
A Publish/Subscribe Middleware for
Body and Ambient Sensor Networks that

Mediates between Sensors and Applications

Christian Seeger
Databases and Distributed Systems
Technische Universität Darmstadt

Darmstadt, Germany
e-mail: cseeger@dvs.tu-darmstadt.de

Kristof Van Laerhoven
Embedded Sensing Systems

Technische Universität Darmstadt
Darmstadt, Germany

e-mail: kristof@ess.tu-darmstadt.de

Jens Sauer, Alejandro Buchmann
Databases and Distributed Systems
Technische Universität Darmstadt

Darmstadt, Germany
e-mail: buchmann@dvs.tu-darmstadt.de

Abstract—Continuing development of an increasing variety of
sensors has led to a vast increase in sensor-based telemedicine
solutions. A growing range of modular sensors, and the need of
having several applications working with those sensors, has led to
an equally extensive increase in efforts for system development.
In this paper, we present an event-driven middleware for on-body
and ambient sensor networks that allows multiple applications to
define information types of their interest in a publish/subscribe
manner. Incoming sensor data is hereby transformed into the
desired data representation which lifts the burden of adapting
the application with respect to the connected sensors off the
developer’s shoulders. Furthermore, an unsupervised on-the-fly
reloading of transformation rules from a remote server allows
the system’s adaptation to future applications and sensors at
run-time. Application-specific event channels provide tailor-made
information retrieval as well as control over the dissemination of
critical information. The system is evaluated based on an Android
implementation, with transformation rules implemented as OSGi
bundles that are retrieved from a remote web server. Evaluation
shows a low impact of running the transformation rules on a
phone and highlights the reduced energy consumption by having
fewer sensors serving multiple applications. It also points out the
behavior and limits of the application-specific event channels with
respect to CPU utilization, delivery ratio, and memory usage.

Keywords—wireless sensor network, body sensor network, mid-
dleware, publish subscribe systems, event-based systems, Android

I. INTRODUCTION

Rapid development towards sensor networks that consist
of on-body and ambient sensors have commenced a new
paradigm in telemedicine and elderly care. With growing
diversity of sensors the range of monitoring parameters and,
therefore, the range of potential applications and solutions
expands. By using the same sensor network for multiple appli-
cations, solutions can be adapted to individual requirements.
Furthermore, in order to adapt the network to new sensing
requirements and to replace malfunctioning sensors, changing
sensor setups are indispensable. Having a variety of sensors
and applications within one sensor network is promising but
results in two major challenges:

1) How to deliver only the desired and permitted sensor
readings to an application in order to ease application develop-
ment, manage information dissemination, and save resources?

Mediator

Rehabilitation 
Monitoring

HR Activity Weight*

Social Media 
Application

Weight* GPS*

ECG Monitoring

ECG

ECGHR kglbs

kg lbsHRECG

GPS*

Scale*

kg

ActivityECG

ECG

HR

SE
N
SO

RS
EX

AM
PL
E
AP

PL
IC
AT
IO
N
S

confidential information (*) information the user wants to publish

Fig. 1. Illustration of a mediator for patient monitoring that delivers only
the desired and permitted readings and transforms readings from one data
representation to another which obviates the need for some sensors (e.g., HR).

2) How to deal with the diversity of sensors and data
representations without requiring application developers to
adapt to new sensors and changing sensor constellations?

In order to emphasize the challenges, we will sketch a
monitoring and rehabilitation application for a patient who
suffered a heart attack as a motivational example. In the first
weeks after the heart attack, the patient’s heart is monitored
with an ECG sensor. The delivered ECG stream allows a very
accurate monitoring of the patient’s heart for both, the cardi-
ologist as well as a monitoring application running on a smart
phone (cp. ECG monitoring in Fig. 1). Since rehabilitation
programs are important for recovering and strengthening the
heart after a heart attack, the patient is asked to perform light
fitness exercises such as walking and cycling. Therefore, an
additional rehabilitation monitoring application motivates and
monitors the patient using activity, heart rate (HR), and body
weight readings. In addition to the professional health care
applications, the patient uses a private social media application
for sharing the progress in losing weight. This application
combines outdoor fatburning exercise information gathered
from a GPS sensor with body weight readings.

The previous example consists of five sensors (ECG, HR,
activity, GPS, scale) and three applications (ECG monitoring,



rehabilitation monitoring, social media application). This very
simple example already maps the problem space. Each appli-
cation is interested in specific sensor readings. Relaying all
readings to all applications would require applications to filter
incoming readings and, thus, consume additional resources.
Furthermore, applications might have different confidentiality
levels. The social media application that posts data to social
networks should not get access to confidential sensor readings
such as ECG streams, blood pressure and insulin intake. The
ECG monitoring and the rehabilitation monitoring applications
require both cardiovascular information. Since they operate
on different data representations (ECG vs. HR), two different
sensors are required although the ECG stream already contains
heart rate information. In this paper, we introduce application-
specific communication channels that deliver only desired
and permitted sensor readings. Furthermore, we introduce a
mechanism to convert sensor readings from one representation
to another representation. Hence, a single ECG sensor can
serve both a HR and an ECG application. This reduces the
amount of sensors the patient has to carry and saves resources.
In addition, replacing sensors does not require the developer to
adapt her application to the new sensors. This is automatically
done by the conversion mechanism running on the mediator.

Building on an event-based middleware architecture for on-
body and ambient sensor networks which runs on a smart
phone [1], we propose application-specific communication
channels by making use of the publish/subscribe paradigm.
Applications subscribe to event types of their interest and
advertise event types they contribute. Before a subscription
is permitted, a security manager checks the application’s
confidence level. Upon receiving an event, it is disseminated
to subscribed and permitted applications. In order to avoid
that developers must adapt their solutions to accommodate
changing sensor configurations, we propose an adaptive event
transformation mechanism that transforms the available in-
formation into the desired format. This could be a simple
unit transformation from kilogram to pound, but also a more
complex transformation from an ECG stream to a heart rate
reading. A transformation that derives heart rate alarms based
on heart rate and activity information and, hence, enriches the
system’s functionality, illustrates the capabilities of event trans-
formations. Furthermore, a remote transformation repository
allows the system to adapt to new requirements (e.g., sensors,
applications) at run-time. For evaluation, we extended the An-
droid implementation of myHealthAssistant [1]. Summarized,
the two main contributions of this work are:

• Publish/subscribe communication for ambient and on-
body sensor networks providing application-specific
communication channels.

• An adaptive event transformation that converts infor-
mation to the desired data representation and derives
new events based on subscriptions. A priori unknown
transformations are downloaded from a remote repos-
itory at run-time.

The paper is structured as follows: The next sec-
tion describes the system architecture, especially the pub-
lish/subscribe messaging with application-specific communi-
cation channels and the approach of having an adaptive
event transformation that mediates among publishers and sub-
scribers. In Section III, we discuss the design decisions made

for our prototype implemented as an Android application.
We describe how to avoid encryption of the communication
channels and how the system manages to change permissions
at run-time. OSGi bundles allow installing, starting, and stop-
ping event transformations without interruptions. The system’s
performance as well as the energy consumption for using only
a single ECG sensor instead of ECG and HR sensors are
analyzed in Section IV. Before conclusions and future work,
Section V presents how our work compares to related projects.

II. SYSTEM ARCHITECTURE

This section describes the architecture of the proposed
middleware for on-body and ambient sensor networks. The
main focus lays hereby on the publish/subscribe messaging and
the event transformation. The middleware, running on a smart
phone, acts as a mediator among applications and sensors.
It communicates with the sensors and allows applications to
express their interest in specific event types. As soon as a new
event becomes available, it is forwarded to the applications
in the desired data representation. We decided for an event-
driven middleware with publish/subscribe communication be-
cause: i) sensor constellations and running applications change
over time, ii) most on-body and ambient sensors send their
readings in an event-driven manner, and iii) sensors have no
knowledge about the applications consuming their readings.
Those characteristics fit the loosely-coupled publish/subscribe
communication paradigm of event-based systems very well [2].
In [1], we proposed an event-based middleware that already
handles the sensor communication, but lacks the support for
application-specific communication channels and event trans-
formations. Therefore, this paper describes how we extended
the middleware in order to provide the missing functionality.
After giving an overview of the system’s architecture we will
give a detailed description of the publish/subscribe communi-
cation and the adaptive context transformation.

A. Overview

Fig. 2 depicts the mediator’s architecture consisting of
several modules, communication channels, applications and
the communication with on-body and ambient sensors. We
will skip the description of the transformation manager on the
bottom layer since Section II-C will describe it in detail. The
sensor modules implement generic or sensor-specific proto-
cols for communicating with individual on-body and ambient
sensors. When starting, they advertise the event type(s) they
will contribute to the system. Upon receiving a sensor reading,
a corresponding event is injected to the system by sending it to
the message handler. Some sensor modules provide a start/stop
functionality to the message handler in order to stop the sensor
if there is no subscription to the corresponding event type(s).
This saves unnecessary sensor communication. The message
handler in the intermediate layer manages advertisements,
event subscriptions, and notifications. It will be described in
Section II-B.

The top layer of Fig. 2 consists of a security manager, a
system monitor and an event composer. The security manager
provides information about the permissions of applications and
modules. It is used to define which application is allowed
to subscribe to which event type and to validate subscribers.
By providing encryption keys, the security manager is used



Application 1System Monitor Event Composer

Message Handler

…

Application Channel 1

Application n

Application Channel n

…

Security Manager

Transformation Manager
On‐Body & 

Ambient SensorsSensor Module nSensor Module nSensor Modules

Remote 
Transformation 
Repository

LAN/WAN BAN/LAN

Fig. 2. Event-driven middleware architecture consisting of a message handler for managing application-specific communication channels based on
subscriptions and a transformation manager for converting sensor data to the desired representation. New transformations are downloaded from the
remote transformation repository at run-time. Sensor modules translate raw sensor data to sensor events and the event composer provides
additional sensor fidelity information. The security manager is used for encryption, verification and managing permissions and the system monitor
for keeping track of the overall system status.

to secure the communication channels between applications
and the middleware. Since the middleware is designed for a
smart phone, we can assume that applications and the security
manager can easily connect to a public key infrastructure and
download required encryption keys at run-time. The system
monitor is responsible for monitoring the overall system. In
case of a critical situation such as a low running battery, the
system monitor injects an alarm event and starts appropriate
reactions. This reaction is very system-dependent. In our
Android implementation, for instance, the reactions to low
battery power are a notification to the user as well as an SMS
text message to a predefined phone number. In order to detect a
crashed system monitor or a lacking connection to the network
carrier which would hinder the detection and dissemination of
further problems, heartbeat messages containing status infor-
mation are periodically sent to a server. The event composer
consumes sensor and application related events and provides
extra functionality to the user and application developer. It
identifies general situations on which the system has to react
(e.g., critical vital signs) and creates a corresponding derived
event. Furthermore, it detects inaccurate or invalid sensor
data and emits events enriched with fidelity information as
presented in [3].

B. Publish/Subscribe Messaging

Assuming a setup of various on-body and ambient sensors
as well as applications using the sensor data, we extracted four
main requirements on the messaging service:

• Seamless handling of changing sensor and application
constellations

• Application-specific interest in certain event types

• Mechanisms for managing the data access and confi-
dence levels of applications

• Mechanisms to secure the communication between
applications and the middleware

In the following, we describe a messaging service that satis-
fies the requirements listed above. Communication between ap-
plications and the middleware is based on the publish/subscribe

paradigm which decouples information producers from infor-
mation consumers. Information is exchanged in form of events
which consist of an ID, event type, timestamp, producer ID,
its payload, and additional fields such as a sensor type and the
time of measurement.The following communication aspects are
handled by the message handler:

1) Communication channel: Each application connected
to the message handler communicates over its own com-
munication channel (cp. Fig. 2). In order to establish an
individual channel, the message handler uses the security
manager for checking the authenticity of an application and
to handle a key exchange protocol if necessary. Having a
secured communication channel between an application and
the middleware prevents other applications from gathering
classified information such as sensor readings with a higher
confidence level and information about the connected sensors.

2) Advertisement: In order to announce future events to the
system, applications and (sensor) modules send advertisement
messages to the message handler. An advertisement consists
of an advertisement ID, event producer ID, the event type
that is advertised, start/stop capabilities of the event producer,
and additional properties regarding the event producer (e.g.,
sampling rate). This information is stored and used for event
subscriptions. If an event producer provides start/stop capa-
bilities (e.g., an on-body sensor that can be controlled by the
sensor module), the message handler decides whether to start
or stop the sensor based on the event subscriptions. Event
producers can revert their advertisements, in case they do not
provide further events to the system which could be due to a
disconnected sensor. If, as a result, this event type becomes
unavailable to the system, subscribers are informed.

3) Subscription: In order to retrieve information from
sensors as well as other applications and modules connected
to the system, an application has to subscribe to event types.
This is done by sending a subscription message to the message
handler. Upon receiving a subscription, the message handler
forwards the subscription’s credentials to the security manager
in order to verify the application’s permission for subscribing
to the requested event type. If the request is granted, the
message handler checks whether the requested event type was



advertised. If not, a transformation request consisting of the
requested event type as well as the advertised event types is
sent to the transformation manager which in turn searches
for a corresponding transformation (cp. Section II-C). If the
subscription succeeds, an acknowledgment including the event
producer’s availability is sent and corresponding events are
disseminated over the application-specific channel. The event
subscriptions are done asynchronously, because requesting the
transformation manager might take some time depending on
the network connection and remote transformation repository.
Granted but unsuccessful subscriptions (i.e. no producer avail-
able) are stored. As soon as an event producer for the requested
event type becomes available, the subscribed application is
informed and the event forwarding installed. Applications can
unsubscribe from event types by sending a corresponding
unsubscribe message.

4) Notification: As soon as an event (e.g., a sensor reading)
becomes available, the message handler disseminates it to
the subscribed consumers. Since events are disseminated over
individual channels, they have to be sent multiple times which
requires additional effort and could cause delays. On the other
hand, the advantages of application-specific communication
channels are less effort for filtering events on the application-
side and security features which could become indispensable
for health care applications.

In summary, the message handler processes the pub-
lish/subscribe messaging and keeps track of all event producers
and consumers. It distributes events with respect to subscrip-
tions and their permissions and seamlessly handles changes in
sensor and application constellations. In case of a subscription
without a fitting advertisement, the transformation manager
is queried in order to find a matching transformation. The
integration of a security manager and encrypted communica-
tion channels allow control over the data access and a secure
communication between applications and the middleware.

C. Adaptive Event Transformation

Different applications have different requirements on data
and its representations. The fitness application in our example
operates on simple heart rate readings whereas the health care
application requires ECG information. By transforming the
ECG data into heart rate information instead of having an
ECG and a heart rate sensor connected to the system, the
overall energy consumption is reduced (cp. Section IV-B) and
a more energy efficient system is achieved. In addition to this,
a replaced or future sensor might provide the same sensor
information in another representation (e.g., data format, unit,
granularity). As a result, replacing a sensor would require
application developers to adapt their applications to the new
sensor. By introducing a layer between sensors and applica-
tions that transforms the available information into the desired
format, the amount of potential applications and sensors is
increased and future applications and sensors are supported.
In this section we present the transformation manager, an
adaptive event transformation approach that transforms data
into the desired data representation and adapts its own behavior
with respect to the actual system configuration at run-time.

1) Transformation Request: In case the message handler
receives an event subscription to an event type which is not

transformation 
request

transformation stored locally?

no request remote 
repositoryyes

install download

transformation 
found

yes

no transformation 
found

transformation available?

no

Fig. 3. Processing an event transformation request: If there is no transforma-
tion from the advertised event type(s) to the required event type stored locally,
the request is forwarded to a remote transformation repository allowing the
system to adapt to new requirements.

advertised, it sends an event transformation request to the
transformation manager. Such a request consists of an ID,
the requested event type, and a list of advertised event types
which contains all event types that are currently advertised.
Based on this information, the transformation manager checks
whether there is a transformation from one or more advertised
event types to the requested event type already stored or
whether it needs to forward this request to a remote repository
(cp. Fig. 3). In case of a successful local or remote request,
the corresponding transformation is started and a notification
message is sent.

2) Transformation Life-cycle: As long as a transformation
is not needed, it is stopped and does not require any CPU
cycles and main memory. If a transformation is required, the
transformation manager triggers the start of the corresponding
transformation. When starting, a transformation subscribes to
the event type(s) it requires for its transformation. In case
of an untrusted remote repository, the subscriptions can be
treated as an application subscription which requires a security
check. After a successful subscription, the new event type
is advertised including an obligatory start/stop functionality
and the transformation starts working triggered by incoming
events. If a transformation is stopped, it unsubscribes and
reverts its advertisement.

Fig. 4 depicts the communication for starting and stopping
a transformation. Communication with the remote repository
is omitted for clarity. Case (a) shows the communication for
starting a transformation: an application subscribes to the event
type heart rate (HR). Since there are only event producers for
ECG and blood pressure (BP) readings available, the message
handler sends a transformation request to the transformation
manager. Since the transformation manager has a transforma-
tion TECG→HR stored, it starts the transformation and sends
an acknowledge message to the message handler which in
turn informs the application. Furthermore, TECG→HR advertises
events of type HR. In case (b), the application unsubscribes
from HR events. Since it was the only application subscribed to
HR events, the message handler sends a stop command to the
transformation which has to support the start/stop functionality.
The transformation stops, informs the transformation manager,



Transformation 
Manager

Subscriber to 
heart rate (HR)

Message 
Handler

Transformation 
T: ECG ‐> HR

subscribe to HR
Has transf. for HR 
using ECG or BP?

start
startedyes

HR available

unsubscribe from HR
stop HR

stopped

ECG unavailable
stopped

Has transformation 
for HR using BP?

un‐advertise HR

no

HR unavailable

(a
) s
uc
ce
ss
fu
l 

tr
an

fo
rm

at
io
n 
re
qu

es
t

(c
) e

ve
nt
 p
ro
du

ce
r 

in
iti
at
ed

 s
to
p

(b
) s
ub

sc
rib

er
in
iti
at
ed

 s
to
p

subscribed to HR

advertise HR

un‐advertise HR

Fig. 4. Sequence diagram illustrating the communication among software
components for starting and stopping an event transformation: (a) installing
an event transformation for transforming events of type ECG to type HR,
(b) the event transformation is stopped because the last subscriber to HR
unsubscribed, (c) the event transformation is stopped because the event
producer for events of type ECG is no longer available.

and reverts its advertisement of HR events. Case (c) depicts
how the system reacts on a required event producer becoming
unavailable. In this example, the ECG sensor becomes un-
available which causes a stop of the transformation TECG→HR
and, hence, HR events become unavailable. Since there are
still subscriptions to HR events, the message handler invokes
a new transformation request containing only the advertised
BP events. Because there are no matching transformations
available, the request remains unsuccessful and, thus, the
message handler informs the applications about the unavailable
HR events.

3) Remote Repository: Every new event producer and event
consumer potentially leads to the need for a new event transfor-
mation. With an increasing amount of applications and sensor
devices available, the number of possible transformations in-
creases rapidly. Having all potential transformations installed
on a mediator for on-body and ambient sensor networks would
overload most devices. Therefore, we decided for a remote
transformation repository that enables the mediator to keep
only transformations which are required and to download new
transformations in case the requirements change. This way,
resources are saved and an adaptive system is provided. If
the device runs out of memory, transformations that were
not activated for a while, are deleted. Having transformations
running within the sensor network instead of a remote entity
brings two main advantages: a) the system can operate without
an Internet (or similar) connection, and b) sensitive user
information remains within the sensor network.

For requesting a new transformation, the transformation
manager connects to a remote repository. We assume that this
is done via a secured network connection and after a successful
authentication process in order to prevent the installation of
malicious transformations. After the connection is established,

the message handler’s transformation request is encoded and
sent to the remote repository. If the repository finds a match, it
provides the corresponding transformation. If there are several
potential transformations available, a cost function determines
the best transformation for the requesting mediator. After
the transformation is downloaded, the transformation manager
has to provide an environment for executing loaded code
for starting the transformation. In our implementation (cp.
Section III-B), we decided for an OSGi framework.

Transformation Manager
Remote 

RepositoryT1 T2 Tn

Tz

…

started
stopped

transformation?

Tz

Fig. 5. Transformation manager with started and stopped transformations. A
priori unknown transformations are downloaded from a remote repository.

Fig. 5 depicts the local transformation manager consisting
of started and stopped transformations as well as a remote
repository providing all potential transformations. Since trans-
formations are allowed to consume multiple event types, they
are not restricted to simple event type conversions. For instance
in our implementation, we developed a transformation that
detects a critical heart rate based on HR and activity events. In
case an application requires such an alarm, this functionality
can be added without user interaction or interrupting the sys-
tem. The capability of reloading missing functionality enables
an adaptive system behavior.

III. IMPLEMENTATION

This section discusses the implementation of the pub-
lish/subscribe messaging and the adaptive event transformation
described in the previous section. For the mediator device host-
ing the middleware, we decided for a smart phone because it
provides sufficient processing power, rich storage capacity and
networking capabilities for on-body sensors, ambient sensors,
and the Internet. The implementation extends a middleware for
Android1 devices which we proposed in [1]. This middleware
already showed good results regarding battery lifetime, system
performance, and stability [1], [4]. The following description
and discussion is again divided in publish/subscribe messaging
and adaptive event transformation. For a detailed description
of other parts of the system, we refer to [1].

A. Publish/Subscribe Messaging

The message handler described in Section II-B is respon-
sible for individual communication channels between each
application and the middleware. In the Android operating
system, there are three base mechanisms for inter-application
communication that do not require user interaction [5]:

• Services expose their interface to other Android appli-
cations by using AIDL (Android Interface Definition
Language). This allows applications to invoke meth-
ods from other applications and, thus, provides inter-
process communication.

1http://developer.android.com



• Content Providers allow access to a structured set of
data. Application can query this data set by addressing
an application-defined URI.

• Broadcast Receivers receive Android Intents sent
from any Android application. Those Intents can
piggyback any data which implements the Android
Parcelable object. Before sending an Intent to
another application its content needs to be described.
If the Android IntentFilter of a Broadcast Re-
ceiver matches to an Intent’s description, it is received.

Since Android Services are built upon a remote procedure
call (RPC) communication paradigm which has some draw-
backs for publish/subscribe messaging [6] and Android Con-
tent Provider requires a query-based communication paradigm,
they both do not fit very well to the event-driven sensor
network communication. Android Broadcast Receivers sup-
port event-driven asynchronous communication across multiple
channels and they allow piggybacking any data as long as it
implements Android Parcelable. Therefore, we decided for
Broadcast Receivers as the underlying communication mecha-
nism. We distinguish between three ways of inter-application
communication based on Android Broadcasts:

1) Implicit Broadcast Intents are received by any Broad-
cast Receiver having a matching IntentFilter.

2) Signed Implicit Broadcast Intents are only re-
ceived by Broadcast Receivers that have a matching
IntentFilter and a valid signature.

3) Explicit Broadcast Intents are only received by a
specific Android destination class (application).

The authors of [5] have shown that signed Implicit Broad-
casts and Explicit Broadcasts do not allow other applications
to eavesdrop on the inter-application communication as long
as the operating system is not penetrated. This saves the
costs for encrypting the communication between applications
and the middleware. A drawback of signed Broadcasts is the
need of having the signatures already created beforehand and
having them installed with the application which requires a
re-installation of the system in case the security parameters
change. Therefore, we decided for Explicit Broadcasts which
saves the need of encrypting the communication and allows
changing permissions at run-time.

In contrast to the architecture shown in Fig. 2, our Android
implementation uses two unidirectional channels between the
middleware and an application. Since other applications are
not able to eavesdrop on Explicit Broadcasts, the message
handler’s receiver channel is the same for all applications.
This simplifies the application development because the com-
munication channel to the middleware is static and already
known beforehand. Within a subscription request, applications
transmit the component name to which the message handler is
expected to send messages which again simplifies the devel-
opment. Since the component name inherits the application’s
name, the security manager can easily check whether the
request belongs to an installed and admitted application. An
explicit authentication check is not implemented so far.

The message handler keeps track of all subscribed applica-
tions and advertised event types. In addition to this, it detects
subscribers that are no longer listening on their channel and,

hence, deletes their subscriptions and advertisements. Event
types are structured in a tree and applications are allowed
to subscribe to leafs as well as intermediate nodes. Upon
receiving an event, the message handler looks up a routing
table and disseminates the events according to the component
names it has stored from the subscriptions. If event types
become unavailable to the system, applications subscribed to
this event type are informed.

B. Adaptive Event Transformation

For evaluating the adaptive event transformation, we im-
plemented both the transformation manager running within
the middleware and a remote repository providing a priori
unknown transformations.

1) Transformation Manager: The transformation manager
installs, starts and stops transformations with respect to the
current system configuration. On an incoming transformation
request, it first looks up the local transformation repository
for a fitting transformation. If a transformation is found, it is
started and subscribes to the event types required for the event
transformation. The message handler treats transformations in
the same way as applications. Upon receiving a stop or an
un-advertise message from the message handler, the trans-
formation stops, emits an un-advertise message and informs
the transformation manager which in turn stops the whole
transformation in order to release occupied memory.

In case a requested transformation is not stored locally, it
has to be downloaded from a remote repository and installed
without requiring a reboot or a user interaction. Usual Android
installations require a restart of the application as well as
user interaction which would hinder a seamless adaptation
to new requirements. In order to still provide an automated
adaptation to new requirements, we decided for making use
of the OSGi (Open Services Gateway initiative)2 framework.
It is a Java-based framework that allows installing, updating,
starting, stopping, and uninstalling application components
(bundles) at run-time. Apache Felix3 for Android provides
OSGi support for Android applications and is used for this im-
plementation. Consequently, transformations are implemented
as OSGi bundles and the transformation manager makes use
of the OSGi life-cycle.

2) Remote Repository: The remote repository is imple-
mented as a web server. Transformation requests are sent
as JSON encoded requests containing the requested event
type and event types advertised to the requesting system. If
a matching transformation is found, it is transmitted to the
transformation manager, otherwise the system is informed that
no transformation was found. In case of multiple matching
transformations, the remote repository has to decide which one
fits best. For this, a corresponding cost function based on the
complexity of a transformation and the energy consumption for
required event types could help determining the best transfor-
mation. By adding priority information to the advertised event
types of a request, a requesting transformation manager could
influence the decision making. Since the current implementa-
tion forwards the first transformation found, implementing a
cost function remains as future work.

2http://www.osgi.org
3http://felix.apache.org/



Fig. 6. A Zephyr HxM Bluetooth heart rate sensor and a Corscience
CorBELT Bluetooth 1-lead ECG sensor were used for testing the TECG→HR
transformation and energy consumption. The HedgeHog sensor on the right
provides acceleration data for the activity recognition needed in THRAlarm.

3) Transformation Complexity: Event transformations can
have different complexity regarding processing power, memory
usage and event subscriptions. We distinguish between three
transformation types:

1) unit transformation, e.g.: ◦C ↔ ◦F , kg ↔ lbs,
mmol/L↔ mg/dL

2) type transformation, e.g.: ECG stream → heart rate
(bpm), specific activity (e.g., standing, running, cy-
cling, ...) → activity level (e.g., low, moderate, high)

3) reasoning: activity & HR → critical situation, ac-
celerometer data → activity/step counter

Unit transformation are usually cheap to perform, whereas
type transformations might become more complex. An ECG-
stream-to-heart-rate transformation (TECG→HR) for instance
needs to detect the QRS complex in an ECG stream and
calculate the heart rate based on the RR-intervals. Reasoning as
the third type of event transformation might combine multiple
events and use additional domain knowledge in order to
derive an event of higher meaning. For instance, deriving a
critical situation based on incoming heart rate and activity
events (THRAlarm). In our evaluation, we implemented an event
transformation of each type: Tkg→lbs, TECG→HR, and THRAlarm.

IV. EVALUATION

The main task of the mediator is to disseminate events
received from sensors, applications, and modules to other
applications and modules. An evaluation on the original mid-
dleware [1], [4] has already shown that a system consisting of
an accelerometer, a heart rate sensor, and several environmental
sensors (e.g., blood pressure, scale, proximity) lasts at least
for a day while performing activity recognition and health
monitoring. In this paper, we will focus on our extensions,
the performance analysis of the publish/subscribe messaging
and the energy savings achieved by event transformations. For
the performance analysis, we used HTC One V smart phones
with a 1 GHz Tegra 2 single-core processor, 512 MB memory,
and Android 4.0.3. All test results presented in this section are
the average from three test runs à 100 seconds. For testing the
transformations, we used a 1-lead ECG, a heart rate sensor, and
an accelerometer which are shown in Fig. 6 and we conntected
a Bluetooth-enabled scale.

A. Publish/Subscribe Messaging

In order to evaluate the performance of the event notifica-
tions, we will analyze the system’s behavior on an increasing

amount of events per second as well as an increasing amount
of subscribers. For this, we developed event generators that
run in the same process as the middleware and operate as
sensor modules. With 1 Hz frequency each event generator
publishes events that consist of following fields: ID, type,
timestamp, producer ID, sensor type, time of
measurement, and an integer value as the payload.

Fig. 7(a), Fig. 8(a), and Fig. 9(a) depict the CPU utilization,
delivery ratio, and memory usage for an increasing workload
and up to 11 subscribed applications. For simplification, all
applications are subscribed to the same event type which means
that every event has to be resent by the amount of subscribers
which can be considered as a worst case scenario. In a real
deployment, the number of retransmission is usually lower. For
only one application subscribed to the middleware, the CPU
utilization stays below 1.4% and injected events are delivered
to 100% for a workload of at least up to 25 events/s. If the
number of subscribers increases, the performance starts drop-
ping. For 3 subscribers and up to 15 events per second the CPU
utilization is still low and the delivery ratio above 99%, but
with an increasing workload the delivery ratio starts dropping.
The same applies for an increasing number of subscribers.
Further investigations have pointed out, that our system can
handle up to 60 events/s. For instance, for 11 subscribers
and a workload of 5 events/s, 5 events are published and
5 ∗ 11 = 55 events are delivered. For an increasing number
of produced events per time unit, the maximum number of
subscribers decreases. The memory usage increased with a
growing workload. A current low-end smart phone possesses at
least 512 MB main memory which makes up to 1.6% memory
usage for 25 events/s and 11 subscribers.

In Section III-A we decided for Explicit Android Broad-
casts in order to provide individual communication channels.
In case all applications are subscribed to the same event type
(as in the previous paragraph), Implicit Android Broadcasts
that publish all events on a common channel would reduce the
event dissemination effort. In order to analyze the overhead for
providing application-specific communication channels, we ran
the same tests with Implicit Broadcast messages. Figures 7(b),
8(b), and 9(b) depict the CPU utilization, delivery ratio and
memory usage of both approaches with an increasing number
of subscribers and up to 20 events/s. For Implicit Broadcast
messages, the CPU utilization of our middleware is not af-
fected by an increasing number of subscribers because each
incoming event is forwarded only once. On the other hand,
Explicit Broadcast messages save the message dispatching
effort for the operating system since they are explicitly sent to
Android components. Nevertheless, an almost 100% delivery
ratio for dispatching Implicit Broadcasts compared to a de-
creasing delivery ratio for Explicit Broadcasts demonstrates
the overhead for having application-specific communication
channels. Furthermore, the additional publish/subscribe logic
as well as advertisement and subscription lists cause a higher
memory usage (cp. Fig. 9(b)).

In summary, we believe that the advantage of secured
and application-specific communication channels is worth the
additional overhead. Furthermore, a message handling of up
to 60 events per second is sufficient for most health care
applications. Since most on-body and ambient sensors are
battery powered, sending data is expensive and, thus, data is



5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

events per second

C
P

U
 u

til
iz

at
io

n 
(m

id
dl

ew
ar

e)

 

 
1 subscriber
3 subscribers
5 subscribers
7 subscribers
9 subscribers
11 subscribers

(a) increasing workload

1 3 5 7 9 11
0

0.2

0.4

0.6

0.8

1

number of subscribers

C
P

U
 u

til
iz

at
io

n 
(m

id
dl

ew
ar

e)

 

 
explicit broadcast − 5 events/s
explicit broadcast − 10 events/s
explicit broadcast − 15 events/s
explicit broadcast − 20 events/s
implicit broadcast − 5 events/s
implicit broadcast − 10 events/s
implicit broadcast − 15 events/s
implicit broadcast − 20 events/s

(b) comparison of Explicit versus Implicit Broadcast Intents

Fig. 7. CPU utilization of the middleware for (a) an increasing number of events/s, and (b) an increasing number of event subscribers.

5 10 15 20 25
0.8

0.85

0.9

0.95

1

events per second

de
liv

er
y 

ra
tio

(a) increasing workload

1 3 5 7 9 11
0.8

0.85

0.9

0.95

1

number of subscribers

de
liv

er
y 

ra
tio

(b) comparison of Explicit versus Implicit Broadcast Intents

Fig. 8. Event delivery ratio for (a) an increasing number of events/s, and (b) an increasing number of event subscribers.

5 10 15 20 25
6000

6500

7000

7500

8000

events per second

m
em

or
y 

us
ag

e 
(in

 k
B

)

(a) increasing workload

1 3 5 7 9 11
5000

5500

6000

6500

7000

7500

8000

number of subscribers

m
em

or
y 

us
ag

e 
(in

 k
B

)

(b) comparison of Explicit versus Implicit Broadcast Intents

Fig. 9. Memory usage of the middleware for (a) an increasing number of events/s, and (b) an increasing number of event subscribers.

aggregated and sent in a lower frequency. For example, the
ECG sensor (cp. Fig. 6) we used in our deployment samples
with 200 Hz but transmits with only 2 Hz frequency. The
fitness diary application presented in [4] uses at most 6 sensors
at the same time triggering one event per second. Therefore,
even in a scenario in which the system consists of three
accelerometers, a blood pressure and a heart rate sensor as
well as a scale, the system still operates on the very left of
our performance evaluation Figures 7(a), 8(a), and 9(a).

B. Adaptive Event Transformation

Referring back to the example described in the introduction
in which a rehabilitation patient has two monitoring applica-
tions running on top of a body sensor network, we assumed
that using a single ECG sensor and transforming an ECG

stream to heart rate information requires less energy than using
both sensor types. In order to validate our assumption, we
implemented and installed a transformation from ECG to heart
rate events and compared the energy consumption for different
sensor constellations as shown in Fig. 10. The values for the
energy consumption are taken from the PowerTutor application
[7], [8]. Fig. 10 (a) shows the energy consumption in case
of individual sensors for each application. In total, both the
middleware and the Android system consume about 225 mW.
Compared to this, the combination of an ECG sensor and a
transformation that transforms ECG streams into heart rate
events (TECG→HR) consumes only about 191 mW and, thus,
saves more than 15% of energy. In this case, the overall system
lasts longer and does not require the user to wear an additional
sensor. A comparison between (b) and (c) shows the additional
energy overhead for performing the transformation which is



0

50

100

150

200

250

ECG & HR
(a)

ECG & T(ECG->HR)
(b)

ECG only
(c)

HR only
(d)

en
er

gy
 c

o
n

su
m

p
ti

o
n

 (
in

 m
W

) Middleware Android system Middleware & Android system

Fig. 10. Energy consumption for different sensor constellations. Having a
transformation converting ECG streams to heart rate data (b) saves more than
15 % energy compared to having both sensors connected (a). Compared to an
ECG sensor (c), a heart rate sensor (d) consumes perceptible less energy.

less than 7.5%. Fig. 10 (d) depicts the energy consumption
for having only a heart rate sensor connected to the system.
Since our heart rate sensor sends only 60 Bytes with 1 Hz
frequency the energy consumption is much lower than the one
for the ECG sensor sending 224 Bytes with 2 Hz frequency.
The additional energy consumption produced by the two other
transformations Tkg→lbs and THRAlarm is only marginal.

As a remark, we have experienced that our ECG sensor is
very prone to movement. As soon as the user was moving, the
ECG curve started fluctuating with the result that our TECG→HR
transformation was not able to detect QRS complex anymore
and, thus, stopped delivering heart rate events.

V. RELATED WORK

This section reviews related work in the area of middle-
ware for (body) sensor networks that supports individual data
delivery for multiple applications. For a detailed overview
of applications and middleware approaches for body sensor
networks and their health care applications, we refer to the
surveys of [9], [10].

The authors of [11] propose a middleware for body sensor
networks (BSNs) that is running on both, a mediator (e.g.,
mobile phone) as well as on sensor devices. Sensors advertise
their capabilities to a service discovery daemon running on
the mediator which allows applications to express their in-
formation needs and requirements. Based on the applications’
requirements and the sensors’ capabilities, sensor nodes are
configured and sensor data is collected and delivered. Sensors
can be added and removed at run-time. Compared to our work,
this approach provides a more fine-grained specification of
requirements such as delivery guarantees, sampling rate, and
network bandwidth. In order to grant the middleware more
control over the sensor nodes (e.g., adjust the sampling rate),
specialized sensors that run the middleware are required.

In [12], [13], [14] LiteMWBAN, a middleware for medical
BSNs that supports multiple sensors and applications, plug
and play features, and resource management is introduced.
Similar to the use case presented in our introduction, they
consider ECG monitoring and a heart rate and activity monitor
as two applications running on the same sensor network. Re-
source control messages allow checking and changing resource
properties of sensor node which in turn requires the nodes to
support the middleware’s API.

The Self-Managed Cell (SMC) [15], [16] is a middleware
which consists of a policy-based architecture that supports
autonomic management and self-configuration for BSNs. A
discovery service detects new sensor devices and removes
subscriptions of disconnected subscribers. A content-based
subscription mechanism allows the specification of filters to
subscriptions such as ”subscribe to heart rate values greater
than 100”. Policies define how the system should adapt in
response to specific events which is similar to our transfor-
mations. Furthermore, authorization policies define permitted
actions under certain circumstances. By providing content-
based subscriptions, SMC allows application developers to
define information of their interest very precisely.

The authors of [17] introduce MiLAN, a middleware to
support multiple wireless sensor network (WSN) applications.
Applications define their QoS requirements over time and
how to meet these requirements using different sensor com-
binations. Based on different priority levels of applications
and information about the available sensors and their status,
MiLAN continuously adapts the network configuration to meet
the applications’ needs while maximizing the system’s lifetime.
For providing a proper management of the sensor network,
MiLAN requires a tight integration with sensors and protocols.

Mires [18] is a publish/subscribe middleware for sensor
networks. Similar to our approach, applications subscribe to
event types that were advertised by event producers.In contrast
to our work, Mires is a distributed middleware running on
multiple sensor nodes that performs a message routing based
on subscribed nodes. Furthermore, an aggregation service
allows subscriptions to aggregated data which reduces the
network load by performing in-network aggregation.

Unlike our work, the presented projects rely on sensor
nodes that implement at least parts of the middleware. For
WSNs, this is desired in order to have more control over the
nodes and, thus, operate in an energy efficient way. In the area
of BSNs, there are already a lot of off-the-shelf sensors from
different manufacturers available. Our approach is to develop
a system that utilizes these sensors and allows building a
health monitoring system with already available sensors. A
drawback of using unmodified sensors is the limited control.
If future sensors provide more management functionality than
just switching them on and off, they can advertise their extra
functionality to the message handler and allow the middleware
to have more control over the sensor nodes. The MobiHealth
project presented in [19] also operates on off-the-shelf sensors
while having main focus on the network infrastructure among
BSNs and health care providers.

By introducing event transformations, we proposed a mech-
anism that converts sensor readings into the desired format.
This could be a simple unit transformation, but also the
derivation of a new event. One of the main objectives in
[11] is to ”convert the data collected by the lower layer
to relevant information in a human model” which provides
a similar functionality. The Self-Managed Cell [15], [16]
introduces a policy service that allows the definition of event-
condition-action (ECA) rules which can be used for event
transformations. Both projects do not provide a mechanism
to automatically reload missing transformations. In [20], a
health care platform running on Android devices that provides
loading OSGi bundles (i.e. additional functionality) at run-time



is presented. The focus of that work relies only on a dynamic
software adaptation, but not on BSN applications.

VI. CONCLUSIONS

Many health care applications gain from the broader range
of potential sensors provided by a mediator between sen-
sors and applications. Introducing new sensors is done at
a single point, the mediator, and does not require changing
each individual application. Furthermore, the combination of
multiple specialized applications running on the same set of
sensors, provides a swift deployment process. The adaptation
to new requirements is done by changing or adding only a
specialized application instead of changing the whole deploy-
ment. Especially for health care scenarios, application-specific
permissions to access sensor data are inevitable.

The contributions of this work are application-specific
communication channels to a mediator for body and ambient
sensor networks as well as an adaptive event transformation.
Applications subscribe to desired event types and advertise
provided events. After checking the validity of a subscription,
approved applications are equipped with their own communi-
cation channel to the mediator and receive upcoming events on
this channel. In case of a subscription to an event type that was
not advertised, the system tries to find an event transformation
from one or more of the advertised events to the desired event.
A remote repository allows the adaptation to new requirements
(i.e. applications, sensors) at run-time which makes adaptations
of individual applications superfluous. In addition, sensors can
be even replaced by event transformations which results in less
wireless communication and, thus, energy savings.

An Android implementation of the system served for the
system evaluation. Communication channels are established
with explicit Android Broadcast Intents which saves the need
for encryption and allows changing permissions at run-time.
Event transformations in form of OSGi bundles are down-
loaded from a web server. The performance analysis on a low-
end smart phone proofed the handling of multiple applications.
It serves three applications with a rate of 15 events per second
and per subscriber which is sufficient for most health care ap-
plications. We implemented three events transformations (i.e.
Tkg→lbs, TECG→HR, THRAlarm) and showed the energy savings of
replacing a heart rate sensor by the TECG→HR transformation.

For future work, we will implement more event transforma-
tions and analyze how the system scales for an increasing num-
ber of transformations running simultaneously. Furthermore,
we like to apply the approach of a remote repository to sensor
modules. Based on a sensor’s identifier, the corresponding
module is downloaded and an automated adaptation to new
sensors and sensor protocols is provided. We also plan to
introduce additional requirements in the event subscriptions
in order to adjust the sensors depending on the applications’
needs. For this, we will develop configurable accelerometers.

ACKNOWLEDGMENT

Gratefully supported by the German BMBF Software Cam-
pus (01IS12054) and the German Research Foundation (DFG)
within the research training group 1362 Cooperative, Adaptive,
and Responsive Monitoring in Mixed Mode Environments.

REFERENCES

[1] C. Seeger, A. Buchmann, and K. Van Laerhoven, “An event-based bsn
middleware that supports seamless switching between sensor configu-
rations,” in Proceedings of the 2nd ACM SIGHIT International Health
Informatics Symposium (IHI 2012). ACM, December 2012.

[2] A. Hinze, K. Sachs, and A. Buchmann, “Event-based applications and
enabling technologies,” in Proceedings of the International Conference
on Distributed Event-Based Systems (DEBS 2009), July 2009.

[3] C. Seeger, A. Buchmann, and K. Van Laerhoven, “Wireless sensor
networks in the wild: Three practical issues after a middleware deploy-
ment,” in the 6th International Workshop on Middleware Tools, Services
and Run-time Support for Networked Embedded Systems (MidSens
2011). Lisbon, Portugal: ACM, 2011.

[4] ——, “myhealthassistant: A phone-based body sensor network that
captures the wearer’s exercises throughout the day,” in The 6th Inter-
national Conference on Body Area Networks. Beijing, China: ACM
Press, November 2011.

[5] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services,
ser. MobiSys ’11. New York, NY, USA: ACM, 2011.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., 2003.

[7] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proceedings of the 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. ACM, 2010.

[8] PowerTutor, “A Power Monitor for Android-Based Mobile Platforms,”
http://ziyang.eecs.umich.edu/projects/powertutor/, 2012, retrieved on 27
November 2012.

[9] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung, “Body
area networks: A survey,” Mob. Netw. Appl., Apr. 2011.

[10] P. Neves, M. Stachyra, and J. Rodrigues, “Application of Wireless
Sensor Networks to Healthcare Promotion,” Journal of Communications
Software and Systems (JCOMSS), 2008.

[11] P. Brandão and J. Bacon, “Body sensor networks: can we use them?” in
Proceedings of the International Workshop on Middleware for Pervasive
Mobile and Embedded Computing (M-PAC ’09). ACM, 2009.

[12] A. Waluyo, I. Pek, S. Ying, J. Wu, X. Chen, and W.-S. Yeoh, “Litemw-
ban: A lightweight middleware for wireless body area network,” in 5th
International Summer School and Symposium on Medical Devices and
Biosensors, 2008.

[13] A. B. Waluyo, W.-S. Yeoh, I. Pek, Y. Yong, and X. Chen, “Mobisense:
Mobile body sensor network for ambulatory monitoring,” ACM Trans.
Embed. Comput. Syst., 2010.

[14] X. Chen, A. Waluyo, I. Pek, and W.-S. Yeoh, “Mobile middleware for
wireless body area network,” in Engineering in Medicine and Biology
Society (EMBC). IEEE, 2010.

[15] S. L. Keoh, N. Dulay, E. Lupu, K. Twidle, A. Schaeffer-Filho,
M. Sloman, S. Heeps, S. Strowes, and J. Sventek, “Self-managed cell:
A middleware for managing body-sensor networks,” in Mobile and
Ubiquitous Systems: Networking Services (MobiQuitous), 2007.

[16] J. Sventek, N. Badr, N. Dulay, S. Heeps, E. Lupu, and M. Sloman, “Self-
managed cells and their federation,” in 17th Conference on Advanced
Information Systems Engineering, 2005.

[17] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Middleware
to support sensor network applications,” Network, 2004.

[18] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz,
and J. Kelner, “Mires: a publish/subscribe middleware for sensor
networks,” Personal Ubiquitous Comput., Dec. 2005.

[19] V. Jones, A. Van Halteren, N. Dokovsky, G. Koprinkov, J. Peuscher,
R. Bults, D. Konstantas, W. Ing, and R. Herzog, MobiHealth: Mobile
Services for Health Professionals, in M-Health: Emerging Mobile
Health Systems. Springer-Verlag New York Inc, 2006.

[20] K. Kang, S. Heo, and C. Bae, “Android/osgi-based mobile healthcare
platform,” in 7th International Conference on Advanced Information
Management and Service (ICIPM), 2011.


