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Abstract—The experience sampling methodology is
a well known tool in psychology to asses a subject’s
condition. Regularly or whenever an important event
happens the subject stops whatever he is currently
involved in and jots down his current perceptions,
experience, and activities, which in turn form the basis
of these diary studies. Such methods are also widely in
use for gathering labelled data for wearable long-term
activity recognition, where subjects are asked to note
conducted activities. We present the design of a per-
sonal electronic diary for daily activities, including user
interfaces on a PC, Smartphone, and Google Glass. A
23-participant structured in-field study covering seven
different activities highlights the difference of mobile
touch interaction and ubiquitous voice recognition for
tracking activities.

I. Introduction

Ecological Momentary Assessment (EMA) [1] is a type
of psychological study design concerned with the sampling
of experiences throughout the course of a day. In contrast
to study designs like End-of-Day diaries, EMA designs
are less prone recall, recency, peak and summary bias
[2]. Mainly because the sampling happens on a regular
basis by the use of electronic diaries. These can be ei-
ther watches, palm computers, Smartphones or any other
mobile computing device, which remind the participant
that an input is necessary. This ”manual” sampling of
experiences/activities is dual to gathering self-reported
ground truth for wearable activity recognition systems.

Wearable activity recognition with the goal of detecting
for example leisure activities [3] or certain habits [4], can
serve as triggers for feedback in EMA study designs and re-
place regular sampling. However, during the validation and
training phase of a wearable activity recognition system a
sample for each detected activity is necessary for semi-
supervised approaches [5]. Similar to the regular sampling
in an EMA approach, this has to be done manually by the
participant. Depending on the complexity of the detected
activity the system needs to be retrained and ground
truth resampled for each user. This kind of interaction
loop is depicted in Figure 1. Interaction with a mobile
phone provides the labelled data for an activity recognition
on wearable sensor data, which in combination give a
momentary activity assessment. One important aspect is
the design of the mobile interaction in order to minimize
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Fig. 1. An interaction loop aiming at tracking/assessing a user’s
activity. The explicit interaction with a mobile phone or wearable
device needs more effort than the implicit tracking by wearable
sensors. However, since the explicit interaction is more exact it lends
itself as ground-truth for detecting activities automatically from
wearable sensors.

the overhead of gathering activity annotations, as well as
the technical design of data collection and management.

The approach of letting users annotate their data them-
selves during a study has been proposed by Bao et. al. [6].
Using a paper-based approach they were able to show the
feasibility and comparable performance of activity recogni-
tion based on this user-provided ground truth. Considering
body-sensor networks it has been shown [7] that gathering
user annotated data over a long-term with a Smartphone
is feasible. And that a semi-supervised activity recognition
approach, in which only sparse annotations are used, can
lead to practical results [8].

In this paper we present a system to explore the possi-
bility of using a Smartphone and Google Glass to record
the ground truth for wrist-movement data gathered with
the HedgeHog [3] sensor. The system does not only record
the manually entered ground truth but can also serve as
a hub for the recorded sensor data from a Smartphone,
Google Glass and HedgeHog unit. We hypothesize, that
due to a smaller interaction time, an interaction based
on an always-ready head-worn display and voice input
is preferred over touch interaction on a Smartphone for
”manually” recording activities, especially for activities
which require the user’s hands to be completed. A struc-
tured in-field user study with 23 participants shows that
this hypothesis does not hold in this generality.
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Fig. 2. Overall system architecture of the system. Smartphone and
Google Glass are connected via Bluetooth to synchronise interaction
events, letting the other device know that the user started or stopped
an activity. Sensor data is aggregated and merged via timestamps on
the webserver (through Wifi or USB).

II. Design and Implementation
The system we designed can be coined as a personal

activity recognition tool (PART). Similar to a PC-based
activity tracker application, in which current activities
are manually tracked by marking their start and stop
times, a PART allows for the same type of interaction but
additionally controls available worn sensors and records
their data. This optional manual marking of activities and
automatic recording of sensor data allows to train activity
recognition algorithms (e.g. [8]) on the worn sensors. This
creates a loop as depicted in Figure 1, where the PART is
used to automatically detect the context of its user after
manual marking of activity instances.
A. Interaction

Three functions are supported by the PART system:
starting, stopping and choosing an activity. An activity is
defined as a string defined by the user, like walking, sitting,
cycling etc.. These strings or labels can be defined by the
user either through a web-, touch- or speech-interface on
a PC, Smartphone or Google Glass.

The web-interface is optimized for a PC-based interac-
tion, i.e. point-and-click with a mouse and keyboard. It
displays the raw sensor data which has been gathered,
together with the timeframes of the marked activities. Fur-
thermore the activity labels can be moved, resized, created
and deleted after a recording session. This allows to review
activity labels later on, for situations where labelling could
not be achieved or has been done imprecisely on purpose,
for example using a Smartphone prior to washing hands.

The Smartphone interface, which has been optimized
for touch interaction is depicted in Figure 3. Similar to
the web-based interface it allows to add new activity
labels and, depending on the screen size, displays at least
five buttons which toggle the recording of its respective
activity. Additionally, to pushing the buttons, activities
can be toggled by swipe gestures, from the midpoint of
the display to the direction of each button, which allows
for less exact interaction compared to pushing a button.
The application can either be accessed directly, as a widget
on the homescreen or on the lockscreen. Activities can also

be started/stopped through the same voice commands as
used on Google Glass: ”I am [x]” and ”I stopped [x]”, where
[x] denotes labels like ”sitting down”, ”brushing my teeth”,
”washing my hands”.

While the system on Google Glass supports the same
voice commands to start and stop activities its graphical
user interface is completely different. Even though it is
in principle possible to run the same application on both
an Android Smartphone and Google Glass, we decided
for two applications to support the input modalities of
both devices properly. For Glass this means that mainly
voice input is to be supported, an activity can be started
with the ”I am” command and displayed as in Figure 3.1.
After selecting the specific activity Figure 3.2 is displayed
to show the user the current activity. Whenever the user
wakes up Glass again, the activity can either be stopped
via voice command or by tapping the touch-sensitive part
of the device. All actions started with voice commands can
also be achieved through touch interaction.

In total a user is presented with six different input
modalities on three devices. Point’n’Click can be used
on the web-based application. The Smartphone supports
touch interaction, drag interaction and speech recogni-
tion and Google Glass supports touch interaction and
speech interaction. From an interaction effort point of
view, speech recognition together with feedback on the
displays is the only interaction type which does not require
using ones’ hands and therefore provides hands-free mobile
interaction.

B. Synchronization
Since multiple devices are forming the system, syn-

chronization of both interaction and sensor data is an
important aspect. Fig. 2 depicts the connections of all com-
ponents of the system. Google Glass and the Smartphone
are connected via Bluetooth, for exchanging information
about started and stopped activity, i.e. an activity can be
started on the mobile phone and stopped on the Glass or
vice versa. Additionally, the logging process is started on
all devices when at least one activity is being recorded.
The HedgeHog, i.e. a watch-like accelerometer logger, is
running continuously. Sensor data is aggregated whenever
a recording session (or by user choice) is terminated.
Google Glass and the Smartphone automatically upload
their sensor data to a central server under a given user
identification. The HedgeHog data needs to be manually
uploaded by visiting the web-application and uploading
files found on its USB mass-storage emulation. The data
from all devices are merged by their global timestamp,
which requires that the clocks of all devices are syn-
chronized. For the Smartphone and Google Glass this is
achieved through their Bluetooth connection. However,
since the HedgeHog does not have any wireless connection,
its clock can only be synchronized when connected via
USB and therefore the synchronization resolution is lim-
ited by the respective clocks’ drift. Such a kind of data syn-
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Fig. 3. User interfaces on the Smartphone and Google Glass. Both can be accessed via voice and touch interaction.

chronization allows the user to switch seamlessly between
his preferred interaction modality (voice vs. touch, Glass
vs. Smartphone vs. PC) and to record sensor data from
multiple wirelessly connected and unconnected devices.

III. Experiments
A system like PART, which automatically detects the

user’s current activity, should require no explicit interac-
tion to be most useful. However, to bootstrap or personal-
ize activity recognizers at least a few explicit interactions
are necessary, i.e. a few instances of to be recognized ac-
tivities need to be manually marked. This in turn requires
that marking these activities can be done as quickly and
accurate as possible. We conducted a study to test the
following two hypotheses: (1) given a shorter interaction
time (due to not having to take out the Glass), user will
prefer Google Glass for marking activities and (2) hands-
free operation (i.e. voice input) is preferred for activities
that require the hands to complete.

A. Study Design
For this we asked participants (10 female, 13 male, aged

22-33) chosen from the vicinity of the authors to perform
7 activities (Table I) in random order and use whatever
input modality they prefer to mark the beginning and
end of those activities. All participants were introduced
thoroughly to each input modality on both Google Glass
and the Smartphone. After this introduction, the partic-
ipants were given one hour to perform all activities at
least once. During the course we logged which interaction
has been used, and how long each interaction took. The
latter was achieved by taking the time the device was ac-
tivated until an annotation was completed. This allows to
test hypothesis (a), while the activities ”brushing teeth”,
”cleaning hands” and ”eating” were specifically chosen
to test hypothesis (b). At the end of each session the
participants were presented with a questionnaire to get
their subjective opinion on the overall system. Especially
we asked participants to rate if annotating data can be
done faster with Google Glass, if the presented application
could be used intuitively, if the voice recognition had an
acceptable error rate and if they preferred touch over voice
interaction on a standard Likert-scale. We furthermore

activity/new activity instances p.P. Glass/Phone Voice/Touch
sitting/sitting down 3.3 ± 1.3 28/71% 19/80%
walking/taking a walk 3.6 ± 2.0 24/75% 15/84%
eating/eating something 1.5 ± 0.7 17/81% 13/85%
going/walking downstairs 1.7 ± 1.0 26/74% 20/80%
going/going upstairs 1.7 ± 0.7 31/69% 21/79%
cleaning hands 1.2 ± 0.6 41/59% 29/71%
brushing teeth 1.1 ± 0.3 40/60% 24/76%

14 ± 3.2 30/70% 20/79%
TABLE I

List of recorded activities.

gave participants the possibility to explain if and why they
preferred a certain device, and wether they preferred touch
over voice.

B. Results and Discussion
Table I shows the mean number and standard deviation

of recorded instances per participant and activity. It shows
which device and which input modality was used for
annotating as gathered by our logging process. In total
Google Glass has been used in 30% of all instances, the
Smartphone in 70% of all cases and the web-application
based interaction has been omitted since it has been hardly
used. One possible explanation for the relatively low usage
number of Google Glass could be that participants are
more trained/comfortable using a Smartphone, which was
confirmed by most interview answers. Looking at the mean
interaction times (6.29 seconds for Smartphone, 10.95
seconds for Glass touch and 3.19 seconds), i.e. Smartphone
interaction is generally faster than Glass interaction. This
points to a problem with the voice input design - our voice
input phrases have not been chosen carefully enough. Even
though the touch interaction for Google Glass is about
double the speed of the Smartphone it has been rarely
used. This is because it can only been used to annotate the
end of an activity, since this involved activating the Glass
and tapping the device, while starting an activity on Glass
required to navigate through the list of all applications and
activities. Compared to that, the Smartphone application
was always in front since there were no other applications
active during the study. Most participants explained their
Smartphone preference by the more reliable touch input
and being less conspicious in public.

Interestingly, usage of voice input for activities that
involved using hands (cleaning hands, brushing teeth)
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Fig. 4. Answers depicted as mean, standard deviation and range of
answers given to facts on a standard Likert-scale.

increased only slightly, as can be seen in the modality row
of Table I, where the first number represents voice input
and the second touch input. Originally we assumed that
voice interaction would be preferred, however interaction
times show that it actually took longer for participants
to interact with the system via voice. Most probably this
is due to a non-optimal choice of input phrases, Table I
contains the used voice input phrases during the study
(first row). It can be seen that ”sitting”, ”walking” and
”eating” are phonetically similar and reduce the overall
recognition reliability. To test this we conducted a post-
study trial with 5 participants, in which we asked par-
ticipants to toggle each activity via voice. One time the
phrases in the first row of Table I were used, and the
second time row two were used as voice input phrases. The
overall recognition rate could be raised from 76.5% to 92%.
This leads us to believe that with an increased reliability of
the voice recognition, the interaction time can be reduced
and annotating activities will become more useful.

The results also match the ones we got from the relevant
statements of the questionnaire depicted in Figure 4. As
can be seen there, some participants had problems using
the Google Glass application, while no participants had
problems with the Smartphone, again probably due to
the fact that these devices are already commonly known
to most people. Also most participants felt that adding
annotations could be achieved faster with the Smartphone
than with Google Glass, and we attribute that to a non-
optimized interface. The recognition rate of the voice input
was of major concern by the participants, reflected also in
the questionnaire answers.

IV. Conclusion
We described a system (called PART) that allows to

effortlessly record ground truth data for sensor data from
wearable devices. This system can be used to quickly
conduct activity recognition studies. A web-based tool
aggregates all sensor data and can be used to modify
ground truth data after a recording session, and select
and export sensor and ground truth data for later analysis.
Future work should optimize the user interface further and
include tools to use the interaction with the devices as
ground truth data. A combination of EMA studies and

activity recognition from wearable devices could lead to
a system where the regular sampling of experiences could
be replaced by an activity-triggered sampling, i.e. instead
of relying the user to explicitly make annotations, asking
him wether the currently detected activity was correct.

A personal activity recognition tool (PART) needs to
provide the means for a user to explicitly add annotations
for activities. For the interaction design we recommened
to follow these guidelines (minimize interaction time):
Voice select a keyword set that is seperable by the

recognizer, minimize the number of spoken phrases
Touch minimize number of touch operations

Such an interaction needs to be as quick as possible to
not interrupt the user in its current workflow. Based on
a Smartphone such an interaction will always have the
effort of taking it out, and blocking the hands. In contrast
a head-mounted displays system, like Google Glass, allows
for a hands-free interaction based on voice recognition.
However, the presented study showed that Smartphone
interaction is preferred for annotating activities. These
results needs to be interpreted in the light of a sub-optimal
voice recognition performance of 76.5%. Still, even with an
increased performance, voice recognition can not always
be used, for example in noisy environments or in social
settings. Touch interaction needs to carefully designed
also, the speed of input for the Smartphone is given by the
fact that activities can be directly selected. Such a direct
selection is currently hard to implement on the swipe-
based interface of Google Glass.
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