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Abstract—The monitoring of sleep by quantifying sleeping
time and quality is pivotal in many preventive health care
scenarios. A substantial amount of wearable sensing products
have been introduced to the market for just this reason, detecting
whether the user is either sleeping or awake. Assessing these
devices for their accuracy in estimating sleep is a daunting task,
as their hardware design tends to be different and many are
closed-source systems that have not been clinically tested. In
this paper, we present a challenging benchmark dataset from
an open source wrist-worn data logger that contains relatively
high-frequent (100Hz) 3D inertial data from 42 sleep lab patients,
along with their data from clinical polysomnography. We analyse
this dataset with two traditional approaches for detecting sleep
and wake states and propose a new algorithm specifically for 3D
acceleration data, which operates on a principle of Estimation
of Stationary Sleep-segments (ESS). Results show that all three
methods generally over-estimate for sleep, with our method
performing slightly better (almost 79% overall median accuracy)
than the traditional activity count-based methods.

I. INTRODUCTION

Sleep is an essential part of our life – almost one third of
it we spend sleeping – and has been identified to be crucial to
our health for a variety of reasons [1]–[3]. Sleep deprivation is
known to lead to stress, a disturbed circadian rhythm, weight
loss and, eventually, to death. The importance of finding out
more about the way we sleep and if our sleep is sufficient is
thus not limited to traditional disciplines such as somnology,
neurology or psychiatry: providing a better picture on how
well we sleep is relevant to all. Many off-the-shelf commercial
devices can be bought for this purpose in a wristband form
factor, from relatively compact devices such as the fitbit One1,
the Nike+ FuelBand2 or the Jawbone UP3 that are primarily
aiming at fitness and activity tracking, to clinically evaluated
devices such as the Actiwatch (Cambridge NeuroTechnology,
Cambridge, UK) [4]. Some evaluations of commercial devices
have shown that sleep information obtained from many such
devices, such as total sleep time (TST), is not sufficiently accu-
rate for sleep disorder assessment, (e.g., [5], which compares
the fitbit to a commonly used actigraph for sleep evaluation).
Such devices might be a benefit for private use, but have been
found to overestimate sleep by a large margin [6].

Actigraphy devices are mainly used in the diagnosis of
sleeping disorders like sleep apnea, but not necessarily de-
ployed by every sleeping lab, since these devices tend to be

1http://www.fitbit.com, last access 06/2014
2http://nikeplus.nike.com, last access 06/2014
3http://www.jawbone.com, last access 06/2014

Fig. 1. An illustration of timeseries data from a wrist-worn 3D accelerometer
(top) and polysomnography, suggesting that there is strong correlation between
sleep-wake phases (middle) and amount of activity (bottom). This paper
presents a benchmarking dataset to evaluate and reproduce results for such
algorithmic approaches to detect sleep and wake phases from accelerometer
data, and proposes a novel algorithm that is compared with 2 traditional ones.

expensive to acquire, to maintain, and to replace. The golden
standard in medicine to observe sleep remains polysomnogra-
phy [7], where the patient has to spent at least one night in
a sleeping lab while being monitored through typically more
than 20 different sensors. However, such an environment is
often uncomfortable to sleep in, as these sensors often need
to be wired to the side of the bed and is very different from
what the patient is used to at home. Additionally, this method
is expensive, time-consuming, and the ”first-night-effect” [8],
i.e., a bad perception of sleep due to a novel environment, is
inevitable. Therefore, alternative solutions, e.g., accelerometer-
based wrist-worn devices that might provide additional long-
term information on top of polysomnography, are being pur-
sued and investigated as a complementary instrument.

Accelerated developments in the use of inertial sensors in
cars and personal computing devices has led to the introduction
of many commercial inertial loggers that can be worn around
the wrist for several weeks at a time, and which are used to
monitor both sleep and physical activity of the wearer. Most of
these products are intended to be used in preventive health care
scenarios by the users themselves to track and quantize their
lifestyle. Verification of these commercial devices for clinical
trials is rarely a priority. These devices generally estimate
the times when the user was asleep, and several also contain
models of sleeping cycles and individual stages (such as Rapid
Eye Movement - REM - and Non-REM). These models and
their different hardware solutions are mostly closed-sourced,
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which makes the validation of the used algorithms challenging.
Additionally, benchmark datasets with raw acceleration data
from a wrist worn device with ground truth as polysomnogra-
phy outputs, so that detection algorithms can be pitted against
each other and results can be reproduced, are not publicly
available. One exception is a dataset that includes inertial data
[9], though the authors focused in this paper on a device that
was worn around the waist, which is a common procedure for
detecting the body posture outside a sleeping lab.

We argue in this paper that wearable wrist-worn activity
loggers can be deployed as an additional instrument to com-
plement the traditional polysomnography observation method,
on the premise that the internal algorithms that estimate sleep
and sleep stages are verified to work on benchmark data.
For this purpose, we have gathered a dataset from a variety
of 42 patients with sleeping disorders that have worn an
inertial data logger at the wrist while also being observed via
polysomnography to obtain the actual sleep ”ground truth”.
The dataset contains the raw inertial data from a common
MEMS (MicroElectroMechanical System) accelerometer at a
rate of 100Hz and a sensitivity of ±4g to enable generic testing
of estimation algorithms. Comparing the traditional algorithms
to detect sleep and wake cycles (as for example being used by
the Actiwatch - see study in [10] - and the Mini-Motionlogger -
see study in [11]), we present a novel algorithm for sleep-wake
phase detection, showing that a 3D accelerometer-based device
can yield detection accuracy of 74% by explicitly detecting
segments of idleness, as opposed to being based on detected
activity counts as is prevalent in related work.

The remainder of this paper is structured as follows: In
Section II, we present relevant research to our work, while
pointing out how it contributes to the field of sleep studies.
Then, in Section III, we present implementation details of
our adaptations of two well-known algorithms that will be
compared with our method for sleep-wake detection. Section
IV describes our first contribution in this paper: a benchmark
dataset that has been recorded with 42 patients, suffering from
a variety of sleeping disorders, to evaluate sleep-wake detec-
tion methods. Following the dataset description, we present the
details and results from our study in Section V, discussing our
findings in detail in Section VI. After the discussion and an
outlook on this work, we conclude this work in Section VII.

II. RELATED WORK

Several research groups investigated the use of actigraphy
for sleep disorder assessment [12]–[14]. The results indicate
that actigraphs can be used in addition to polysomnography,
especially if it is important to monitor the patient in his or
her usual environment, over longer stretches of time, or in
paediatric treatment. Actigraphs can give insights into differ-
ent sleeping disorders, such as sleep-wake disorders, sleep-
schedule disorder, periodic limb movement (PLB), narcolepsy
and sleep apnea. On the other hand, actigraphs are known to be
less accurate in detecting wake segments during sleep and for
sleeping disorders that exhibit vast amounts of such motionless
periods such as in insomnia [15]. Generally, actigraphs return
data that consist of activity counts, a measurement that has
not been standardized across devices, and interpreted by each
actigraphy manufacturer individually, making it challenging to
compare the different algorithmic approaches with each other.

The calculation of the activity count can vary substantially,
depending on the device that is being used. Several research
efforts, e.g., [16], have performed comparison studies to map
raw accelerometer data to activity counts, such as those from
the Actiwatch 7, to show that it is possible to use a 3D
accelerometer to calculate the activity counts. This has been
evaluated on sleeping data that have been recorded with an
accelerometer and the Actiwatch in parallel, and is based on
the findings of [17], where accelerometer data during the day
were matched to an actigraph output. More recent work [18]
took a similar approach to derive the activity count solely from
inertial data to be able to use traditional sleep detection and
sleep parameter algorithms. The algorithms were evaluated
by data obtained from 15 healthy subjects in their home
environment, showing high agreement rates between epochs
(i.e., observed time intervals in sleep research) for an actigraph
and a MEMS.

Based on this activity count measure, two validated algo-
rithms have been introduced in previous research that calculate
sleep parameters as well as sleep-wake cycles in actigraphs:
(1) Oakley’s from 1997 [19] is used for the Actiwatch, and
(2) Cole et al. from 1992 [20] is the basic approach for the
Mini-Motionlogger actigraph. For both algorithms, the sleep-
wake cycle is calculated offline, requiring the data to being
downloaded after recording. Many sleep studies make use
of these former mentioned devices, detailing how accurate
these devices can detect sleep for a large variety of disorders
[10], [11], [21], [22]. These algorithms also form the basis
for many novel devices that are equipped with a 3D MEMS
accelerometer, as opposed to the traditional actigraphs that
contain an omni-directional accelerometer.

Cole et al. in their approach make use of the zero-crossing
technique [22] to calculate first the activity counts for a
specified epoch, i.e., a time interval in which activity counts
are being calculated. The activity counts per epoch are used to
determine the total activity count D by considering a 7 minute
window according to the following equation:

D = P ∗ (A−4W−4 +A−3W−3 +A−2W−2+

A−1W−1 +A0W 0 +A+1W+1 +A+2W+2) (1)

which essentially detects sleep whenever D < 1. In this
formula, P is the scaling factor and W the weighting for each
activity count, calculating the weighted sum over the epochs
4 minutes prior (A−x) and 2 minutes after (A+x) the current
epoch (A0). The common parameters according to [23] are:
P = 0.0033, W−4 = 1.06, W−3 = 0.54, W−2 = 0.58,
W−1 = 0.76, W0 = 2.3, W+1 = 0.74 and W+2 = 0.67.

Oakley presented a similar approach in his paper [19] to
detect sleep and wake phases, making use of amplitude-based
activity counts. The algorithm examines the epochs that are in
the 2 minutes before and the 2 minutes after a scored epoch:

A =
1

25
a−2 +

1

5
a−1 + 2a0 +

1

5
a+1 +

1

25
a+2 (2)

where A is the total activity count for the scored epoch a0,
a−x is the activity count before the scored epoch and a+x the
one after, with x ∈ [1, 2] minutes. Each surrounding epoch is
multiplied by a weighting factor ( 1

25 and 1
5 ). The sensitivity

threshold for A can be set to high (80), medium (40) or low
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(20) sensitivity, detecting sleep whenever A < threshold. Low
and medium sensitivity thresholds correlate with a high degree
to sleep estimated by polysomnography [4].

We will focus in this paper solely on the algorithms and
their ability to accurately detect sleep and wake phases, from
any source of inertial sensor data. Since the two aforemen-
tioned algorithms were specifically designed for use on signals
from particular omni-directional accelerometer sensors, we
first needed to adapt these for raw 3D MEMS acceleration
sensors. The next section will provide the details on how these
algorithms were re-implemented, based on comparison studies
by other researchers, for detecting sleep and wake phases in
raw accelerometer data such as those from the open-source
inertial data loggers deployed in this paper.

III. ALGORITHM DETAILS FOR THE COMPARISON STUDY

The data processing chain for all algorithms considered
in this paper’s comparative study can be described in four
distinct steps: (1) Obtaining the raw 3D accelerometer data,
(2) band-pass filtering the data, (3) calculating the algorithm-
specific features per epoch and (4) applying the sleep detection
algorithms on this feature set. Figure 2 depicts plots from this
process up to the feature extraction for the algorithms by Cole
et al. and Oakley. Before any of the algorithms are being used,
we filter the raw acceleration data to remove any noise present
in the raw data, as well as any high-frequency motion artefacts,
as argued for in [24]. For this purpose we use a Butterworth
bandpass filter with different low- and high-cut frequencies that
have been experimentally verified for sleep and wake phase
detection in [16]. The activity counts for both methods have
been implemented as follows:

Oakley. In order to be able to evaluate against the algo-
rithm by Oakley, we use Virkkala’s approach presented in [16]
to estimate activity counts for Oakley’s algorithm equivalent
to the Actiwatch output. The activity count is estimated by
using the z-axis4 only to determine the maximum absolute
value inside 1-second windows. These per-second values are
accumulated over the observed epoch length and scaled by
two parameters, x and y, accordingly: A = x ∗ G + y,
where A = total activity count equivalent to the Actiwatch
activity count, G = activity count over the epoch length
derived from inertial data, x = 66 and y = -3.3. The scaling
factors have in the experiments of [16] been estimated for the
commonly-used epoch length of 30 seconds for a wrist-worn,
3D accelerometer-based device, which is why we will use this
same epoch length for our comparison study to calculate the
activity count. The use of a different epoch length will require
the reassessment of the scaling factors.

Cole et al. For the algorithm by Cole et al., we have
implemented a windowed zero-crossing count on the inertial
data to obtain the activity count as it is used in equation (1).
Researchers in [25] detailed that the zero-crossing for this
purpose on the accelerometer’s z axis was conducted to obtain
the activity count. We have replicated this approach here with
these parameters, counting the zero-crossings on the filtered
data for every 1-second interval.

The activity counts for both algorithms have been accu-
mulated over epochs of 30 seconds, enabling the use of these

4This is taken to be the axis that is perpendicular to the hand palm.
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Fig. 2. Timeseries of the data abstraction steps performed in this study, to
compare methods that detect sleep-wake phases based on 3D acceleration. The
raw accelerometer data (top) is first treated with a band-pass filter (middle, in
red), after which method-specific features, called activity counts, are computed
per epoch (bottom, in black) to detect the sleep and wake phases.

two algorithms with the exact same parameters as introduced
in previous work. It is important to note that the results from
these re-implementations might still slightly deviate from the
algorithms’ designs in the way they are embedded in the
Actiwatch and Mini-Motionlogger devices, since they operate
on essentially different sensor modalities. However, the two
independent studies that our implementations are based upon
( [16] and [17]) report encouraging approximation results
between the respective activity count methods (embedded in
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Fig. 3. Our approach focuses on the detection of sustained periods of idleness
during sleep, in which the 3D acceleration signals remain flat. We use these
segments and their duration (grey bars at the bottom of the plot, duration in
seconds) as a basis for sleep detection, as opposed to sliding a fixed-width
window over the data as in traditional activity count-based analysis methods.

hardware) and their 3D MEMS accelerometer-based repro-
duced variants, indicating that differences can be expected to
be small.

The ESS approach. We present and evaluate in this paper a
third alternative method, called ESS (Estimation of Stationary
Sleep-segments), that is inherently different from the previous
two methods since it does not rely on activity counts (whether
produced by amplitude or zero crossings) over pre-defined time
spans. Instead, it relies on the presence of long periods of
idleness that in 3D acceleration data manifest themselves as
flat horizontal signals. These are typically interchanged now
and then with short transitions where the patient changed her
sleeping posture. These segments are then used similarly to
the epochs in the previous two methods, along with their
duration (in seconds) as weights. Figure 3 illustrates this
concept on typical sleep data from a 3D acceleration sensor
(in mg) recorded at 100Hz over a time span of 50 minutes
before awakening (at 4:27am): The intervals between motion
segments are typically quite long during normal sleep. The
detection of these segments is based on the following method:

Sδ =

{
1, if

√
1
99

∑100
i=1(zi − z)2 > δ,

0, otherwise.
(3)

Our approach consists essentially out of two steps: The
first one applies a strong low-pass filter to the data to identify
the segments in which there are no movement patterns present
in the accelerometer data, as detailed in the formula above.
Similar to the implementation for Oakley and Cole et al., we
use solely the z-axis readings to which the filter is applied to.
This is achieved by a sliding window approach in which the
standard deviation (STD) is calculated over a 1-second interval,
after which the resulting value is thresholded for δ. The
second step then performs the identification of entire segments
and collects these segments’ start and stop times along with
their length in seconds in a lookup table for later reference.
A second threshold parameter is required here to select the
minimal length (in seconds) for such intervals in which the
accelerometer values remain unchanged. The source code
(written in Python) for all three algorithm implementations as
used in the remainder of this paper is available for download
at: http://www.ess.tu-darmstadt.de/ichi2014.

The following section will focus on our experimental setup,
specifically the wearable logging platform that was used in
collecting our benchmark dataset, the methodology of the data
collection process, as well as further details on the type of
patients who participated in this study.

IV. EXPERIMENTAL SETUP

For a comparative study between the two methods that
were described in the previous section and our proposed sleep-
wake phase detection method, we collected 3D acceleration
data from 42 patients spending a night in a sleeping lab, while
being supervised by somnologists and being monitored with
polysomnography. The latter can be used as so-called ”ground
truth” for the patients’ actual sleep-wake phases, as well as
provide more details on the individual sleep phases (such as
REM vs. Non-REM). The 3D acceleration logging platform
with which these data were recorded is a wrist-worn device,
for which both the hardware design as well as the firmware
are publicly available.

A. Wrist-Worn 3D Accelerometer Logger

Gathering data over a long time span with a high frequency
rate is a challenge, since it requires a device that (1) is
sufficiently small and light so that it can be worn comfortably,
(2) can store data internally over potentially longer periods for
later (offline) evaluation and (3) from which the raw sensor
data can be extracted, without preprocessing. It is hard to find
such devices that meet all requirements, especially since most
of these devices are closed-source and give only the possibility
of looking at preprocessed data via the company’s software or
by uploading data directly to their web server. Therefore, we
decided to rely on a custom-built prototype: the wrist-worn
data logger measures 3D acceleration samples with a default
sensitivity range of ±4g that are sampled at 100Hz, together
with the readings from an ambient light sensor (that could be
used later on in detection of dark environments). The on-board
accelerometer, the ADXL345 from Analog Devices, can be re-
configured from sensitivity ranges from ±2g up to ±16g and
supports sampling rates of several thousands of samples per
second. The whole unit fits in a plastic enclosure that protects
the module and is small enough to be worn comfortably on
the wrist and is attached with an elastic strap to it.

These sensor data are compressed and stored directly on the
embedded SD card for later retrieval via a USB port. As soon
as the logging device is thus attached to a host computer, its
data can be downloaded and the small battery can be recharged.
The 180mAh Li-Polymer battery lasts approximately two
weeks while continually logging at 100Hz, which can be
extended significantly by lowering the sampling rate (though
for this paper’s experiment purposes, we only needed to log
data for maximally two days). The designs, both hardware and
software, of this particular logger are open-source and avail-
able via http://www.ess.tu-darmstadt.de/hedgehog to support
reproduction of our experiments.

B. Study Participants

We gathered data from 42 sleeping lab patients aged
between 28 and 86 years, suffering from a variety of sleeping
disorders (though most were later diagnosed with primarily
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Fig. 4. TOP: Sleep phases from a 24 year old female subject, showing awake (W), movement (M), REM (R, red rectangles in the plot) and the Non-REM
phases (1, 2, 3). MIDDLE: Inertial data from the sensor worn at the dominant wrist. BOTTOM: Light sensor values for the entire recording period.

sleep apnea syndrom (SAS), restless leg syndrome (RLS), or
narcolepsy). In total, we recorded 45 nights’ worth of data,
whereby three patients wore the sensor for two nights in a row,
attesting for over 409 hours of 100Hz acceleration samples,
annotated with ambient light readings (which are not used in
this paper’s comparative study, but have been included in the
benchmark dataset for incorporation in later algorithms) and
the polysomnography details. Table I summarizes the main
details on the patients that participated, indicating also how
much data we obtained from the wrist sensor.

The patients were recruited by staff at the sleeping lab and
monitored at least over one night via the standard polysomno-
graphy method, as well as with the wrist sensor. After a short
introduction on how the wrist sensor works and what type of
data it captures, each patient was asked to start wearing the
sensor unit at least one hour before going to sleep and to take
it off one hour after waking up. The patients signed a privacy
policy and a consent form, allowing the scientific use of the
obtained anonymized data from both the polysomnography as
well as from the wrist sensor. They were furthermore given
documents that describe the experiment in detail and stipulate
how the data will be anonymized afterwards in order to enable
sharing of the dataset with other researchers for future studies.

In general, the acceptance of wearing the wrist-worn device
in addition to the polysomnography set-up was high: Many
patients expressed interest in future studies of the device
and responded positively to the idea of having such devices
complement polysomnography for recording in their usual
home environment.

C. Data Collection Method

Data obtained in this study consists of over 409 hours
of inertial data and polysomnography data. The sensor was
instructed to be worn on the dominant wrist, although previous
studies have shown that the wrist placement is not crucial
in sleep studies [26]. Before the sensor distribution, the real-
time clock embedded on the accelerometer-based device was
configured to be aligned to the clock of the polysomnography

TABLE I. SOME KEY PROPERTIES OF THE COLLECTED BENCHMARK

DATA (SAS = SLEEP APNEA SYNDROM, RLS = RESTLESS LEG SYNDROM).

number of nights: 45
number of patients: 42
gender distribution: 22 male, 20 female
age distribution: 24 - 86
disorders (diagnosed): Insomnia, narcolepsy, SAS, RLS
data (in minutes): 24475

system in the sleeping lab, in order to obtain a synchronized
dataset. On return of the wrist-worn sensors, their data logs
were visualized to the patients as part of the privacy policy
(see Figure 4 for an example of such a visualization).

The patients’ polysomnography data was scored in 30
second epochs by standard procedure obtained after a few
days of monitoring, since the medical staff had to analyze
the data first, after which the doctor had to summarize these
diagnostic findings. The data consists of the patients’ demo-
graphic information, the wake and sleep stages, with sleep
being displayed by REM and Non-REM (sleep phases 1-3)
and sleep characteristics, e.g., total sleep time (TST).

The sleep phases are divided into three different stages,
labelled ’1’, ’2’ and ’3’. Additionally, periods of particularly
high amounts of limb movement are marked in the dataset
(”M”), as well as when the polysomnography detected a wake
phase (”W”). Note that traditionally, a fourth sleep stage ’4’
is sparsely present in the dataset’s polysomnography section,
although this sleep stage is not actively being used since 2012
in the sleeping labs we have collaborated with. The dataset we
obtained does not contain this sleep stage.

The following section will present the evaluation results on
the recorded data, showing the performance of each of the two
activity count-based algorithms, as well as our novel method
presented in the previous section.
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Fig. 5. Sleep-wake estimation results for a 24 year old female suffering from narcolepsy. Displayed are the evaluation of the activity count based algorithm
(Oakley and Cole et al., middle plots) and the ESS algorithm (bottom plot) compared to the polysomnography (PSG) output. Additionally, we see the raw 3D
inertial data of the wrist-worn sensor (top plot). Precision and recall are similar for all three algorithms (87%-99.9%).

Fig. 6. Sleep-wake estimation results for a 69 year old male suffering from SAS. Displayed are the evaluation of the activity count based algorithm (Oakley
and Cole et al., middle plots) and the ESS algorithm (bottom plot) compared to the PSG output. Additionally, we see the raw 3D inertial data of the wrist-worn
sensor (top plot). Especially in the beginning of the recording is a sleeping segment detected, which was due to immobility of the patient while starting the
PSG. ESS shows clearly detected wake segments, outperforming the other two algorithms by 10%-20% in accuracy.

Fig. 7. Sleep-wake estimation results for a 72 year old male patient suffering from SAS. Displayed are the evaluation of the activity count based algorithm
(Oakley and Cole et al., middle plots) and the ESS algorithm (bottom plot) compared to the PSG output. Additionally, we see the raw 3D inertial data of the
wrist-worn sensor (top plot). ESS clearly detects the initial wake segment while Oakley and Cole et al. tend to detect short sleep intervals.

130130130130



TABLE II. TOTAL SLEEP TIME (TST) AND SLEEP EFFICIENCY (SE)
FOR ALL NIGHTS ACCORDING TO PSG, THE TWO ACTIVITY-COUNT BASED

ALGORITHMS AND OUR APPROACH (ESS).

parameter PSG Oakley Cole et al. ESS

TST 287 min ±92 413 min ±42 406 min ±44 328 min ±88
SE 66% ±20% 94% ±3% 93% ±4% 76% ±18%

V. EVALUATION

In order to find the optimum minimum length for the
intervals of non-movement, we defined six different interval
thresholds (300, 360, 480, 600, 720 and 900 seconds) and eval-
uated their performance in regard to sleep detection, using the
PSG dataset as ground truth. We take the accuracy for detecting
sleep and wake phases into regard, and use the precision and
recall to investigate further differences between the individual
parameters’ performances. We observe that the mean accuracy
is best for the 600 interval which is why we choose this
interval to determine immobile segments. Additionally, we set
the standard deviation (STD) threshold to 6, as derived by
experimental evaluation of different thresholds.

For each of the three sleep estimation algorithms we
compare the results to the PSG output. Figure 5 shows the
visual results for all three algorithms together with the raw
data and the PSG estimation for sleep and wake (blue and
yellow respectively). For Oakley’s algorithm we use the most
sensitive threshold of 20 to mark the epoch as sleep. Just by
visual inspection we see that Cole et al. overestimates sleep
and fails to detect small wake segments. Oakley exhibits many,
mostly short wake segments within sleep intervals but detects
most of the sleep. Interestingly, ESS detects the initial wake
segment which is almost identical to the PSG segment, while
sleep is being detected accurately. Quantitative results confirm
the observations: accuracies vary for all three in the range of
82% - 85%. More visual results are shown in Figures 6 and
7, indicating a better performance for the ESS algorithm in
contrast to Oakley and Cole et al.

Additionally to the visual inspection, we investigated some
sleep parameters to complete the dataset’s description. We
calculate total sleep time (TST) and sleep efficiency (SE) for
each algorithm and compare these values. Total sleep time is
the amount of sleep in minutes being detected by the algorithm.
Sleep efficiency is the quotient of TST and total recording time
(here: PSG start and PSG end). Table II shows the results for
these parameters, indicating a very low mean value for TST as
determined by PSG. In comparison to that, Oakley and Cole et
al. tend to overestimate TST, while ESS represents a TST value
between PSG and Oakley. Here, the inevitable problem can be
observed: activity count based systems tend to overestimate
sleep in general, as depicted in [5]. The same is shown here
in SE: Oakley and Cole et al. exhibit high values of 94% and
93% respectively, while ESS is very close to the PSG SE. We
can state here that all three algorithms differ from PSG, ESS
less than Oakley and Cole et al.

Accuracy results for all algorithms are shown in Figure
8 as boxplots. We observe a median (red line in the box)
for ESS that is slightly higher than for Oakley and Cole
et al. Median accuracy values for the three approaches ESS
(78.83%), Oakley (74.94%) and Cole et al. (73.75%) are all
close to each other. Overall, however, ESS’ performance is
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Fig. 8. Accuracy results for the ESS (median: 78.83%) algorithm compared
to Oakley (median: 74.94%) and Cole et al. (median: 73.75%). Both median
(red line in the box) and interquartile results indicate that the proposed ESS
outperforms the traditional actigraphy-based approaches, while all approaches
still leave ample of room for improvement.

slightly better over all participants in the study, which can
be also seen by observing the interquartile borders. Note here,
that for each algorithm an outlier is visible (lowest ’+’ for each
boxplot): This is explained by a 69 year old female patient,
who lay awake most of the time while being recorded, while
her inertial data log exhibited almost no movements. For this
strong outlier case, all three algorithms estimated sleep instead
of wake.

Additionally, we show in Figure 9 precision and recall
results for both sleep and wake segments (left plots: precision
and recall for sleep, right plots: precision and recall for wake).
Recall is the portion of sleep (or wake) segments that were
correctly identified as sleep (or wake) during the classification.
We observe for sleep that precision results are slightly better
for ESS (median: 78.95%) and Oakley (median: 78.29%),
whereas Cole et al. rest at 72.91%. We can highlight here
that all three algorithms perform similarly in retrieving sleep
segments from the given dataset. Cole et al. exhibits a high
recall for sleep (median: 98.74%), which can be explained by
the fact that Cole mostly detects sleep throughout the whole
dataset, while Oakley (median: 92.93%) and ESS (median:
94.12%) highlight wake states more often. Interestingly, wake
is being detected with a high variety in precision for all three
algorithms, showing a higher recall for Oakley and ESS (both
over 20% higher than Cole et al.).

The approach suggested by Cole et al., while detecting
almost all the sleep intervals, fails to detect the relevant wake
segments resulting in a much lower recall. The problem for
detecting wake segments in this dataset in particular from a
sleeping lab is visible in the results and is a challenge for
most sleep-wake detection algorithms. It is also important to
note here that the ESS algorithm keeps an adequate balance of
detecting sleep and wake segments in the dataset, as opposed
to Oakley and Cole et al., which tend to neglect wake segments
as shown in the results of Figure 9.

We will now discuss our findings, highlighting both the
benefits and limitations of using the dataset presented in
this study, and give insights into further improvements for
algorithms that analyse these data.
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Fig. 9. Precision and recall results (left: sleep, right: wake) for ESS compared to Oakley and Cole et al. Sleep precision (leftmost plot) for Oakley (median:
78.29%) and ESS (median: 78.95%) are on the same level, while Cole et al. exhibits a better recall (median: 98.74%). For wake the results are inverted: Oakley
(median: 38.86%) and ESS (median: 45.42%) show a higher recall, while Cole et al. yields a higher precision (median: 91.14%).

VI. DISCUSSION

This work compares two commonly used sleep detection
algorithms to the results of the ESS approach on sleep-wake
detection with data from sleeping lab patients. The accuracies
for detecting sleep and wake segments are very promising
already, as shown in the previous section, yet we believe that
parameters can be optimized to improve on the detection of
such sleep and wake intervals. We will focus in this section on
finding good candidates for these parameters, as well as what
impact the dataset has for future studies.

A. Dataset

The dataset recorded for this study is a challenging one:
First of all, most of the subjects observed suffer from a sleep
disorder (diagnosed after their visit to the sleep lab), which
makes it difficult to determine when the patient is really
awake or just exhibiting spontaneous muscle contractions. This
we observed for example for a 69 year old female subject,
suffering from sleep apnea syndrome (SAS). According to
PSG the patient was sleeping, but this sleep was interrupted
by various incidents which let the sleep-wake algorithm detect
wake segments even though the patient was sleeping. Second,
the dataset includes also healthy patients (though a minority
at 5/42 in total), which makes it a rich dataset not only
on various sleeping disorders. All sleeping lab patients were
diagnosed several days after their stay in the sleeping lab, we
did not include healthy patients in the dataset on purpose.
Additionally, three patients had to spend two consecutive
nights in the sleeping lab, which produced particularly useful
data as it should minimize the ”first-night-effect” drastically
on the second night.

Our dataset with PSG data is enriched with acceleration
data from a wrist-worn sensor and enables follow-up research
to use data that is not only based on activity counts similar
to actigraphs, but also on more fine-grained and relatively
high-resolution (100 Hz) signals. Especially in the paediatric
sleep research [27] such a set-up could lead to a more reliable
detection of sleep-wake segments, since children have been
observed to move more during sleep.

Some limitations of the dataset have to be considered here
as well: (1) The benchmark dataset contains recordings that are
mostly from patients spending one night in the sleeping lab,
which is bound to have a drastic impact on the dataset. Normal
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Fig. 10. Different idleness segment thresholds (x-axis, in seconds) compared
among each other, indicate that 600 seconds (10 minutes) is the optimum
interval length threshold for the ESS algorithm.

sleep that approximates that of the patient’s home environment
usually is achieved on the second night in the sleeping lab.
According to the medical staff at the sleeping labs, the patients’
diagnoses could be obtained by spending only one night in the
sleeping lab. A minor part of the dataset was obtained from
patients who did spend two subsequent nights in the sleeping
lab, but most of the data can be regarded as atypical and
challenging for detecting sleeping patterns. Further evaluation
needs to be conducted on how such an effect is influencing
the overall results. (2) We assessed only few healthy patients,
which is why the behavior of the ESS algorithm still has to
be investigated under ”normal” circumstances, i.e., observing
sleep in the home environment. This obviously becomes a
challenge when ground truth data (PSG recordings) are needed
to asses and evaluate the algorithm. The wrist-worn sensor
presented in this study can be used for long-term studies
without the need of recharging it for at least two weeks straight,
depending also on the recording settings, especially the sensor
module’s sampling frequency. Due to this focus on sleeping
lab patients, the results on this dataset are therefore likely not
representative for healthy subjects.

B. Parameters

As mentioned in the previous section, we determined an
immobile segment length of 600 to mark the segment as
sleep. This immobility threshold when varied yields different
accuracy results on our dataset, as depicted in Figure 10 for the
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Fig. 11. Accuracy results for different STD thresholds (2, 4, 5, 6 and 7) for idleness interval length thresholds (540, 600, 660, 720, 780, 840 and 900 seconds).
These two parameters were varied to achieve the optimum recognition rate for detecting both sleep and wake segments across all patients.

aforementioned thresholds (300, 360, 480, 600, 720 and 900).
We observe an increase of the median until 600, after which
it slightly drops again. Whether other thresholds can improve
on the results has still to be investigated. For this purpose we
have to take into consideration the STD threshold for detecting
immobile signals within the inertial data. In Figure 11 we show
the accuracy results for each immobile threshold length and
the individual STD thresholds (2, 4, 5, 6 and 7). A too small
STD leads to a lower accuracy, while the highest depicted here
(7) stays steady over all immobile lengths. Not shown here is
that for lower thresholds, we receive a very high precision for
sleep, but a very low one for wake, which would contradict a
system that should detect both sleep and wake segments. We
can conclude that depending on the scenario, the thresholds
can be varied and that for this study, the optimum thresholds
of 6 for the STD and 600 for the idleness interval length return
the most optimal results.

Activity count-based methods such as the ones by Oakley
and Cole et al. take the surrounding epochs into consideration
to smooth out the sleep detection over longer intervals of time.
Such a step is not implemented in the ESS algorithm. One
possibility to embed this is to determine all the stationary
segments and detect smaller movement segments in-between
these segments, which could be filtered out by setting a specific
windowed threshold for movement (e.g., 2-3 seconds), that
are marked as sleep. Nevertheless, these are considerations for
future studies that need to be evaluated more thoroughly.

This paper’s topic was limited to the identification of sleep
and wake phases present in the 3D accelerometer data. Since
the paper’s dataset also contains more fine-grained sleep phase
annotations, an interesting further line of investigation would
be to take a deeper look into algorithms that not only determine
sleep-wake intervals, but also estimate further phases such as
REM and Non-REM, based on wrist-worn accelerometer data.
As an initial investigation on how indicative the presence of
activity in the data is for particular sleep phases, a histogram
was constructed that shows the number of occurrences for
each sleep phase per variance bin, as depicted in Figure 12
by a distribution of variances over 1 second for all sleep
phases (SP1-3 and REM) including wake segments. As can
be observed, REM (red) occurs only on the low ranges of
variance, indicating that this phase exhibits low variances only

Fig. 12. Histogram of variance occurring in the different sleep phases REM
and Non-REM (SP1-SP3) and wake phases.

(which is in support of what is know about limb motion during
the REM phase). However, how well any algorithms could
manage to estimate REM/Non-REM phases needs much more
investigation on the dataset itself.

VII. CONCLUSIONS

With the advent of 3D accelerometer MEMS chips that
are both small and power-efficient enough to be included in
wearable devices, long-term monitoring of sleep and wake
phases has become an attractive and cost-effective instrument
to complement traditional sleep lab studies using polysomnog-
raphy. The systematic evaluation of algorithms that detect sleep
and wake phases in such accelerometer data is still lacking,
however, as current personal sleep devices and systems on
the market are closed-source and not meant to be clinically
deployed.

This paper contributes to such systematic evaluation
of detection algorithms by presenting a challenging and
publicly-available dataset5 with over 409 hours worth of
polysomnography-annotated 3D acceleration data at 100Hz for

5http://www.ess.tu-darmstadt.de/ichi2014
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42 sleep lab patients, recorded with an open-source logging
platform. We furthermore presented a novel method to detect
sleep and wake phases for such platforms and compared this
method with two traditional activity count-based methods on
the benchmark dataset. Results show that the ESS algorithm
achieves an overall median accuracy of almost 79% for de-
tecting sleep and wake intervals. Compared to the other two
methods of Oakley and Cole et al., relevant wake segments
are detected with a higher confidence.

Future work that is currently ongoing includes improve-
ment possibilities for the presented detection approach: per-
formance could for instance be expected to improve with
additional information, coming either from further on-board
sensors (such as the ambient light sensor on the presented
wrist-worn logging platform) or by including patient-specific
models on sleeping disorders and personal routines, e.g., on
usual sleep times.

The dataset and source code for the three evaluated algo-
rithms is available at http://www.ess.tu-darmstadt.de/ichi2014
to support reproducing this paper’s experiments and to facili-
tate investigation and evaluation of further methods.
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