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Abstract—Long-term activity recognition relies on wearable
sensors that log the physical actions of the wearer, so that these
can be analyzed afterwards. Recent progress in this field has
made it feasible to log high-resolution inertial data, resulting
in increasingly large data sets. We propose the use of piecewise
linear approximation techniques to facilitate this analysis. This
paper presents a modified version of SWAB to approximate
human inertial data as efficiently as possible, together with
a matching algorithm to query for similar subsequences in
large activity logs. We show that our proposed algorithms are
faster on human acceleration streams than the traditional ones
while being comparable in accuracy to spot similar actions,
benefitting post-analysis of human activity data.

I. INTRODUCTION

Due to recent advances in microelectronics, research in
wearable healthcare sensing has undergone a tremendous
boost, facilitating small and comfortable sensors that can
be worn for longer periods of time (weeks up to months).
These new types of devices run on lightweight batteries,
and contain the sensors and storage space to record physical
motion properties of the person wearing it. Many potential
applications have been mentioned for this form of activity
recognition research, many of them for the monitoring,
revalidation and treatment of patients (e.g. [1]).

Recent work has started to examine the possibility of an
extension to actigraphy, where a person’s level of physical
activity is logged over time to be analyzed periodically.
Instead of measuring mere amount of activity, this new
research instead aims at detecting what type of activities
are present in the captured data. The inertial information
produced by these activity sensors is detailed enough to
distinguish several types of physical activities such as “run-
ning”, “taking the stairs”, or “playing tennis”.

This paper’s focus is the challenge that lies in the inter-
active analysis of large amounts of recorded high-frequent
inertial data, where users or researchers can view the ac-
tivity log as a time series, zoom into interesting areas, and
select subsequences that exhibit characteristic patterns for
particular activities. The algorithms proposed in this paper
then allow the system to search in the rest of the data for
similar subsequences, in a reasonable time frame for an
interactive application. Figure 1 illustrates a prototype of
such an application, where the selecting of subsequences in
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Figure 1: This paper presents approximation and matching
algorithms to analyze 3D inertial activity data. Fast matching
allows to interactively select a query subsequence in the time
series, directly after which the system returns similar ones.

the time series results in the system finding closest matches
elsewhere in the data. This would be beneficial for offline
annotation of the data, identification of motion gestures, and
detailed comparison of similar activities.

The long-term recording of data tends to result in large
databases of sensor samples however, and the analysis
techniques on this type of data have thus far been limited to
resource-hungry and offline prototypes based on machine
learning algorithms such as boosting, topic models, and
hidden Markov models [2]. Figure 2 shows part of such
an activity data set of 24/7 recording, along with one of the
wrist-worn sensors that is used to capture it. The bottom
plot shows the motion patterns in the sensor data while the
subject was walking.

We propose a two-tier set of algorithms: one that approxi-
mates the inertial data so that it can be stored in less memory
and be processed faster, and one that matches subsequences
of these approximations to find similarities within a large
time series of human activity data. To achieve our above-
mentioned goal, several requirements need to be fulfilled:
First, as both researchers and subjects have proven to be
able to browse time series plots of inertial data well (as
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Figure 2: Typical time series plots from a long-term activity dataset, provided by a wrist-worn sensor (in-set picture). Each
day, about 8.6 million 3D inertial (accelerometer) samples are complemented with light, temperature, and time stamp data.
Acceleration data is focused on as the most descriptive modality; It contains both posture (see for instance the sleeping
postures during the night segments) and motion data. The bottom zoomed-in region focuses on data from the subject walking.

mentioned by [3]), the data needs to be approximated so that
it can still be represented visually as a time series. Second,
the algorithms that do the approximation of data need to be
fast enough so that it does not hinder the loading of data,
and accurate enough to capture the essence of the motion
patterns. Finally, the matching needs to be fast enough to
allow interactive applications, while being accurate enough
to do qualitative matching.

II. RELATED WORK ON INERTIAL ACTIVITY DATA

Previous studies have applied a large variety of approxi-
mations and features to human accelerometer data. Among
the more prominent are (usually calculated over a sliding
window) mean and variance, as well as Fourier coefficients,
wavelet matches [4], and several approaches applying con-
version in sequences of symbols.

The appeal of using the mean and variance as features
for acceleration is particularly high because of their efficient
implementation. The mean tends to capture the local posture
of the body, and variance describes how much motion is
present in the signal. The combination of mean and variance
has also been used with much success in detecting high-level
activities by calculating them over large sliding windows [5].
These features have been used effectively when combining
multiple body-worn sensors [6] or in short sliding windows
with an HMM-based approach [2].

Several features are in contrast more costly to calculate
but have resulted in better performance. Autocorrelation,
Discrete Fourier Transform, and filterbank analysis can be
expected to work especially well on activities with dominant
frequencies, and have been identified as superior in several
comparison studies (e.g., [7]).

Other approaches quantize the data in symbol strings and
look for sequences in this data. Minnen et al. [8] proposed
to discretize the inertial data first by fitting K Gaussians
to achieve a roughly equal distribution of symbols, after
which repetitive sub-sequences in the data, so-called motifs,
are searched that in turn train HMMs to allow unsuper-
vised learning of activities. Later work used the symbolic
aggregate approximation (SAX [9]) algorithm as a way to
represent the time series, which was further improved to
iSAX [10]. Symbolic methods are known to be fast, but are
not as easy to visualize as the ones covered in this work.

Apart from [11], where the authors use the SWAB al-
gorithm on fused acceleration and gyroscope data to detect
relevant gestures made by the wearer of the sensor, piecewise
linear approximation of wearable inertial data has thus far
not often been explored. Work on matching has thus far used
mostly Euclidean distance over features or dynamic time
warping (DTW) [12] to compare subsequences in inertial
sensor data, or window based classification, gesture spotting
[6], or motif discovery [8].
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Figure 3: SWAB approximates a time series to a set of
segments, with a sliding buffer in which local bottom-
up segmentation is done [13]. Our adaptation replaces the
Sliding Window phase by moving the buffer up to the data
point where the slope changes sign.

III. APPROXIMATION

This section introduces the algorithm proposed in this
paper to approximate human acceleration time series effi-
ciently, so that it is represented by a smaller amount of data
without losing the intrinsic nature of the underlying activity.

A. SWAB

Key to our approach is the approximation of a time
series of human acceleration data, into a representation of
linear segments that is efficient to manipulate and faster
to process than the raw sensor data. The linear segments
can be visualized in an identical way to the original data
in a time series plot, while the number of data points is
reduced. The work presented here is based on SWAB [13],
and is in essence an adaption of this algorithm specifically
for physical activity data from accelerometer data.

The original algorithm works by approximating the time
series by well-chosen linear segments that as [13] showed
are closer to the data than the online Sliding Windows
approach, while being still an online approach. Figure 3
sketches the basic operation of SWAB: A buffer window
is slid over the original time series, in which Bottom-Up
segmentation is performed. The left-most segment is then
produced as the next approximated segment, while the buffer
window is moved to the right, to the next original data point
for which the Sliding Window approximation cost overruns
a threshold. More precisely if the segment between the ith
and jth data points, xi and xj respectively, is called S, the
cost of approximation of the subsequence (xi, xi+1..., xj)
by S is calculated by

c(xi..xj , S) =

√√√√ j∑
n=i

(
xn − (xi + (n− i) ∗ xj − xi

j − i
)
)2

,

which is then done for every new data point xj until the cost
c overruns the cost threshold. In that case, the new buffer
is extended to xj−1 and the next approximation segment is
searched with the Bottom-Up approach in the buffer.

Listing 1: Here the original SWAB algorithm [13] abstract-
ing timeseries with cost threshold T , has the Sliding
Window heuristic modified to increase the algorithm’s speed.
To create less data, segments with similar slopes are merged.

� �
[ s e g s ] = mSWABsegs ( t i m e s e r i e s , l en , T )

w i n l e f t =1 ; w i n r i g h t = b u f s i z e ;
whi le ( 1 ) % w h i l e new da ta :

swabbuf= t i m e s e r i e s [ w i n l e f t : w i n r i g h t ] ;
% Bottom−Up s e g e m e n t a t i o n o f b u f f e r :
BUsegs ( swabbuf , b u f s i z e , BUsegs , T ) ;
% add l e f t −most segment from BU:
s e g s = [ s e g s ; BUsegs ( 2 ) ] ; n = s i z e ( s e g s ) ;

% merge l a s t s e g m e n t s i f s l o p e i s e q u a l :
i f s l o p e ( s e g s ( n ) ) == s l o p e ( s e g s ( n−1)) ,

m e r g e l a s t 2 ( s e g s ) ; n = n−1; end ;
% s h i f t l e f t o f b u f f e r window :
w i n l e f t = BUSegs ( 2 ) . x ;

% s h i f t r i g h t o f b u f f e r window :
i f ( w i n r i g h t <l e n ) ,

i = w i n r i g h t +1;
s = sgn ( s l o p e ( i , i −1 ) ) ;
whi le sgn ( s l o p e ( i , i −1))== s ) ,

i = i +1 ;
end ;
w i n r i g h t = i ;
b u f s i z e = w i n r i g h t−w i n l e f t ;

e l s e
% a l l done , f l u s h b u f f e r s e g m e n t s :
s e g s = [ s e g s ; BUsegs ] ;
break ;

end ;
end ;� �

B. mSWAB

The authors of [13] mention that optimizations are pos-
sible for particular data, by for instance incrementing the
sliding window with multiple samples instead of one (which
showed beneficial in case of ECG data). SWAB’s standard
version moves a sliding window, recalculating an approxima-
tion cost and matching it to a threshold for every additional
sample of raw data (Figure 3).

Our adaptation exploits the property of accelerometer
data, which tends to heavily fluctuate by producing char-
acteristic peaks in the time series, and instead moves the
window on to the next data point when the slope’s sign
changes between positive and negative, or zero. This means
that instead of having to iteratively calculate c, one simply
has to calculate the slope between adjacent data points xj

and xj+1 and stop when the signum function changes value,
or sgn(xj − xj−1) = sgn(xj+1 − xj).

This speeds up the process as it requires a single test
per sample (O(n) with n the samples the buffer is shifted
over), instead of recalculating costs over the segment (O(n2)
regardless whether sum of squares or the L∞ norm is
used for the cost calculation). Although the Bottom-Up
part of SWAB remains still costly, substituting the Sliding



Window approach leads to a significant effect when the
accelerometer data is sampled at a high frequency or in
constant subsequences (i.e., when no movement occurs). The
latter occurs very frequently, especially in long-term data
which include resting and sleeping segments.

A second change to the original algorithm uses a sugges-
tion made by [14] to merge the last two produced segments
if their slope is the same. Listing 1 shows the source code,
highlighting the differences to the original SWAB algorithm.

C. Evaluating the Approximations

In order to test the performance of mSWAB, we verify two
claims: (1) whether mSWAB does indeed approximate the
original accelerometer data faster than the generic SWAB,
and (2) whether the quality of approximation is indeed
comparable to that of SWAB.

In order to obtain meaningful results for our proposed
application, three data sets of activity data were used that
are similar in structure and configuration to the one de-
picted in Figure 2. Each data set contains the continuous
3D acceleration data from a wrist-worn sensor, and spans
between 24 and 48 hours. The subjects that were monitored
in these can be characterized as leading a regular life with
normal levels of activity. To have a comparable execution
speed comparison, the Sliding Window, the SWAB, and
the mSWAB algorithms were implemented in C++1, and
compiled with full optimization turned on. The tests were
done on a standard Pentium 5 processor running at 3.2GHz.

The left plot in Figure 4 shows the residual error (i.e., the
sum of squares of the vertical differences between original
data and approximation segment, for all segments) for the
Sliding Window, the SWAB algorithm, and the proposed
mSWAB algorithm, for a cost threshold set between 1 and
50. The initial buffer size was set to 100, which is essentially
the amount of raw data streaming in per second. Prior ver-
ification has shown that this value works well and contains
the recommended 5 to 6 segments mentioned in by Keogh.
There is little difference between the performances of SWAB
and mSWAB, confirming that the Bottom-Up buffer within
the algorithm works identically for both implementations.
The results also further confirm those from [13], showing
that the approximation segments from the Sliding Windows
algorithm are further apart from the original data than those
of SWAB and mSWAB.

The right plot in Figure 4 shows the execution speed
in seconds, for the cost threshold of the approximation
algorithms between 1 and 50. Identically to the residual
error plot, the initial buffer size for SWAB and mSWAB
was set to 100. Sliding Windows can be seen to be in the
same range for a cost threshold of one, then veering off
and steadily increasing as the cost threshold increases. The

1The code for these and further discussed algorithms, as well as the
evaluation scripts and data sets, can be obtained by downloading from
http://porcupine2.sf.net or mailing the paper’s authors.
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Figure 4: mSWAB evaluated against the Sliding Windows
and SWAB algorithms on the long-term data. Left: the
residual error for a varying cost threshold. Right: the time in
seconds needed to approximate the data. Initial buffer size
for SWAB and mSWAB was set to 100.

t

C

Q

(a)

Itakura ParallelogramSakoe−Chiba Band

(b)

Figure 5: a) Matching subsequences Q and C with dynamic
time warping (DTW) aligns data points to the optimal coun-
terpart (dotted lines). b) DTW is often bounded, for instance
with the SakoeChiba Band or the Itakura Parallelogram,
restricting the warping paths by local or global constraints
(e.g., white areas in the plots).

mSWAB algorithm does indeed display a faster execution
speed compared to SWAB, owing to the sliding heuristic
of the buffer window: Instead of steadily increasing the
segment and re-doing the cost calculation over an increasing
set of data points, the change of slope between successive
data points is monitored.

IV. SUBSEQUENCE MATCHING

After the approximation of the original inertial data, this
section covers the matching in nearest neighbors-based clas-
sification of these approximations. As a faster alternative to
dynamic time warping, a heuristic using Euclidean distances
between the K longest segments is introduced.

A. Dynamic Time Warping

Dynamic time warping (DTW) is a widely used tech-
nique used in speech recognition, information retrieval and
machine learning, to overcome small distortions in time
between two time series. Given two subsequences, DTW
optimally aligns or ‘warps’ the data points between the two
time series (Figure 5a) and returns their distance, which then
can be used in classifiers as a similarity measure.



To align two time series Q = q1, ..., qn of length n and
C = c1, ..., cm of length m with DTW, an n-by-m matrix
with squared distances of the time series elements qi and cj
is created, and an optimal ‘warping path’ that characterizes
the alignment of Q and C and minimizes the warping costs
is computed. The warping path cost for distance matrix
entry (i, j) can for instance be recursively computed with
the distance function γ(i, j) = d(i, j) + min{γ(i − 1, j −
1), γ(i− 1, j), γ(i, j − 1)}.

The general approach, which computes all the squared
distances in the matrix and chooses the minimal continuous
path, is of high time complexity (O(n · m)). In practice,
different local or global constraints can be used to decrease
the number of paths that will be computed during alignment
process, thus significantly speeding up the calculation. In
our implementations we considered two common bounding
techniques: the SakoeChiba Band and the Itakura Parallelo-
gram, where only paths are considered that lie within certain
bounds (see Figure 5b). Other lower bounding techniques as
well as new approaches for DTW have been also recently
discussed and presented in [15] and [16].

B. K Longest Segments

Most subsequences of interest tend to have a high number
of segments, resulting in slow matching when done with
Euclidean matching or dynamic time warping. In order to
speed up matching, we propose to limit the subsequences
to those segments that are likely to be most descriptive.
These in our data are assumed to be the K longest segments
per dimension. We argue that this is sensible as the large
segments tend to cover either large peaks or large stable
regions in the subsequences for our accelerometer data, both
of which are important for characterizing motion patterns
within physical activities.

For matching, these K longest segments are selected and
compared against the segments in the subsequence it is
compared to. The distances to the closest matching seg-
ments, using Euclidean distance, are then summed to obtain
a distance between the two subsequences. By filling the
second subsequence with the contents of a sliding window
over the entire time series, closest matching subsequences
to a query subsequence can be found.

The choice of the number of segments K greatly affects
the speed of the algorithm, as well as the accuracy of
approximation. The higher K becomes, the more distinctive
the resulting set of segments will be in matching and the
more time is needed to find closest matches to all segments.

C. Evaluation of Matching Methods

To evaluate how accurate the matching works of the
DTW and K longest segments methods, we use a data
set that contains 15 very similar target classes: For 5 test
subjects, three person-specific activities are recorded that
are known to be highly challenging in activity recognition:
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Figure 6: Accuracy results for the best and worst test subjects
in the data set, approximated with mSWAB for a range
of cost thresholds, and classifying with nearest neighbours
using: a) dynamic time warping (DTW) with SakoeChiba
(SC) band, or b) K longest segments.

“walking”, “climbing stairs” and “descending stairs”. The
data set incorporates fatigue and sensor strap loosening by
recording per test subject all activities 5 times in a row and
on two different days, resulting in many examples per class
with inter-subject deviations. The entire data set consists of
about 1.1 million samples, spanning over 2 hours.

The above-described DTW and K longest segments algo-
rithms were used to match and classify via nearest neighbors
classification the training part of this data set, using 30-fold
cross validation, to the remainder testing part. DTW was
used together with a SakoeChiba band being varied from 1
to 16, as was the parameter for K longest segments, K. The
target classes were chosen to be as challenging as possible,
not only containing the activity but also which person per-
formed the activity. Detections in unlabeled (‘background’)
data were counted as false positives.

As illustrated by the best-performing data in the left
plots of Figure 6, K longest segments tends to equal the
performance of DTW for SC band and K of 10, and using
a low enough cost threshold. The right plots in Figure 6
illustrate that DTW performs in few isolated cases consid-
erably better with lower cost thresholds. DTW however, as
can be witnessed in Table I, results exactly then in far longer
execution times. It is therefore important in future work to
consider data from more test subjects.



Table I: Comparing DTW and K longest segments as in
Figure 6 with accuracy and execution time, using 10 for
both SC-band width and K, and varying cost threshold.

ct DTW accur. KLS accur. time (sec.)
worst best worst best DTW KLS

2 63.4 88.0 50.3 85.0 88.6 12.7
10 56.6 83.4 41.7 83.5 15.5 7.5
20 44.1 72.6 31.2 72.6 7.0 3.6
30 36.3 65.8 28.6 63.0 4.0 2.2
40 34.5 61.6 19.5 58.2 2.5 1.5
50 29.7 61.0 12.4 49.1 1.7 1.1

V. CONCLUSIONS AND FUTURE WORK

Long-term activity recognition has, due to advances in
miniature sensing techniques, become a field in need for
fast machine learning techniques. Recordings of long-term
inertial sensing trials tend to be many and large, producing
time series which are hard to analyze using conventional
classification techniques. This paper proposes two algo-
rithms that are suitable for query-by-content browsing of
such data.

A segment-based approximation algorithm for time series
is presented, based on the SWAB algorithm and modified to
work faster on human activity data. It was shown on such
long-term accelerometer data sets that the residual error of
the representation is nearly similar to that of the technique
it is based on, while being faster to execute.

Additionally, a matching routine for the approximated
data was proposed that uses the Euclidean distance between
the K largest segments in the approximation. This method
has in an empirical study shown to be about twice as fast
than bounded dynamic time warping, while resulting in
similar accuracies when the value K is chosen well.

This work will be explored further by using the proposed
algorithms with learning methodologies that are capable of
modeling richer representations of activities, such as models
capable of learning (sets of) typical motion subsequences per
activity.
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