
Towards Declarative Query Scoping
in Sensor Networks

Daniel Jacobi1, Pablo E. Guerrero1, Khalid Nawaz1,
Christian Seeger1?, Arthur Herzog1?, Kristof Van Laerhoven2, and Ilia Petrov1

1 Databases and Distributed Systems Group,
2 Embedded Sensing Systems,

Dept. of Computer Science, Technische Universität Darmstadt, Germany

Abstract. In the last decade, several large-scale wireless sensor net-
works have been deployed to monitor a variety of environments. The
declarative nature of the database approach for accessing sensor data
has gained great popularity because of both its simplicity and its energy-
efficient implementation. At the same time another declarative abstrac-
tion made its way into mainstream sensor network deployments: user-
defined groups of nodes. By restricting the set of nodes that participate
in a task to such a group, the overall network lifetime can be prolonged.
It is straightforward to see that integrating these two approaches, that
is, restricting a query’s scope to a group of sensor nodes, is beneficial. In
this work we explore the integration of two such database and scoping
technologies: TikiDB, a modern reincarnation of a sensor network query
processor, and Scopes, a network-wide grouping mechanism.

1 Introduction

Wireless Sensor Networks (WSNs) have been suggested as a potent solution to
monitor large areas with sensing hardware, distributed over hundreds of nodes
that jointly form an ad-hoc multi-hop network. Each node in such a WSN is
equipped with a limited amount of processing and battery resources, commu-
nication capabilities to transmit its information to neighboring nodes in the
network, and a set of sensors, which can observe the local environment.

Operating a sensor network originally implied writing code in a procedural
programming language like C (or variants of it) for TinyOS [9]. This code has
to deal with low-level issues such as interrupts, network unreliability and power
consumption. In contrast, declarative operation is simpler than writing procedu-
ral code: it allows the user to focus on what needs to be done, without thinking
how to achieve it, and thereby reduces the system complexity.

In sensor networks, declarative data access was investigated by Gehrke [1,19]
and Madden [11,12]. Their systems offer a query processor-like interface to the

? Supported by the German Research Foundation (DFG) within the research train-
ing group 1362 Cooperative, Adaptive, and Responsive Monitoring in Mixed Mode
Environments, and the Center for Advanced Security Research Darmstadt (CASED).

2

sensor network. The vast amount of work in this context shows general consensus
that sensor data access should be declarative.

Another abstraction that has made its way into mainstream sensor network
deployments is node grouping 3. Having its origin in event-based systems [6],
the idea of scoping a WSN was published in [16], and related implementations
appeared in [18,13,15]. Most of these systems do acknowledge the importance of
a declarative operation by providing a simple syntax to define the node groups.

The intuitiveness of the database and scoping approaches makes their com-
bination an ideal integrated solution for query management in sensor networks.
To the best of our knowledge no work has explored this intersection. This paper
presents a number of extensions that this integration enables, their implemen-
tation and evaluation.

The rest of the paper is structured as follows. In the next section we review
related sensor network research with distinct attention to declarative query pro-
cessing and management of node groups, describing specific components of the
two approaches and their relevant implementation details. In Section 3, a num-
ber of extensions are presented that naturally emerge when using both systems
together. An initial evaluation is provided in Section 4 studying the behavior of
the system. We summarize our main findings in Section 5, together with future
directions of research.

2 Related Work

A significant amount of work has been carried out in the last decade to address
the topics of query processing and node group management. In the following two
subsections we review these topics. We then describe techniques to constrain a
query’s span in the network which are, to a certain extent, comparable to the
approach presented in this paper.

2.1 From Cougar to TikiDB

Fig. 1: TinyDB’s sensors vir-
tual data cube

The earliest systems to provide a declara-
tive interface for accessing sensor data were
Cougar [1,19] and TinyDB [11,12]. In TinyDB,
the sensor nodes compose a global, virtual ta-
ble called sensors, which has sensor types
as columns (e.g., temperature, humidity), and
nodes as rows. Each record is virtually up-
dated by each node at a frequency specified by the user, effectively forming a
virtual data cube over time, as illustrated in Fig. 1.

3 should not be confused with node clustering, a technique to subordinate nodes to a
master according to their physical proximity

3

SELECT humidity

FROM sensors

WHERE humidity > 20%

SAMPLE PERIOD 30s

FOR 3d

Users, in turn, specify a SQL-like query to
extract sensor data from the network. Con-
sider for example a sensor network equipped
with environmental monitoring nodes. A user,
e.g., interested in determining whether air hu-
midity exceeds a threshold of 20%, provides
the query to the right. The SELECT clause defines a projection on humidity, i.e.,
the result set consists of a table with one column and one row per network node.
The WHERE clause reduces the set of results by filtering temperature tuples that
don’t fulfill the specified condition. The results are delivered to the base station
at a 30-second sample rate (as specified with the SAMPLE PERIOD clause), and
the query lifetime is 3 days.

SELECT AVG(temperature)

FROM sensors

SAMPLE PERIOD 30s

When users are interested in aggregated
values instead of collecting all individual rows,
the query can include the desired aggregation
and the system performs the computation, as
shown in the query to the right. The result of this query is a single row per
sample period, based on the non-aggregated rows, with the average temperature.
Performing the aggregation inside the network has the benefit of lowering the
communication costs. TinyDB’s data aggregation framework [11] implements
this mechanism, and can be extended with customized functions beyond the
traditional average, max and min functions.

This style of declarative interaction, i.e. issuing queries through the network
via one of its nodes, makes the system flexible to be used and reconfigured with-
out requiring any changes to the individual node’s code. TinyDB, alas, has not
been kept up-to-date with the evolution of neither sensor hardware platforms nor
TinyOS, the operating system on which it worked. Therefore we developed our
own system, called TikiDB, which works on Contiki’s Rime protocol stack [4,5].
TikiDB behaves just as TinyDB: it exhibits a tree establishment protocol over
which query dissemination, data collection and aggregation functions operate.

2.2 Management of Node Groups

Initial sensor network architectures assumed that all sensor nodes participate in
a single global task. It soon became evident that in many scenarios, a sensor
network could be used for multiple purposes [17]. The idea of creating groups of
nodes evolved naturally [16]: by restricting the set of nodes that participate in
each task, communication costs are reduced, which translates into a prolonged
overall network lifetime. Variations of this idea emerged almost concurrently,
e.g., for groups of physically nearby nodes [18], logical groups [13], and also
under the name of roles [15].

In our group we have built Scopes [10], a framework in which a group of
nodes (called scope) can be declaratively defined by specifying a membership
condition that nodes must satisfy.

An important feature of the framework is the possibility to relate scopes
to each other in a hierarchy. A scope’s definition specializes that of its parent

4

Office

Group

Floor

Building

Department

University Technische Universität Darmstadt

Comp. Science

Robert Piloty

1st. Floor

DVS

D106 …

Dean’s …

2nd. Floor

…

3rd. Floor

…

CASED

ETiT

Hans-Busch

…

Common

University
Center

Audimax

Fig. 2: A hierarchy of scopes for facility management applications at TUD.

scope: member nodes will be a subset of its parents’. As an example, consider the
development of facility management applications at the Technische Universität
Darmstadt. Fig. 2 presents one such simple scope hierarchy. The topmost scope,
representing the entire university, is split into departments, which in turn are
split geographically into buildings, then floors, and so on, until fine granularity
scopes are achieved, e.g. D106 being Prof. Buchmann’s office. The statements
below show how to declaratively express scope Office D106 as subscope of DVS
(Fig. 3), as well as Temp Office D106, which picks temperature nodes in the
given office (Fig. 4).

CREATE SCOPE Office_D106

AS (ROOM = ‘D106’)

SUBSCOPE OF DVS;

Fig. 3: Scope definition for
office D106

CREATE SCOPE Temp_Office_D106

AS (EXISTS SENSOR ‘TEMPERATURE’

AND TEMPERATURE < 20C)

SUBSCOPE OF Office_D106;

Fig. 4: Specialization for temperature nodes

A node’s membership to a scope might change over time, hence a timely
reevaluation at each node is required. The Scopes framework implements mech-
anisms to correctly deal with the membership, and provides automatic main-
tenance against network dynamics (nodes leaving and joining and unreliable
communication).

In addition to reliably notifying nodes about their membership, Scopes en-
ables a bidirectional communication channel between a scope’s creator (called
scope root) and the scope members. The framework resorts to specific routing
algorithms that can be chosen to better fulfill the application needs. A näıve im-
plementation simply floods messages throughout the network. An energy-efficient
protocol was presented in [10], which uses controlled flooding to disseminate top
level scope definitions through the network, and a converge-cast routing tree for
relaying data back to the sink. The used tree topology makes this protocol a good
candidate for implementing query processing functions, therefore we concentrate
on it in this work.

5

2.3 Node Set Reduction

Semantically, a query is answered by extracting data from the sensors table as
specified by the FROM clause, effectively addressing all nodes. Internally, however,
queries do not always necessarily need to be spread across the entire network.
Consider a query which requires temperature readings greater than or equal to
a certain threshold ‘x’. Clearly, nodes with values lower than ‘x’ can abstain
from participating in the query other than for forwarding purposes. TinyDB
reduces the set of nodes that participate in answering such queries by using a
semantic routing tree (or SRT for short). SRTs are overlays on traditional routing
trees that, similar to database indices, are used to locate nodes that have data
relevant to the query. An SRT is created over constant values, e.g. temperature
and humidity, with the statement:

CREATE SRT th_index ON sensors (temperature,humidity) ROOT 1

The statement creates an SRT named th index rooted at node 1; nodes then
discover the range of temperature and humidity values their children have. That
information is used later to determine whether a query must be forwarded down-
wards or not. To a minor extent, the definition of an SRT resembles those of
scopes. The flexibility of scope definitions, as shown in the previous subsection,
goes far beyond such indices.

Other techniques exist that reduce the set of nodes participating in a query.
Dubois-Ferrière and Estrin investigated a multi-sink scenario, and proposed to
partition the network using Voronoi scopes [2]. Gupta et al. [8] investigated an
approach to suppress nodes that are in close enough proximity such that they
might contribute the same or similar data, effectively assuming node redundancy.
These techniques complement the approach presented in this paper, and can be
applied a posteriori. When resource constraints are not an issue, the approach
for mobile phones and smart objects from Frank et al. [7] can be also used.

In the next section we present and exemplify a number of extensions that
emerge from the integration of declarative query processing and network scoping.

3 Integrating Queries with Scopes

As introduced earlier, the declarative approach to querying a sensor network em-
ploys a SELECT-FROM-WHERE-GROUP BY statement. The user is normally bound
to refer to the whole network in these queries: the FROM clause is used with
the sensors table 4. Scoping a sensor network, on the other hand, enables the
definition of dynamic data sources.

Therefore, it results natural to extend the query semantics by adding the
possibility to use these scopes as sources instead of the entire sensors table.
This section describes TikiDB’s extensions to the query processing data model
by resorting to example queries for illustration purposes.

4 other tables can be used, called materialization points, but these can’t be used to
specify node sets

6

3.1 Data Model Extensions

SELECT temperature, humidity

FROM Office_D106

WHERE humidity > 20%

SAMPLE PERIOD 30s

The simplest way to restrict the set of
nodes that participate in a query is by
replacing the sensors keyword with the
name of the scope to be used. Consider
the query to the right, where the scope
Office D106 is defined as in Fig. 3. In this case, the result set consists of tuples
generated at nodes which are members of the specified scope (and which meet
the WHERE clause).

SELECT light

FROM Office_D106, Office_D108

WHERE light > 200 lux

SAMPLE PERIOD 30s

When multiple scopes are to be used as
sources, they can be listed separated from
each other by commas as in the query to
the right. Here, a user is interested in light
sensor values from nodes in both offices.
It is easy to observe that the notation stands for union between node groups,
instead of an implicit cross join between these.

SELECT AVG(temperature)

FROM Office_D106

WHERE humidity > 20%

SAMPLE PERIOD 30s

Data aggregation also matches very
well with scopes. Aggregating data from
a scope’s nodes over an epoch is possi-
ble by specifying the desired attribute and
the aggregation function, as exemplified
to the right. The temperature values of all nodes being member of Office D106

are then averaged and presented to the user at the base station.

SELECT node_type,

MIN(battery_voltage)

FROM ComputerScience

GROUP BY node_type

SAMPLE PERIOD 30s

Results can also be grouped by com-
mon attributes such as node type or room.
In this case, the root node will deliver a
result set with one row for each unique
value of the grouping attribute (e.g. node
type) together with the aggregated value.
The query to the right assumes an attribute node type, which takes values
according to the node’s properties such as processor and sensors available. It
illustrates how to find the lowest battery level for each node type at a large
scope, ComputerScience.

SELECT SUBSCOPE OF DVS,

AVG(light)

FROM DVS

GROUP BY SUBSCOPES OF DVS

SAMPLE PERIOD 30s

Lastly, a more powerful aggregation
operation exploits the hierarchical rela-
tion between a scope and its subscopes.
When a user is interested in an aggregated
value for each of the subscopes of a partic-
ular scope, he can use the clause SUBSCOPE
OF. With this, the result set includes one row for each subscope of the specified
scope, together with the aggregated value. Consider the query to the right: the
grouping element are those subscopes of DVS, that is, each of the offices that
belong to it (cf. Fig. 2). Note that the user might not know a priori what the
subscopes of a scope are, or if there exist any at all. The system takes care of

7

looking them up and managing the aggregated values independently from each
other.

3.2 Design Considerations

Each of the introduced queries require a corresponding mapping to the oper-
ations offered by the network scoping interface. We now describe the design
considerations and implementation details of the aforementioned operations, as
well as modifications to the underlying scoping layers to correctly support these
query processing operations.

Fig. 5: System layers

Architecture. The system follows a layered ar-
chitecture, as depicted in Fig. 5. Users write and
submit queries to TikiDB through a connected
node. TikiDB is in charge of parsing the query
and allocating the necessary timers and other re-
sources for its execution. Scopes is used for creat-
ing the node groups and maintaining them against
network dynamics, as well as for disseminating the
queries towards scope members and transporting
data flowing back to the scope root. We have im-
plemented this stack entirely using Contiki [4], an
operating system running threads on a C-based event-driven kernel.

Fig. 6: Query dissemination

Query Dissemination. TikiDB’s procedure for
query injection uses the communication channel
offered by Scopes to disseminate the query spec-
ification. In this way, indeed, only nodes that are
members of the scope are notified (e.g., nodes cir-
cled in green in Fig. 6). The strict layering em-
ployed by the Scopes framework avoids notifying
intermediate nodes, which only forward data mes-
sages to their destination (cf. node 2). This feature
is necessary in scenarios where security and pri-
vacy are of utmost importance, since the network
may contain multiple scopes from different users and/or companies. The draw-
back of this approach, however, is that such nodes cannot be used to perform
aggregation: when data flows from producer nodes towards the root. In this work
we have extended the Scopes framework to enable the user to specify whether
this behavior is desired or not.

4 Preliminary Evaluation

In this section we describe a preliminary evaluation of our approach regarding
reliability and power efficiency.

8

4.1 Simulation Setup

We have evaluated the integration of Scopes with TikiDB through simulations.
For this purpose we use Contiki’s COOJA/MSPSim, which is a simulator pro-
viding a very accurate emulation of the node’s hardware [14]. This enables the
usage of exactly the same binary for simulations as for real hardware. While
COOJA offers emulation for several hardware platforms, we chose to use Telos
nodes since we plan to evaluate the system in our Tmote Sky testbed.

The energy consumed by the nodes was measured using the power profil-
ing mechanism [3] provided by Contiki. The execution times were measured for
different components (e.g., radio and processor) on the nodes while they were
awake. This information, along with the current energy consumption obtained
from the Tmote Sky datasheet, was used to compute the energy consumed by
the nodes. In our experiments, initial energy assigned to all nodes was equal,
unless otherwise stated.

SELECT INTERNAL_VOLTAGE

FROM scope_x

SAMPLE PERIOD 128s

Fig. 7: Query Q1

SELECT ROOM, AVG(TEMPERATURE)

FROM scope_x

SAMPLE PERIOD 128s

Fig. 8: Query Q2

The used network topology was a uniform, 100-node grid of 10 nodes by side.
Transmission range was adjusted so that each node can communicate with its
four direct neighbors. Despite having used transmission success rates of 100%,
radio communication is subject to collisions (we discuss this issue later). We
tested the system with two different scopes, which covered 25% of the network
(hence 25 nodes were members of it). The first scope, S1, covered nodes dis-
tributed uniformly throughout the network, while for the second scopes, S2, we
chose those in the upper left corner. These scope definitions were used in com-
bination with two queries (presented in Fig. 7 and 8) by replacing scope x with
the respective scope name (S1 or S2). Query Q1 simply requests the internal
voltage reading. Despite its simplicity, this query puts the network protocols
under stress given the network size (and the respective tree height). Query Q2

is slightly more complex in that it requires aggregation over an epoch. Radio
messages are smaller, however more processing delay is present.

4.2 Simulation Results

In Fig. 9 we present the reliability results for the aforementioned combination
of scope definitions and queries. The x axis represents elapsed time. The plain
(green) curve shows node membership, while the line with crosses (blue) rep-
resents the number of received results at the scope root (the positions of the
crosses indicate the start of a new epoch). The plots show results for the first 60
epochs (∼2.5 hours).

9

 0

 5

 10

 15

 20

 25

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00 02:20:00 02:40:00

elapsed time [hh:mm:ss]

membership
results

(a) S1, Q1

 0

 5

 10

 15

 20

 25

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00 02:20:00

elapsed time [hh:mm:ss]

membership
results

(b) S1, Q2

 0

 5

 10

 15

 20

 25

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00 02:20:00 02:40:00

elapsed time [hh:mm:ss]

membership
results

(c) S2, Q1

 0

 5

 10

 15

 20

 25

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00 02:20:00

elapsed time [hh:mm:ss]

membership
results

(d) S2, Q2

Fig. 9: Result delivery reliability for S1, S2 combined with Q1, Q2

The first aspect to consider is the scope membership (green curve), since
nodes that do not become scope members will not generate tuples to contribute
to the result. Both scope definitions cover 25 nodes; we observe that while S2

remains stable over time from the beginning of the test run till the end, S1

shows a slight variability. This is expected, since S1 spans the whole network,
while S2 covers a concentrated, smaller fraction of it. In general, however, scope
membership remained high, which is to be attributed to the reliability with
which administrative messages are sent by the Scopes framework.

Given this almost ideal node membership, we consider the amount of received
results at the scope root. At first sight, it seems surprising that only around 50%
of the results arrive at the root. This suboptimal outcome, however, is due to a
number of issues. With query Q1, messages get longer as nodes are closer to the
root. This triggers the message fragmentation function; the Scopes framework,
in turn, sends data messages without requesting acknowledgements. Occupying
the broadcast medium for longer periods of time clearly increases the probability
of message collisions. A packet loss near the root implies losing a big part of the
results. With query Q2, on the other side, in-network processing keeps individual
nodes busier for longer times. This causes results to sometimes arrive out of order

10

at their next hop, which eventually discards them (out-of-order messages arrived
3% of the time).

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00

ac
cu

m
ul

at
ed

 n
et

w
or

k
en

er
gy

 c
un

su
m

pt
io

n
[u

J]

elapsed time [hh:mm:ss]

S1,Q1
S1,Q2
S2,Q2
S2,Q1

Fig. 10: Power efficiency for the tested queries

In Fig. 10, we present the results for power efficiency. The plot presents time
on the x axis, and accumulated network energy consumption on the y axis. The
plot contains energy consumption measurements for the first ∼55 epochs. Here
it is observed that the queries involving scope S1 consume 14% more energy
than the queries involving S2. This was expected because nodes in S1 are spread
through the network, which requires spending more energy to collect results.
Also, it is noted that the two queries executed on the same scope do not vary
drastically (the observed absolute difference was < 2%). As expected, S1,Q1 has
required more energy than S1,Q2, since the latter performs in-network aggrega-
tion, therefore minimizing message size. However, the lower energy consumption
shown by S2,Q1 compared to S2,Q2 is contradictory to our expectations: the
query executing aggregation requires more energy than the query without it.
We speculate that a possible explanation could be that the savings in communi-
cation costs are lower than the extra costs for computing aggregates, since in S2,
member nodes are closer to the scope root, thus requiring less communication.
A detailed investigation of this issue is a matter of future work.

5 Conclusions and Future Work

In this paper we have proposed an approach to declaratively specify the set of
nodes that participate in a query. While, in sensor networks, declarative inter-
faces to query processing as well as for node group management had already
been investigated, the integration of these two is a promising approach which
can further improve the usability of sensor networks for non-experts.

11

We have shown the benefits of this approach by integrating two of such sys-
tems. On one side, TikiDB, which is a modern reincarnation of a distributed
query processor developed on the Contiki operating system. TikiDB manages
query aspects such as query parsing, data acquisition, data aggregation and fil-
tering. On the other side, Scopes, which is a distributed node grouping system
that efficiently handles network dynamics and enables a bidirectional communi-
cation channel between a scope’s root node and its members.

We have proposed four extensions to TinyDB’s original data model that make
use of scopes to specify or reduce the set of nodes that participate in the query.
The easiness in describing its syntax suggests that the constructs are applicable
to many situations. Our preliminary evaluation results show a non-ideal result
delivery reliability, leaving space for optimizations. Clearly, around the scope
root, messages get large enough such that fragments have high probability of
collision. Since data messages in Scopes are not acknowledged, data loss becomes
an issue.

In the future we plan to enhance our implementation to improve reliability,
reduce energy consumption, and also optimize the program size. These activities
will be surrounded by extensive test runs on a real deployment to characterize
and evaluate our framework in more detail.

References

1. Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards Sensor
Database Systems. In Proceedings of the Second International Conference on Mo-
bile Data Management, January 2001.

2. Henri Dubois-Ferriere and Deborah Estrin. Efficient and Practical Query Scoping
in Sensor Networks. In Procs. of the 1st IEEE International Conference on Mobile
Ad-hoc and Sensor Systems, pages 564 – 566, October 2004.

3. A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based Online Energy
Estimation for Sensor Nodes. In 4th IEEE Workshop on Embedded Netwoked
Sensors (Emnets-IV), Cork, Ireland, June 2007.

4. Adam Dunkels, Björn Gronvall, and Thiemo Voigt. Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors. In 29th Annual IEEE
International Conference on Local Computer Networks, pages 455–462, Nov. 2004.

5. Adam Dunkels, Frederik Österlind, and Zhitao He. An Adaptive Communica-
tion Architecture for Wireless Sensor Networks. In Proceedings of Conference on
Embedded Networked Sensor Systems (Sensys ’07). ACM Press, November 2007.

6. L. Fiege, M. Mezini, G. Muehl, and A. Buchmann. Engineering Event-based Sys-
tems with Scopes. European Conference on Object-Oriented Programming 2002,
pages 257–268, 2002.

7. Frank, Roduner, Chie Noda, and Kellerer. Query scoping for the sensor internet.
In PERSER ’06: Proceedings of the 2006 ACS/IEEE International Conference on
Pervasive Services, pages 239–242, Washington, DC, USA, 2006. IEEE Computer
Society.

8. Himanshu Gupta, Zongheng Zhou, Samir R. Das, and Quinyi Gu. Connected
sensor cover: self-organization of sensor networks for efficient query execution.
IEEE/ACM Trans. Netw., 14(1):55–67, 2006.

12

9. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer
Pister. System Architecture Directions for Networked Sensors. SIGOPS Oper. Syst.
Rev., 34(5):93–104, December 2000.

10. Daniel Jacobi, Pablo E. Guerrero, Ilia Petrov, and Alejandro P. Buchmann. Struc-
turing Sensor Networks with Scopes. In 3rd IEEE European Conference on Smart
Sensing and Context (EuroSSC), pages 40–42, Zurich, Switzerland, October 2008.
IEEE Communications Society.

11. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG:
a Tiny AGgregation Service for Ad-hoc Sensor Networks. 5th Symposium on Op-
erating Systems Design and Implementation, 36(SI):131–146, 2002.

12. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: an Acquisitional Query Processing System for Sensor Networks. ACM
Trans. Database Syst., 30(1):122–173, March 2005.

13. Luca Mottola and Gian Pietro Picco. Logical Neighborhoods: A Programming
Abstraction for Wireless Sensor Networks. In Phillip B. Gibbons, Tarek F. Ab-
delzaher, James Aspnes, and Ramesh Rao, editors, DCOSS, volume 4026 of Lecture
Notes in Computer Science, pages 150–168, San Francisco, CA, USA, June 2006.
Springer.

14. Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. Cross-level simulation in cooja. In European Conference on Wireless Sensor
Networks (EWSN), Poster/Demo session, Delft, The Netherlands, January 2007.

15. Kay Römer, Christian Frank, Pedro José Marrón, and Christian Becker. Generic
Role Assignment for Wireless Sensor Networks. In Proceedings of the 11th ACM
SIGOPS European Workshop, pages 7–12, Leuven, Belgium, September 2004.

16. J. Steffan, L. Fiege, M. Cilia, and A. Buchmann. Scoping in Wireless Sensor
Networks: A Position Paper. In Proceedings of the 2nd Workshop on Middleware
for Pervasive and Ad-hoc Computing, pages 167–171. ACM, 2004.

17. Jan Steffan, Ludger Fiege, Mariano Cilia, and Alejandro P. Buchmann. Towards
Multi-Purpose Wireless Sensor Networks. In Systems Communications, pages 336–
341, Montreal, Canada, August 2005. IEEE Computer Society.

18. Kamin Whitehouse, Cory Sharp, Eric Brewer, and David E. Culler. Hood: A Neigh-
borhood Abstraction for Sensor Networks. In MobiSYS ’04: Proceedings of the 2nd
international conference on Mobile systems, applications and services, pages 99–
110, Boston, Massachusetts, USA, June 2004. ACM Press.

19. Y. Yao and J. Gehrke. The Cougar Approach to In-network Query Processing in
Sensor Networks. SIGMOD record, 31(3):9–18, 2002.

	Towards Declarative Query Scoping in Sensor Networks
	Daniel Jacobi, Pablo Guerrero, Khalid Nawaz, Christian Seeger, Arthur Herzog, Kristof Van Laerhoven, Ilia Petrov
	Introduction
	Related Work
	From Cougar to TikiDB
	Management of Node Groups
	Node Set Reduction

	Integrating Queries with Scopes
	Data Model Extensions
	Design Considerations
	Architecture.
	Query Dissemination.

	Preliminary Evaluation
	Simulation Setup
	Simulation Results

	Conclusions and Future Work

