmission. Additionally, when thinking about large datasets,
such a container format requires divisible storage. This
functionality (seeking without reading the whole dataset
into memory1) is provided.

1which would be required for time-coded storage

Evaluation
Compressing sensor data as an audio stream incurs an en-
and decoding overhead, and provides optimized storage.
In this section both are quantified. By a repetitive measure-
ment of the relative wall clock time for decompression, its
overhead is measured. The compression factor is deter-
mined by comparing the number of bytes required to store
the compressed file to the original, deflated CSV file. Binary
and text-based storage is compared. The Zip and LZMA2
algorithms are used for general byte-wise compression,
and the lossless FLAC and WavPack compressor for audio-
based compression. LZMA2, since it performs better than
ZIP, is tested on text and binary files. The approach of com-
pressing binary files with a general compressor is used by
Numpy for example. The fraction of required storage after
compression is given relative to the deflated, original CSV
file. For the runtime overhead, the fraction of reading time
relative to reading and converting the CSV file into a mem-
ory image is reported. The test were run on the Opportu-
nity [12], HASC Challenge [8] and on twenty days of the
Freiburg Longitudinal Wrist [9] datasets. A machine with an
i7-4600U CPU running at 2.1GHz with 8GB of memory was
used for all tests. Figure 2 and Figure 1 show the results
of these tests, CSV/zip refers to a zip-compressed CSV
file, CSV/lzma2 to an LZMA2 compressed file2, bin* refers
to signed integers with the respective bit length optionally
compressed with LZMA2, wv* to WavPack compression of
varying bit size per value and FLAC compressor which only
supports 24bits values.

Processing Overhead
It is interesting to check how much overhead is incurred for
decompression by each algorithm, as this gives an insight
if data needs to be stored in an intermediate format while

2the XZ utils package was used
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evaluating a recognition pipeline. If the overhead is com-
paratively low no intermediate storage format is required
and data can always be loaded from such a file. However,
should decoding require more processing time than the ac-
tual processing, an intermediate file needs to be used.

Naturally such a format would be binary, at best a memory
image which can be mapped into main memory. This is the
format that will be decoded to in the following. The base-
line is therefore the time required to convert a CSV from
disk into a binary format in memory. The fraction of time
required to do the same for each compression scheme is
reported in Figure 2. Each test is repeated six times, and
the first run is discarded, i.e. data is always read from the
disk cache.
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Figure 2: Relative runtime
overhead for decoding each format.
Shown is the fraction of wall time
required to decode the respective
scheme relative to the time
required to parse a CSV file into
memory. The result for each
scheme is the (binary) data stored
in memory.

Just parsing a CSV file incurs an up to hundred-fold over-
head (bin8 in Figure 2) compared to reading a binary file.
Compressing CSV data 3 can increase the runtime by 1.4−
3.0 times. So, looking only at runtime performance a CSV
file should hardly be used for large datasets. When com-
paring compression schemes, it can be seen that WavPack
provides the most consistent performance measures over
all datasets. It is not slower than the more general LZMA2
compressor, and the FLAC compressor is only faster on two
datasets. However, for the decoding task at hand here, an
overhead of at least two times is incurred compared to raw
binary storage. A trade-off between storage efficiency and
performance has to be found.

Storage Efficiency
General compression and audio compression algorithms
were tested. Raw binary, WavPack [2] and FLAC [17] com-
pression were taken from the FFmpeg [14] suite with default

3note that the Figure 2 represent the factor between the compression
and simply reading and uncompressed CSV file

parameters. Figure 1 shows the amount of compression
that was achieved for each dataset per algorithm.

The datasets show different characteristics found in other
datasets as well. For example the Longitudinal [9] dataset
can be massively compressed with text-based algorithm, al-
most down to 2% of its original size. This is mainly owed to
the fact that the contained acceleration data was recorded
with a resolution of only 8-bits, and that a run-length com-
pression was already applied during recording. This run-
length compression is deflated for CSV storage first, adding
a lot of redundancy. For the same reason, storing data non-
compressed in 32-bit binary format is actually larger than
the zip-compressed text-format. However, encoding with
the original 8-bit resolution in the WavPack compression
leads to a slightly better storage efficiency.

The same effect is visible for the Opportunity [12] datasets,
where feature vector are stored instead of raw data. Storing
in 32-bit binary increases the size again, which means that
the average string-length for representing a number in this
dataset requires little more than 5byte. Only when limiting
the number format to 8bits a stronger compression can
be achieved with an audio codec. The maximum dynamic
range that can stored with a text-based format is however
limited to the (decimal) encoding, (less than 10000 for five
digits), while a comparable binary encoding can range up to
25∗8.

The HASCA dataset [8] does not show this effect. Mainly
because the CSV data contains floats with at least ten dig-
its. These could be stored with 32 or 64bit, which would be
more efficient than their text counterpart. Especially since
values are stored with more than eight digits per value.

When optimizing data storage for space efficiency, the en-
coding of each value is the most critical factor. Limiting the
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number of bits per value, in essence assuming a limited
dynamic range of the encoded signal, has the strongest in-
fluence on the storage efficiency. However, when encoding
values in text format and a dynamic range that is limited to
four characters is enough, a text compression algorithm is
not worse than encoding data in binary format. For the gen-
eral case and when binary storage can be used, the Wav-
Pack compression provides the same storage efficiency as
the more general LZMA2 compressor.

Conclusion
Curated time-series data provides the basis for compar-
ing Activity Recognition and other Machine Learning ap-
proaches in an objective and repeatable manner. This data
usually includes low-rate sensor data, e.g. motion sen-
sors, time-coded annotations, and second-level evidence
like video and audio recordings. The state of the art for ex-
changing this data seems to be a time-coded CSV format.
Synchronizing the stored data-streams is usually not done
by the dataset provider and the dataset consumer is left
with this challenge that usually requires information of the
recording setup. This is especially problematic when video
or audio data is recorded as well.

Additionally the CSV format incurs a large overhead both
in runtime and storage. A possible alternative, with lower
overhead, is presented here. Motion and other sensor
data, as well as extracted features, can be stored in loss-
less audio formats. Ground truth labels and other time-
coded information can be stored in subtitle format. These
streams can then be merged in a common multi-media con-
tainer (e.g. Matroska), with additional video streams. One
recording session is stored in a single file, that can be self-
descriptive, synchronized and with a fitting storage-runtime
trade-off.
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