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Abstract. Designing and installing long-term monitoring equipment in
the users’ home sphere often presents challenges in terms of reliability,
privacy, and deployment. Taking the logging of sleeping postures as an
example, this study examines data from two very different modalities,
high-fidelity video footage and logged wrist acceleration, that were cho-
sen for their ease of setting up and deployability for a sustained period.
An analysis shows the deployment challenges of both, as well as what
can be achieved in terms of detection accuracy and privacy. Finally, we
evaluate the benefits that a combination of both modalities would bring.
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1 Introduction

Long-term monitoring of users at home has been the focus of many recent stud-
ies. The applications that are argued for in research often tend to be medical in
nature, such as the support for elderly care with systems that observe activity,
fitness, and distinct events like falls. Other work targets a wider audience with
context-aware home environments that display and activate services in appro-
priate situations, such as ubiquitous displays [§] or smart appliances [10].

Sleep posture logging and analysis is part of an emergent field in sleep monito-
ring research, with patients in professional sleeping laboratories being monitored
by infrared cameras and a chest-worn tilt measurement unit. Sleep postures has
been identified as a key factor in a variety of scenarios, including personality
evaluation [2] and obstructive sleep apnea [9]. This scenario will be used here
as a case study for long-term domestic monitoring systems, where the sleeping
postures of the user will be detected by a system that remains running for a long
period, from weeks to years of continuous operation.

The emphasis in this paper is put on how the modality of the sensed data
affects the performance of a long-running system that is supposed to monitor the
user in her domestic environment. This set of broad requirements tends to bring
in several challenges that researchers are facing when deploying such systems.
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2 Sleep Monitoring at Home

1.1 Challenges

We argue that three challenges in particular are important to observe in long-
term deployments in domestic environments. These three will be used to frame
our evaluation and discussion in the remainder of the paper:

Reliability is in general a concern for most monitoring systems; for those that
are supposed to run over longer time spans (from months to even years), this is
even more of a challenge. The system not only has to keep running, it also has to
perform and keep an accurate detection of the phenomena to be monitored. The
presence of noise and irrelevant data, as well as limitations on the sensor’s behalf,
mean that a perfect capturing of the phenomena is often impossible to attain
out in real-world deployments. This for instance will become clear in our sleep
case study, where direct video footage is often covered and body-worn sensors
cannot be worn in the most optimal places (chest or back).

Privacy is another factor that becomes pressing as larger sections of our lives
are recorded. As the sensors can pick up more detail and cover more in both
time and space, their data become more sensitive and should be safeguarded,
and designing the system should very much take this into account. For the case
study of sleep posture logging, the sensor could automatically record and reveal
any activities related to the user’s bedroom environment, which is together with
the bathroom a most sensitive place in the home [5].

Deployment of the monitoring system needs to be easy and modular, so
little time is spent on installation and moving the system from one environment
to another does not bring along a costly installation procedure. Dependability
and usability of the system also belong in this category (e.g., not having to
frequently reboot or maintain the system, or avoiding failures in critical medical
applications). In our case study, the recording system needs to remain active for
at least several hours per day, and this without intervening much in the user’s
daily life (as frequent battery changes or system interaction would cause).

1.2 High-fidelity versus low-fidelity sensors

The two types of modalities that are studied in this paper also emphasize a
trade-off between good sensor modalities from the point of views related to a
detection and monitoring, privacy, and reliability.

The stronger, high-fidelity sensors tend to produce rich information at a
high rate so that monitored phenomena are captured in detail. As a result,
high accuracy, precision, and recall figures are feasible. Often, maintaining this
system is harder and the data is, especially in home environments, sensitive in
nature. Video footage of the user’s bedroom is by far the best sensor data to
observe sleeping postures, but as it is also placed in one of the most sensitive
environments, few users would actually permit installation. Keeping a video
system running also tends to require more maintenance and bulkier hardware.

The weaker, low-fidelity sensors on the other hand often are associated with
less privacy concerns. This comes at the price of less detailed data being captured
however, with a significant amount of uncertainty being present for the analysis
algorithms to handle. These sensors produce less data that are harder to mine.
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1.3 Paper overview

The contributions of this paper are threefold. An evaluation of all feasible sce-
narios is carried out to find the most workable solution to capture, process, and
log images from sleeping postures. Two studies then investigate how well both
types of sensors on their own would work in terms of accuracy when deployed in
a domestic setting, and assuming they are trained by the user. Finally, a combi-
nation of both modalities is proposed and an experiment is described to indicate
under which parameters this combination would result in a better system.

This paper is structured as follows: First, the case study of sleep posture
detection and logging is presented as an illustration for the type of long-term
domestic monitoring task we pursue in this paper. Then, video footage and wrist
acceleration are presented and analyzed on their individual merit for the purpose
of sleep posture monitoring. Section 5 will then offer the combination of these
two as a better alternative and studies associated trade-offs. The last section
will finally present our conclusions and point to future and ongoing work.

2 Case study: sustained logging of sleep postures

The posture in which we sleep can have a large effect on the quality of sleep,
with research [4] looking at sleep postures as one of the main pieces of informa-
tion to record in studies. Patients with obstructive sleep apnea, a sleep disorder
characterized by pauses in breathing during sleep, should avoid sleeping on the
back, and are strongly encouraged by sleeping laterally (on one’s side). Other
research [7] correlates usual sleep postures with a person’s personality profile.

There are several types of postures that are of interest in the aforementioned
studies: Medical articles mostly investigates the lateral (lying on the left or
right side), supine (lying on back), and prone (lying on chest) sleep postures.
Other studies take a more detailed look at the full body and follow a different
naming convention for common postures such as foetus, soldier, or starfish. Some
examples for both are depicted in figure
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Fig. 1: Some common sleeping postures (reprinted from [2] with permission from
Prof. Idzikowski from the Edinburgh Sleep Centre.)

Sleep postures are therefore not only important indicators to watch for a
typical one-to-two-night study, having a longer record would mean that trends
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could be observed and correlated to daily activities and habits. In the following
sections we will discuss two methods to capture these sleep posture trends.

3 High-fidelity data: IR video footage

Videometry is a fixed part of every cardiorespiratory polysomnography, which
is the central measuring method of stationary diagnostics in sleep laboratory
[11]. However, in most cases the posture is measured by tilt sensors, which are
worn on the chest. The data from the night vision camera is used redundantly
to monitor the patient. Although this is currently not done, this video material
could be used to automatically detect the posture of the patients.

The reliability of performing (semi-) automatic posture analysis can be ex-
pected to be quite high. The resolution and camera angle can be optimally
chosen for covering the user’s full body, and state-of-the-art cameras are widely
available with built-in IR lighting that is strong enough to reach an entire bed.
The straightforward approach taken in this paper is based on having enough
personal training data, but other approaches in pedestrian pose recognition [I]
could be employed for immediate deployments.

The privacy aspects of video footage are not as good as for other polysomno-
graphic data sources. The pictures, respectively videos, of the patient’s sleep
are highly personal and tend to be a major concern of patients, even more so
than the other data recorded by polysomnography since that requires additional
analysis and interpretation. In the sleeping laboratory, the privacy of the video
data together with the recorded sensor data is determined by local policies and
regulations. For a deployment at home such regulations in terms of a privacy
policy are mandatory.

Videometry is in general easy to deploy and maintain, since video cameras
can be wall-powered in the sleeping environment. Another fact that makes video-
metry relatively easy to deploy is that the video camera is independent from the
patient, unlike other sensors that are being worn by the patient, and that due to
the patient’s motion during sleep tend to be affected. In our research a mounted
camera and a recording medium are needed, and a wide selection of both is
available as standard components.

3.1 Implementation

Physical setup Our prototype for recording videographic data consists of a
night vision camera and a stand. The camera is a commercial product with built
in IR-LEDs and a pan-tilt camera head. The lightweight stand that supports
the camera is capable of positioning the camera above the subject, so that at
least the subject’s head and chest area (see figure [2)) can be recorded in detail.
This particular camera is capable of different communication channels. Its in-
terface can be accessed either by LAN or WLAN with WEP, WPA, or WPA2
encryption. The video data can also be stored via USB mass media, or via video
streaming over LAN, WLAN, or BNC. We will discuss some possible communi-
cation strategies in section [3.2]
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Fig. 2: Components for the video modality

Posture detection To detect the patients’ postures, we are using a semi-
automatic procedure. As we are operating on images recorded by the night vision
camera, the challenge of the procedure is to extract those images, which mark a
new sleeping posture by pruning images automatically in three steps followed by
a manual analysis of the user. Thus the procedure is subdivided into four steps:

1. Automatically reducing the number of images by limiting the camera’s frame
rate to 1fps. This can be done without loosing important information, be-
cause we want only to detect sleep phases, that are lasting longer than a few
seconds.

2. Automatically reducing the number of images by using the camera’s built-
in motion detection algorithm. To ensure 100% recall the threshold of the
motion detection algorithm is lowered as much as possible. This causes a
comparatively high false positive rate, but reduces the false negative rate.

3. Automatically reducing the number of images by applying an averaged image
differences algorithm (ADIA) on the remaining images. The algorithm is
described below.

4. Manually pruning false positives from the remaining images by the user on
the automatically reduced image set.

The averaged image differences algorithm (ADIA) works on the differences
between successive images. It can be subdivided into three steps:

1. Calculate the differences of the successive images. We only store the average
number of differing pixels, which is calculated as follows:
sum

<ad= <1 1
O<a width * height * depth x num_channels — (1)

where sum is the sum of all pixels for every channel. The averaged difference
for every pair of successive images is stored in a vector ads.
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2. The vector of averaged differences is then mean filtered with a dynamic
kernel size. A size of one percent of the total vector size has shown to be
working well. While changing a posture we typically detect heavy variation of
the averaged differences. By mean filtering ads we can reduce this unwanted
behavior.

3. To detect posture transitions, we threshold the filtered vector ads and extract

the falling edges to ensure that we select images that differ enough from each
other. The threshold is calculated as the arithmetic mean of the vector of
averaged differences.
Next, the image is determined were the motion has settled down and the
postures are “stable”. It turned out that the images, which correspond to
the next local minima after falling edges in ads are appropriate for this
procedure. The new posture starts in the vicinity of the last local maxima
before falling edges in ads.

The images which correspond to the local minima are shown to the user who
then annotates these images. If the posture has changed compared to the last
identified posture, we store the last local maximum as a starting point.

3.2 Analysis / Experiments

Privacy and deployment Security is a fundamental concern, especially due
to the personal nature of the recorded video data. Therefore, we introduce five
possible scenarios for collecting the data and discuss their advantages and dis-
advantages. The analysis is subdivided into three parts: configuration, recording
and transfer. The configuration comprises the user’s setup of the camera which
consists of the configuration of the recording scope by panning and tilting the
camera’s head. This can be done only by accessing the camera via the pro-
vided web interface and therefore requires a connection via LAN or WLAN. The
recording part consists of the storage for the pictures or video material on an ex-
ternal device (via the built-in USB port or by accessing directly the video stream
of the camera via LAN or WLAN). The transfer part comprises the transmission
of the recorded visual data from the storage medium to a computer, where it
can be post-processed. The different scenarios are depicted in figure

The data has to be securely transferred due to the personal nature of the
recorded data. In scenario 4 data is recorded via an ad-hoc connection. The
camera’s software is only capable of transferring data with WEP encryption in
ad-hoc mode. As WEP encryption is highly insecure [12], scenario 4 is dismissed.
Another important factor is that a person’s sleep should not be influenced by
the used equipment to ensure an usual sleeping environment. Scenario 2 and 4
contradict this assumption since a wireless connection would disturb a person’s
sleep due to radiation from a wireless connection [6]. Besides this fact the relia-
bility of the overall system is increased by using a wired connection in contrast
to the more failure-prone wireless connections. Scenarios 1, 3 and 5 differ only
in the configuration part. In scenario 1 a secure WPA2 encrypted connection is
used. However this depends on an additional WLAN router. This router is not
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Fig. 3: Video capture scenarios

needed in scenario 3, where the camera is configured via an insecure WEP en-
cryption. In scenario 5 no WLAN router is needed at all and the security factor
can be dismissed here. However, this scenario depends on a cabled connection,
which requires a nearby PC or laptop.

As already mentioned, security is crucial and an additional WLAN router
would be far more complex than using a simple cabled connection, reducing the
required hardware to a minimum. With scenario 5 the subjects will consequently
be confronted with the fewest inconveniences. Trust in the setup is increased by
the fact that the camera is physically disconnected from any network connection
during recording.

Prototypical implementation To test the described algorithms we have im-
plemented a prototype. Figure [da] shows a screenshot of the prototype with an
already tagged dataset. The postures are described by the colored areas in the
plot. We have tested the prototype on three datasets which where recorded on
different nights. The number of false positives were determined immediately af-
ter recording (phase 1), the built-in motion detection algorithm (phase 2), ADIA
(phase 3) and the manual pruning of the user (phase 4). The reduction of the
false positives to zero is depicted in figure [4b]

Many of the false positives after running ADIA on the images result from
heavy motion without changing posture. To automatically eliminate those false
positives a highly sophisticated algorithm would be needed. Due to the low
number of false positives, it is not necessary to implement another algorithm
which can detect the postures automatically. Because the recorded scenes vary
heavily for different users, it is doubtful that an algorithm can automatically
detect the postures reliably for every user. There are some promising research
results in sleep posture detection [14].
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Fig.4: GUI and reduction of false positives.

The implemented algorithm ADIA deteriorates on changing light conditions.
The number of false positives raises when the illumination of the recorded scene
is changing fast. This behavior can be observed e.g. on cloudy days after dawn.
Another problem arises from sleep postures which cannot be visually detected
because the blanket is covering the complete body.

4 Low-fidelity data: Wrist-worn accelerometer

Actigraphy devices are traditionally used for monitoring sleep disorders out-
side sleeping labs, as they detect movements which are used to infer sleep/wake
patterns and quality of sleep. Here, we use an actigraph-like device with a 3D
accelerometer instead which can also record postures.

Unlike the video camera of the previous section, this sensor modality is a lot
weaker and therefore the detection reliability can be expected to be lower. The
3D accelerometer allows to detect various fine-grained orientations and can be
read a relatively high frequencies (typically 100Hz or more). However, as this
device is worn at the wrist, a correlation between wrist- and body posture is
assumed. An indication for this can be found in [I3], where a wrist-worn tilt
sensor was successfully used to extract sleeping data and sleeping postures.

The data is stored directly on the sensor unit, and therefore this approach is
not as sensitive as wireless monitoring. Also, the data is not immediately human-
readable. However, privacy issues still remain when the device is handed over or
the data is uploaded into a central system.

The sensor unit is designed to run over long periods of time and continuously
without user interaction and therefore is relatively easy to deploy. Although cur-
rent implementation of the prototype requires that users take off the sensor be-
fore showering or swimming, the device needs minimum maintenance compared
to the video modality.



Lecture Notes in Computer Science: Authors’ Instructions 9

4.1 Implementation

The sensor unit is worn by the user at the dominant wrist. Before the sensor unit
is handed to the user it is fully charged and switched on to record accelerometer
data. The user is not concerned about recharging it or restarting the sensing
mode. Should nevertheless the sensing unit not perform appropriate would this
be observable after the sensing unit was given back by the user. As already
mentioned, the current design of the sensor does not allow to be used with
water.

The sensor unit is equipped with a 3D accelerometer and captures data at
100Hz, storing it on a 2 GB SD card. The sensor board is powered by a lithium
battery and lasts for almost a month when used only in accelerometer mode.
The board can be equipped with even more and especially different sensors (e.g.
temperature and light), but currently only the accelerometer is used. Such a set-
up is very cost-effective and can be deployed easily. The program running on the
sensor board is very power-efficient for the hardware since data is only stored
when necessary and equal sensor readings are enumerated and stored with the
counter to the memory.

After the sensor board was given back by the user the data is analyzed. Night
segments are being extracted by calculating the variance in the accelerometer
data over a window of one minute. For that a threshold ¢ is set that detects
movement against non-movement by marking a window sleeping whenever the
variance is below t.

The residual data consists of values that describe a persons postures. These
values remain constant over a longer time span and characterize a certain pos-
ture. We want to detect these postures and describe our approach in the following
section.

4.2 Analysis / Experiments

Experiments were conducted with one test subject who wore the sensor at the
dominant wrist for five nights. For initial examination the recording started one
hour prior and stopped one hour after sleep. To display how well postures can
be detected, three different cases are described.

Case 1: artificial data set The first case uses an artificial dataset to detect
different postures. The artificial dataset is obtained by lying for ten seconds in
the postures left-, right lateral, supine and prone each time before sleep.

The posture estimation is shown in figure The ground truth with the
estimation of the postures is shown in the top plot. For case 1 we will focus
on the artificial set, the other two sets will be explained in the following parts.
By visual inspection it is evident that posture changes are detected accurately,
whereas the posture itself has been detected poorly. A few overlaps in ground
truth and estimation of the posture are visible.

Precision and recall for the postures are in the range of 62% and 35% re-
spectively (see figure @, left plot). Remarkably, the detection of the right lateral
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posture exhibits a recall of 95% and a precision of 53%. The false positive rate
for the other postures is very high and can be explained by the fact that each
posture is not represented by the value obtained from the artificial dataset. Due
to the spontaneity of a person’s positioning during sleep it is almost impossible
to simulate an accurate artificial dataset. The position of the wrist during a pos-
ture while sleeping varies frequently, resulting in different accelerometer values.

ground truth || Il I BN Bl e
artificial set [ I O [ |

1 training set NN~ NN 0 O

4 training sets § i) TR T B I

Fig. 5: Detected postures with increasing amount of training sets.

Case 2: 1 training set To compare the first case to a different approach,
in the second case a k-nearest-neighbor (KNN) classifier is trained on one night
only. The classifier is then tested on the four other nights and compared to the
ground truth. This procedure is repeated for each of the 5 nights.

The visual results are shown in figure [5| described by the one day training
set. In contrast to case 1 the results of detecting posture changes and the posture
itself improved. Overall a precision of 48% and recall of 83% are obtained. Pre-
cision dropped in contrast to case 1 but note that recall increased (see figure @
middle plot). A classifier was obtained by training on one night only. In theory
a person takes in only characteristic postures, limiting the amount of postures
of a person [4]. Therefore the number of training datasets (or nights) has to be
sufficient to gain a classifier that covers all possible postures.

Case 3: 4 training sets Finally in the last case a KNN classifier is ob-
tained by training with posture labels and accelerometer data using 5-fold cross-
validation, where one fold corresponds to one night. The difference to case 2 is
that the classifier is trained on four datasets.

The results are summarized in figure [5] showing again an improvement of
detection of posture changes and the estimated postures, almost overlapping
with the ground truth. Notice that in contrast to the previous plots of case 1
and 2 no unclassified posture is detected, leaving no whitespaces in the plot.
By training a classifier on more than one night the precision is increased to
88%, whereas recall stays steady in the range of 80% (see figure |§|, right plot).
Using only an artificial dataset is not feasible due to user-specific postures and
is therefore not further followed.
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4.3 Combining both modalities

We have shown that both systems can be operated individually to detect sleeping
postures. We have found that, as expected, the video footage is superior to a
wrist-worn sensor in terms of detection reliability, since its data contains more
details on the sleeping posture, assuming that the user prunes the system by
sorting out false positives manually after each night. This is first and foremost
feasible since the camera’s output can be directly interpreted by the user. The
wrist-worn sensor on the other hand operates on its own without the need of
installing environmental devices and without capturing data as sensitive as video.
Although a full study still remains to be performed on the privacy issues of
this paper’s particular wrist-worn sensor, we can deduce from similar devices,
actigraphs, that they bring along far less privacy concerns compared to video
footage.

By combining both modalities into one, we can overcome the limitations of
the individual parts: In the combined system we propose to use the visual data
to obtain ground truth, which is then used to train the wrist-worn sensor unit
for multiple nights. By following this approach, we improved for the earlier men-
tioned dataset the overall detection rate to over 80% in both precision and recall
by only training the wrist-worn sensor units on the data from four nights (see
figures @ This approach maintains the privacy of the wrist-worn sensor unit
by using the inertial posture data for detecting the subjects sleeping postures,
and storing this information alone. The data of the camera can be immediately
discarded after usage in the training phase, which can be done at the user’s
home without involvement of third parties. The video data is thus accessible
only by the user, thereby reducing the privacy concerns of the overall system
to the wrist-worn sensor unit’s privacy issues. The price to pay for these two
advantages are (1) a slightly degraded applicability, due to the deployment of
the video system and the fact that the inertial data has to be downloaded after
each night for the duration of the training phase, and (2) the video-based privacy
issues remaining during the training phase as well.
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As the main weakness of the combined system is the training phase, it is
important that this lasts as short as possible. To investigate how many days
are needed to obtain an acceptable precision and recall for each posture, we
increased the number of training nights in the cross-validation.

Figure [7] shows the given training sets’ results for the right lateral posture:
recall and precision are increased from 77% to 84% and 72% to 82% respectively
by using two training sets instead of one only. Both are improved by four training
sets, leading to a recall of 97% and a precision of 84%. We conclude that one
training set is not sufficient to detect the postures appropriately, but a training
set of four is leading to an overall precision and recall of over 85% respectively.
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Fig. 7: Precision and recall for right lateral: more training nights improve the
recognition.

5 Conclusions

This paper reported on our efforts to design a domestic sleep posture monitoring
system for long-term deployment, which allows sleep researchers to track their
patients outside the laboratory. We argued that the long runtime and the home
environment make for a difficult design: We identified three challenges that such
a system must meet, and used these as a framework to describe and analyze
two sensor modalities: video monitoring of the sleeping user, and a wrist-worn
accelerometer logger. Through several studies, we have explored how well these
fare on their own, and proposed finally a multi-modal solution that uses both in
a system that reduces all challenges.

By combining video information and sensor data we obtained precision and
recall of over 80% respectively which are promising results for long-term stud-
ies. The setup is easy to deploy and requires only little user interference, which
increases the acceptance on the persons’ side. Such a system provides a poten-
tiality for the use in sleep studies where patients suffer from for example sleep
apnea and have to be monitored in their usual environment.
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Further experiments over more nights have to be conducted to confirm our

findings. The sensor modality is continuously improved to make it more energy
efficient and thereby enhancing recording time for long-term experiments. We
are also researching on a full automatic posture detection by using only the
video modality. In our approach we follow the procedure, which is used to detect
people in [3].
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