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Abstract—We report in this paper on a wireless sensor
network deployment at railway tracks to monitor and analyze
the vibration patterns caused by trains passing by. We investigate
in particular a system that relies on having a distributed network
of sensor nodes that individually contain efficient feature extrac-
tion algorithms and classifiers that fit the restricted hardware
resources, rather than using few complex and specialized sensors.
A feasibility study is described on the raw data obtained from
a real-world deployment on one of Europe’s busiest railroad
sections, which was annotated with the help of video footage
and contains vibration patterns of 186 trains. These trains were
classified in 6 types by various methods, the best performing at
an accuracy of 97%. The trains’ length in wagons was estimated
with a mean-squared error of 3.98. Visual inspection of the data
shows further opportunities in the estimation of train speed and
detection of worn-out cargo wheels.

Keywords—feature extraction, sensor data abstraction, event
classification, railway monitoring, wireless sensor networks

I. INTRODUCTION

Sensor networks have become a popular tool for various
applications, due to being able to cover and monitor large areas
and drastically reduce the intrusion into existing environments
as well as disturbance of its inhabitants. The ability of wireless
sensors to span a sensing and communication network with
minimal resources by using small, robust, power-efficient and
inexpensive hardware, highly benefits large-scale monitoring
application. Such applications traditionally aim at periodic
sampling of sensor values for long time periods, in order
to obtain a detailed overview on physical phenomena in the
environment. Many sensor network applications focus hereby
on collective observation of slowly changing physical values,
including temperature, humidity, gas concentrations in the air
or particle concentration in the water. Hereby, the sensor nodes
have to periodically wake up from low-power state in order to
sample their sensors and disseminate the information through
the network.

Other popular sensor network applications aim at detecting
sporadic events, such as abrupt rising or falling of temperature
and humidity, extremely high or hazardous concentrations of
gas or pollutants in the air. The ability of the sensor nodes to
detect such events directly at the source is of great advantage
to the whole network, allowing to significantly reduce the
amount of wireless communications within the network, thus
preserving the limited power supplies.

Advances in software and hardware technology during the
past decades made wireless sensor networks (WSN) more
scalable, allowing the sensor nodes to be deployed for much
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Fig. 1: Miniature sensor nodes attached to the railway tracks
capture the vibrations caused by passing trains. From the raw
3D acceleration data of these events (upper plots), features can
be extracted that are characteristic enough to be be used for
on-sensor train classification (bottom plots). Using a network
of such nodes makes the detection more robust and allows
additional analysis, such as estimation of the train’s speed by
using time delays between sensors.

longer time spans, in part due to the introduction of power-
saving idle and sleep modes of the hardware components.
With these advances, sensor networks have been increasingly
deployed in scenarios with the aim to detect, monitor and
report on more complex critical phenomena, such as seismic
activity [1], disaster detection [2] or emergency scenarios [3],
[4]. These applications require high-fidelity sensor data that
preferably should be analyzed in or close to real-time, which
conflicts with the fact that wireless sensor nodes within a
network tend to be heavily constrained by their hardware
capabilities and resources. Wireless communication is known
to be one of the most energy-expensive operations, so that
transmitting raw sensor data to a remote base station through
the network will deplete the limited power supply in a short
amount of time, resulting in sensor nodes and thus the network
running the risk to become in-operational.

Our work focuses specifically on sensor data abstraction
in an application where the sensors have been sampled at
relatively high frequencies. Hereby, sampling rates range from
hundreds of Hertz, for acceleration sensors and gyroscopes,
up to thousands of Hertz for microphones. Using efficient and
easy to compute features such as mean, variance, signal am-
plitude, and similar, abstraction of such sensor data is possible
directly on the sensor nodes, even with their limited hardware
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resources. For applications where events require large amounts
(i.e. multiple hundreds or thousands) of sensor readings to be
adequately captured, computing such abstractions significantly
reduces the amount of data in comparison to the original signal.

In this work, this approach of evaluating local features on
a distributed set of wireless nodes is applied on a railway
monitoring scenario. Figure 1 depicts one event from a data
set recorded for the case study: The data set was obtained by
deploying a network of sensor nodes that are equipped with
sensitive inertial sensors at the railway tracks, capturing the
vibrations caused by passing trains. We show that from the
raw sensor data captured by the sensors in such a network, we
are able to classify the type of train as well as the train’s length.
To achieve this in a realistic setting, we limit our approach to a
set of sufficiently efficient features that can be implemented on
the sensor node in an on-line fashion, thus allowing on-sensor
event detection, train type classification and length estimation.

The remainder of this paper is structured as follows: Sec-
tion II presents relevant related work. Section III is dedicated to
our sensor hardware, the deployment location and the obtained
data set. In section IV we propose and evaluate a set of
features, both for train type classification and train length
estimation. We discuss our results and highlight interesting
findings as motivation for future work in section V. Finally,
we list our conclusions made in this paper in section VI.

II. RELATED WORK

Many research scenarios motivate the deployment of wire-
less sensor networks through the suitability of small sensors
to densely monitor infrastructure, such as buildings, bridges,
roads, rails. The huge diversity in sensors hardware, types of
applications, deployment procedures, methodical and imple-
mentation approaches is astounding. One of the driving forces
for monitoring structures and detecting relevant events is the
goal for improving safety and organizing maintenance tasks.
Various scenarios with alarm or control systems also motivate
the detection and monitoring of critical events. This section
will therefore present several application scenarios and frame
our train monitoring study amid these related work.

A multitude of research, including [5], [6], [7] or [8]
describe different application scenarios for wireless sensor
networks, where detection and classification of rare events
is of particular interest. The sensor networks, equipped with
vision-based, acoustic, seismic, magnetic and infrared sen-
sors, facilitate distributed observation of an area, aiming first
and foremost at spotting and classifying ground vehicles or
humans. While the scale of these deployments varies a lot,
the need for energy-efficient sensors accounts for the features
to be relatively simple to compute. For the car toll system
application [8], the authors follow a similar approach to our
work by choosing simple features (vehicle length, the average
observed energy and peak-patterns in the signal) to detect and
classify various ground vehicles, such as cars, pickup trucks,
vans, buses and motorcycles.

Vibration sensors are often used for monitoring and ensur-
ing infrastructure safety, such as in [9] or [10], where particular
vibration frequencies in the raw data were considered as well
as various complex features were utilized.

Railway safety and train detection plays an important
role both from practical as well as research point of view,
spawning several application scenarios utilizing different types
of sensors: In [11], the authors present a system for short-
term deployments that uses accelerometers to detect arriving
trains in order to warn maintenance personnel working on
tracks. Detecting and classifying train events by means of an
acceleration sensor was suggested by [12]. To enhance railway
safety, [13] deployed a vibration sensor on running trains,
aiming at detecting rail deformations during motion. Electro-
magnetic sensor array can be used to detect and count wheels,
as shown in [14]. Railroad operation monitoring through a
wireless sensor network is presented in [15], aiming at more
safety and improved efficiency of railway maintenance.

Reducing the energy consumption in wireless sensor net-
work deployments, is often very crucial for the lifetime of
the deployment. Data compression approaches, such as in
[16], aim at reducing wireless communication payload. In the
wearable and mobile sensor research domains, limited power
supplies require more data processing directly at the device,
avoiding energy-consuming transmission or storing to local
memory. Reducing the communication payload by detecting
activities directly on a mobile device, as presented in [17],
will also extend the lifetime of the sensors.

Our work focuses on a wireless sensor network application
scenario, where observed events can not be detected with sim-
ple threshold approaches and require on-line data processing.
The aim is to classify train types and estimate train lengths
by means of their vibration footprint directly on the sensor
nodes. The events in this scenario tend to occur sporadically
and last for only a short time period. The ability to detect,
classify and monitor such events with sensor nodes deployed
along railway tracks would allow to deploy such a network for
various long-term railway applications.

III. DEPLOYMENT

This section deals with the deployment of our sensor
network that gathered the data set, the placement on the railway
tracks as well as the underlying hardware choices.

A. Hardware

Since we aim at a long-term deployment of the sensor
network at a given railway track of interest (Figure 2), the envi-
ronment can be expected to be rough. Even though the sensor
nodes used for the deployment are still research prototypes,
their hardware and plastic enclosures especially manufactured
for this purpose have been designed to withstand harsh outdoor
environments. Further practical considerations that have been
taken into account include protection of the sensor nodes
against rain, snow damage, dust accumulation, and exposure to
the sun, as well as attachment methods to the metal rails. As in
many typical wireless sensor network deployments, we cannot
assume power to be readily available next to the railroad and
our deployment therefore has to rely on local batteries.

The sensor nodes for this paper’s deployment and evalua-
tion were designed to be small, robust and inexpensive enough
to be left at the railway tracks surviving varying weather
conditions. The sensor’s main board features a Microchip
PIC18F46J50 microcontroller as the main processing unit, an
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Fig. 2: Our system’s concept: A sensor network deployed along
railway tracks captures vibrations caused by passing trains. Im-
mediately computing efficient features from streaming sensor
data allows train type classification and counting wagons on
the sensor nodes. In future deployments, these can be used
to estimate train speed and detect worn-down cargo wheels.
As such, this system is envisioned as a flexible instrument to
assist in railway monitoring and maintenance tasks.

Analog Devices 3D MEMS accelerometer for capturing the
vibrations and a micro-SD card connected via SPI-bus for
local storage. Furthermore, the main board contains interfaces
for reprogramming, wireless extension, and additional sensors
such as light or temperature. A mini-USB port is used for
connecting the sensor node to a computer, which allows con-
figuring the sensor, initiating the logging process and accessing
the recorded sensor data afterwards. A plastic case (overall
dimensions: 37x33x15mm) manufactured through 3D printing
holds the components and provides basic protection.

The PIC18F46J50 microcontroller features 65528 bytes of
program memory and 3776 bytes or random access memory
and is equipped with a real-time clock which is driven by a
precise 32.768kHz Abracon crystal with a frequency tolerance
of ±20ppm. The real-time clock drift amounts to few millisec-
onds per day, allowing exact time-stamping of the occurring
events. Time synchronization in the network therefore needs
to happen infrequently, allowing synchronized monitoring of
passing trains along the mounted sensors and speed estimation
based upon event delay. This particular microcontroller also
supports USB communication and is able to swiftly change
into low-power modes depending on the tasks at hand.

The 3D ADXL345 accelerometer is configured to sample
its data at 100Hz and transfer the readings in bursts of 32
samples to the microcontroller. The time span between the
bursts is long enough allowing the microcontroller to process
the previous burst of sensor data and to switch into a low-
power idle mode to preserve limited battery power. All sensor
nodes were configured to sense vibrations in the ±4g range
and at 10-bit resolution. A tiny lithium polymer rechargeable
battery with a capacity of 180mAh was chosen as the power
source, allowing a single sensor node to run for approximately
two weeks while logging all data to the micro-SD card.

The choice for a sensor node design with a low-power
microcontroller makes the entire module small and cheap to
produce, but also results in another significant challenge: The
limited amount of program and operating memory as well as
the lack of a floating-point unit poses a harsh limit on the used
algorithms and their implementation. Thus, the proposed fea-
ture extraction routines have to work under extreme memory
constraints and should avoid the use of larger functions (as
they are for example used in Fourier analysis).

Fig. 3: One of the sensor nodes attached to the rails during
the experimental deployment. The sensor node is wrapped up
in a plastic bag to protect the sensor from dust and humidity.

Choosing inexpensive off-the-shelf MEMS accelerometer
sensors to detect and characterize trains by their vibration foot-
print results first and foremost in nodes that can easily be built
in large quantities, allowing deployment of large-scale sensor
networks. A second benefit lies in the accelerometer packages
occupying very little space and generating sensor data at a
bandwidth and resolution that can be processed directly at the
sensor node with available processing capabilities. On the other
hand, one can expect the sensor data quality to be less accurate
than that of specifically-designed and more expensive vibration
sensors, making the extraction of distinctive and characteristic
features more important.

The sensors’ raw acceleration logging routine requires
roughly a fifth of program and random access memory. The
proposed feature extraction algorithms would therefore easily
fit on these sensor nodes, allowing on-line computation and
forwarding of features or classification results through the
sensor network instead of the much larger amount of raw
sensor data. In order to evaluate these features, the following
subsections present an experimental deployment for obtaining
real-world vibration patterns.

B. Location

Before being permitted to deploy the sensor nodes on
highly busy railway tracks, railway company officials were
involved in the planning of this paper’s experiments. The lo-
cation for the deployment of the sensor nodes was suggested by
the railway company officials themselves, specifically due to
the variety of train types and their maximum possible speeds.
The particular spot featured four tracks running completely
straight for multiple kilometers, thus allowing train speeds of
up to 250 kilometers per hour.

Two out of these four railway tracks are general purpose
high-speed approved tracks for different train types, including
regional and high-speed passenger trains from two European
countries, and cargo trains. The other two tracks, due to their
technical characteristics, were used by low-speed passenger
trains connecting nearby cities.

During the deployment, each sensor was additionally
wrapped up in a plastic vacuum bag in order to protect it
from dust, humidity and rain, and attached to the rails using
double-sided adhesive tape, as shown in Figure 3. Attaching
the sensors to the rails was carried out under the supervision
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Fig. 4: Snapshots from the video recordings showing in this
case a single locomotive passing by on the 2nd high-speed
track. These videos were used as ground truth for the evalua-
tion of type of train and train composition (wagon count).

ID Class Description Count

1 Regio passenger trains connecting cities in a region 63
2 CityRail trains service city center, suburbs and nearby cities 15
3 Cargo various cargo trains 39
4 Loc single locomotives being transferred 10
5 Thalys French inter-city high-speed passenger train 5
6 ICE German InterCity Express high-speed passenger train 9

TABLE I: From all the train events in raw sensor data, 141
could be annotated and used for the evaluation. Here, different
train types and their count in the data set are shown.

of a railroad maintenance crew, whereby the tracks had to be
officially closed for train traffic for a short period of time.
For the deployment, six sensor nodes have been deployed
along both high-speed and low-speed tracks, with a distance
of 10 meters between them. At configuration time, the nodes’
realtime clock units were synchronized with a camera setup
registering both audio and video from passing trains, so that
the data could easily be synchronized afterwards.

C. The Data Set: A Visual Inspection

This subsection describes the variety of trains present in
the data set, consisting of train events captured by the sensors,
and the video footage recorded for annotation purposes.

In total, the sensors have captured 186 train events, of
which 141 could be annotated based on video footage recorded
during the deployment. Figure 4 illustrates the video data
with a series of frames from video footage capturing a single
locomotive passing by. Table I provides an overview on the
six different train types: four different passenger train classes
– two types of high-speed trains, regional passenger trains and
city rail trains – along with a cargo and locomotive classes.

Thalys, a French high-speed passenger train, typically
consists of head and tail locomotives and 8 passenger wagons
which are connected to a single continuous unit, resulting
in 10 wagons in total. The last-generation InterCity Express
(ICE) is a German high-speed passenger train which in our
experiment typically contained 8 railmotor wagons (i.e., no
locomotive). Figure 5 depicts models and truck constellations
for these two train types, while Figure 6 shows examples
of the captured vibration footprints and window variance
used for feature extraction, revealing tiny differences: Thalys’
windowed variance peaks in the middle of the train correspond
to single trucks (often referred to as “Jacobs bogies”) between
the wagons; ICE peaks correspond to two adjacent trucks, thus
resulting in slightly wider variance peaks.

The Regio class contains the regional passenger trains that
connect nearby cities within a region, but do not stop at stations

a)

b)

c)

d)

Fig. 5: The four passenger train types in the data set, from
above: a) Thalys, b) ICE, c) Regio, d) CityRail. Note that the
trucks’ locations differ among the train types, with two trucks
for a wagon (e.g. ICE) or one between them (e.g. CityRail),
resulting in characteristic vibration footprints.

0 100 200 300 400 500 600

ac
ce

le
ra

tio
n

va
ria

nc
e

0 100 200 300 400 500

ac
ce

le
ra

tio
n

va
ria

nc
e

Fig. 6: Example plots showing Thalys (above) and ICE (below)
high-speed passenger trains raw sensor data and windowed
variance with extracted peaks. These plots show how different
constellation of trucks produce distinctive vibration footprints
(cf. train models in Figure 5).

in between. Regional trains consist of a locomotive pulling or
pushing a number of bi-level wagons (as shown in Figure 2
and the corresponding model in Figure 5c). In our experiment,
these trains’ lengths were 3, 5, 6 and 7 wagons in total.

The Cargo class has proven to be rather versatile, with one
characteristic feature that all cargo trains have in common:
at least one locomotive is pulling a highly varying number
of wagons. Both the locomotives as well as the wagons
themselves can be of different types (e.g., tanks, containers,
car- or freight wagons), as well as different lengths and truck
constellations. In our experiment, cargo trains had mostly one,
sometimes two, locomotives with a total number of wagons
ranging from 13 up to 43.

The locomotives class was added due to single locomotives
being transferred to another station. In the experiment, 10 such
events have been captured, whereby both single as well as two
connected locomotives have been observed.

The city railway trains (CityRail) connect larger cities with
its suburbs and other smaller towns nearby. The train typically
consists of two electrical units with 4 wagons each (Figure 5d).
The CityRail trains in our experiment were running exclusively
on the separate low-speed tracks.

With this data set, we can now perform an extensive
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evaluation, in which particular focus is given to finding a set of
efficient-to-calculate features that can be implemented directly
on the sensor nodes for on-line train type classification. A
second objective that has been identified as valuable infor-
mation to automatically detect by the sensor network is the
estimation of train length. The following section will present
the proposed features, the classification performance and train
length estimation results.

IV. EVALUATION

This section is divided into three parts. First we present
features that can be efficiently extracted on the sensor nodes
from raw 3D accelerometer data. The second part deals with
the train type classification performance of the proposed fea-
tures, specifically aiming at finding the optimal parameters as
well as the best performing combinations of features. The third
part evaluates how well the train length can be estimated.

A. Features

Aiming at a railway monitoring application which relies
on detecting and classifying passing trains directly at the
sensor nodes, a set of characteristic features that are able to
describe and distinguish various train events is necessary. In
this scenario, train events occur sparsely over the course of
time, so that most sensor data acquired by the sensor nodes
can be discarded as not relevant, when no trains are passing
by. These flat signal sections between train events can be
accurately segmented by utilizing the standard deviation in a
sliding window over signal.

When a train passes by, the sensor node will be able to
detect this event by the changing acceleration values, and due
to the real-time clock also the exact time when the event begins
and ends. From this, the duration of an event can already be
derived as the first feature. When considering the whole event,
the total amount of vibration caused by the train can easily be
computed in an on-line fashion and thus used as a feature.

Visual inspection of the vibration footprints has led to the
assumption that single trucks (containing one or multiple axles)
can be found in the signal. To achieve this, a small window
buffer is used to compute windowed variance from the raw
sensor data (cf. Figure 1) or 6), which can then be used to
derive further features. The number of peaks in the windowed
variance plot is such a feature, which captures trucks and can
be used to count the number of wagons. Since the peaks’
detection highly depends on the width of this sliding window,
it is being considered a parameter in the following evaluation.

After computing the peaks, more information can be
extracted: the amount of vibrations of the trucks through
maximum and average of the amplitudes, truck distances
through the average distance between peaks, variety of wagon
lengths or trucks constellations via variance of peak distances.
Additionally, the overall area under the variance curve, as
well as the average area per peak will be considered. For the
offline evaluation we compute this feature using the Python
scipy.integrate library. Table II summarizes the pro-
posed features that were used in this study.

With this set of features at hand, our interest lies in finding
the appropriate parametrization for the sliding window and
from that the best performing feature combination.

ID Feature Description

0 duration event duration (vibration exceeding a threshold)
1 variance total amount of vibration caused by the train
2 peaks number of peaks extracted from windowed variance
3 max. amplitude maximum peak value
4 avg. peaks average distance between peaks
5 avg. amplitude average peak amplitude
6 area total area under curve
7 avg. area average peak area under curve
8 var. peaks variance of peak distances

TABLE II: Overview of all features considered for train type
classification. During the 5-fold cross validation on the data
set using an SVM classifier, all possible feature combinations
(with a minimum number of three) have been tested, whereby
the features were also computed with a varying window size.

B. Train Type Classification

This section discusses the feature extraction parametriza-
tion, mainly depending on the window size over which the
windowed variance of the raw signal is being computed. Since
the sensor nodes were set to a sampling frequency of 100Hz,
the following range of window sizes was found to be of interest
for evaluation: 12, 14, 16, 18, 20 data points.

For the train type prediction, the versatile support vector
machine (SVM) classifier has been chosen. The feature space
was normalized before being used for the evaluation.

The performance evaluation was carried out through a
stratified 5-fold cross-validation, whereby the size proportion
of the six classes was preserved. The classifier was trained on
4 parts, while one part was left out for testing. Hereby, all
possible feature combinations have been tested (with three as
a minimum features set size), resulting in 466 combinations.
Multiplying this with the range of window sizes, we end up
with 2330 cross-validation runs. Here, we present the cheapest
(regarding the number of features required) best performing
feature combinations.

The classification results obtained during the 5-fold cross
validation were accumulated, and confusion matrices were
computed averaged over the number of folds. Figure 7 shows
the four most illustrative confusion matrices, along with their
parameters, the window size and the set of features.

For the first evaluations with the first three features only
(duration, total variance and number of peaks), the SVM
classifier was able to reach an overall accuracy of 90.78%
for the window size of 18 data points. Adding the maximum
amplitude to the feature set led to an increase of total accuracy
93.62% for the window size of 16. Adding more features to
the set or interchanging them would improve the accuracy in
very little steps, such that many combinations would reach
a classification performance with 136 out of 141 train types
correctly identified (96.45% accuracy). Figures 7a, 7b and 7c
show three confusion matrices with corresponding feature sets
that were able to achieve this high classification performance.

The feature set consisting of feature IDs 1, 4, 5, 6, 7 and 8
(computed from the windowed variance with a window size of
16 data points) has reached the maximum possible accuracy of
97.16%, with 137 of 141 train events being correctly identified.
Figure 7d depicts the confusion matrix for this best performing
feature set and window size.
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(a) ww=14; ftrs=[2, 3, 4, 5] (b) ww=16; ftrs=[2, 4, 5, 6, 7] (c) ww=16; ftrs=[1, 2, 4, 6, 7, 8] (d) ww=16; ftrs=[1, 4, 5, 6, 7, 8]

Fig. 7: Exemplary selection of confusion matrices obtained during the 5-fold cross-validation with the SVM classifier. The first
three matrices show an accuracy of 96.45%, for different sets of features computed on different window sizes. The right-most
confusion matrix shows the feature set performing best, reaching an accuracy of 97.16%.

These classification performance on our data set suggests
that training an SVM classifier offline and implementing it on
the sensor nodes would allow to detect train events, compute
features and predict train types directly at the signal source
with high accuracy.

Predicting the types of passing trains with reaching accu-
racies up to 96% and 97%, would be sufficiently promising
for several applications. Following our scenario, deploying
a sensor network with such a SVM classifier implemented
on each sensor node, it is still possible to improve on the
classification performance. This can be achieved by utilizing
the sensor network’s communication capabilities and let neigh-
boring sensor nodes decide upon the train type by a voting
mechanism amongst classifiers.

After evaluating the train type classification performance
with features, the following section will give insight on how
well the train length estimation worked.

C. Train Length Estimation

To estimate the train length, we primarily rely on counting
the number of wagons in the trains. This can be achieved
by using the already introduced feature “number of peaks”
as a basis. Additionally, using the train type obtained from
the previous estimation step is used as a prior. The wagon
count can furthermore be improved by a comparison and voting
procedure amongst neighboring sensor nodes on the same
railroad track.

Besides using the raw signal and computed features, it is
useful to include inherent model knowledge about the train
type constellations: The ICE and Thalys high-speed passenger
trains as well as the CityRail trains consist of specific wagons
only (locomotives are built-in or the wagons are motorized
themselves). Regio trains consist of varying amount of wagons
with a separate locomotive. While with these trains the axles
constellations are fixed due to defined sets of wagons, the cargo
train class poses a much higher variety: wagons with single,
double and triple axles per truck, wagons of different lengths,
and varying load are possible.

Using the annotations from the video footage as ground
truth (number of wagons) and the number of peaks extracted

Window Overall Regio CityRail Cargo Loc Thalys ICE

12 28.14 11.78 1.87 78.95 7.30 4.00 2.00
14 10.33 4.65 1.00 27.95 2.60 3.56 0.20
16 4.02 2.84 0.27 8.74 2.20 2.33 0.00
18 3.98 2.89 0.33 8.87 1.20 1.44 0.60
20 5.62 2.43 0.20 14.28 1.00 6.56 2.00

TABLE III: Mean-squared error of the estimated train lengths
for the whole data set and per class. The window size has a
huge impact on the quality of the estimation. Overall, window
size of 18 performs slightly better than a window size of 16.

from the windowed variance, we use their difference for
performance analysis. Since the peaks correspond to the trucks,
the number of peaks usually is by 1 more than the amount
of wagons in the train. This deviation of 1 can be visually
recognized in the box plots shown in Figure 8. In addition,
we compute the mean-squared error for the whole data set as
well as for each individual class (see Table III), whereby the
deviation has been accordingly taken into account.

For a more concrete example, let us consider a regional
passenger train with 7 wagons (including the locomotive). For
this train, the peak detection algorithm extracts 8 distinctive
peaks (cf. Figure 1). Hereby we observe that the first peak
belongs to the first trucks (double axles) of the first wagon, the
following 5 peaks belong to adjacent wagon trucks (two times
double axles for passenger wagons), and the last two peaks
represent the last wagon and the locomotive (which has triple
axle trucks that can not be distinguished in the signal with the
fixed window size). Due to Regio trains’ variety in length (3,
5, 6 and 7 wagons including one or even two locomotives) and
their varying speed when passing by the sensors, the relation
of wagons to the number of peaks tends to highly deviate as
well as show lots of outliers (Figure 8a).

The window size to compute the windowed variance from
raw sensor data has a significant impact on the peak detection.
On the other hand, leaving the window size fixed at the best
performing size of 16 data points (for classification and length
estimation) would deteriorate the system’s performance, as a
fixed window size for a fixed sampling rate of the sensor node
leads to the issue of not being speed independent.
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(a) Regio trains with varying length and
speeds result in high deviations and outliers.
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(b) CityRail trains’ trucks can be quite accu-
rately detected with window size of 16 & 20.
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(c) Cargo trains’ variety in number and types
of wagons results in high peak count variance.
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(d) High variance for single locomotives due
to locomotive type, axles configuration, speed.
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(e) Thalys trains trucks between wagons can
be best detected with a window size of 18.
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(f) ICE trains double-axles trucks per wagon
are optimally detected with a window of 16.

Fig. 8: Differences between the real number of wagons and number of peaks computed from the windowed variance for each
of the six train classes. The number of peaks and therefore the accuracy of the wagons count depends on the size of the sliding
window and the train speed. From these results, window sizes of 16 and 18 data points are performing best for counting wagons.
This is verified by the overall minimum squared-mean error of approximately 4.0 shown in Table III.

V. DISCUSSION AND OUTLOOK

This section discusses the evaluation results and will point
out particularly interesting findings for the underlying scenario.

First, good train type classification results (up to 97% accu-
racy) could be achieved on our data set with proposed features.
During the evaluation, suitable window sizes (16 data points)
both for type prediction and train length estimation could
be found. Better performance in this regard can be achieved
through implementing distributed voting among neighboring
sensor nodes inside the sensor network. This would allow the
sensor nodes to compare decisions and remove outliers.

Estimating train length with a fixed window size bears the
problem of not being speed independent. In case of a very
slowly moving train, which is very likely to happen and has
also been observed in our data set, the fixed window will lead
to detecting separate axles instead of trucks, resulting in a com-
pletely misleading peak count. One possible approach to tackle

this issue would be the introduction of a variable window size.
This would, on the other hand, lead to a more complex feature
extraction routine and result in more computation on the sensor
node and therefore in a higher power consumption.

Besides the problems addressed in this work, the recorded
data set allows to extract much more information useful for the
railway monitoring scenario. Estimating train speeds belongs
to this category of very useful details and can be achieved
with multiple sensors placed at a predefined distance which,
in our experiment, was 10 meters. Detecting a passing train on
two sensors and then computing the time delay between event
arrival seems to be an easy and reasonable approach. For this,
time synchronization inside the sensor network is important,
but can be nowadays considered as a solved problem. An
example for the feasibility is shown in Figure 9: vibrations
caused by a passing regional passenger train are captured by
two sensors in 10 meters distance from each other. By aligning
these raw sensor data in time, the delay became visible.
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Fig. 9: Two sensor nodes showing the vibrations footprint
caused by a passing regional passenger train. Knowing the
distance between the sensor nodes (10m in our deployment)
and the time delay of the event between two sensors (markers
in the plots) will allow estimating the train speed.

Fig. 10: The sensor nodes have picked up extreme impacts
(large peaks in raw data and variance plots) from a passing
cargo train, caused by a defect wheel that is not completely
balanced due to wear during braking. Since these wheels could
cause damage to rails, rail bed, and the wagons, detecting such
events automatically would be of significant interest as well.

Another very promising application for such a sensor
network would be the detection of worn-out or defect wheels.
Figure 10 shows data from two sensors which have picked up
extreme accelerations caused by a passing cargo train. These
extreme amplitude peaks in the raw sensor data are most likely
caused by worn wheels (having lost their roundness due to
abrasion caused by blocking when the train breaks). These
worn-down wheels could cause damage to rails or rail bed, as
well as the wagons themselves, thus making the detection of
such events particularly interesting.

VI. CONCLUSION

We evaluated the suitability of a sensor network consisting
of tiny, inexpensive sensor nodes for a train monitoring appli-
cation. It relies on sensor data from 3D MEMS accelerometers
that are able to capture vibrations caused by running trains. To
enable in-network event detection and train type classification,
we have proposed a set of features that can be computed
efficiently and in an on-line fashion directly on the sensor
nodes. After deploying the sensors at railway tracks, recording
a real-wold data set and video footage for annotation purposes,
we conducted an evaluation of the proposed features. Using an

SVM classifier, the feature set (1, 4, 5, 6, 7, 8) and the window
size of 16 data points were found to produce optimal results
for this data set. The SVM classification performance reached
97% accuracy. The length estimation performance accounted
to 3.98 mean-squared error for the whole data set.
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