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Abstract

Given the rapid growth of social media websites and the ease
of aggregating ever-richer social data, an inevitable research
question that can be expected to emerge is whether different
interaction patterns of individuals and their meaningful in-
terpretation can be captured for social network analysis. In
this work, we present a novel solution that discovers occur-
rences of prototypical ’ego network’ patterns from social me-
dia and mobile-phone networks, to provide a data-driven in-
strument to be used in behavioral sciences for graph interpre-
tations. We analyze nine datasets gathered from social media
websites and mobile phones, together with 13 network mea-
sures, and three unsupervised clustering algorithms. Further,
we use an unsupervised feature similarity technique to reduce
redundancy and extract compact features from the data. The
reduced feature subsets are then used to discover ego pat-
terns using various clustering techniques. By cluster analysis,
we discover that eight distinct ego neighborhood patterns or
ego graphs have emerged. This categorization allows concise
analysis of users’ data as they change over time. We provide
fine-grained analysis for the validity and quality of clustering
results. We perform clustering verification based on the fol-
lowing three intuitions: i) analyzing the clustering patterns
for the same set of users crawled from three social media net-
works, ii) associating metadata information with the clusters
and evaluating their performance on real networks, iii) study-
ing selected participants over an extended period to analyze
their behavior.

Introduction
Extracting effective features for nodes of a given graph is
a pivotal step for many graph mining tasks, such as min-
ing across different graphs from the same domain, identify-
ing leader nodes in graphs or outliers detection. One type
of method examines the graph structure around individual
users, so-called ego graphs. There are various studies con-
ducted to analyze different properties of ego networks in
social media and spatial-temporal networks (Wehrli 2008;
Chittaranjan, Blom, and Gatica-perez 2011; Staiano et al.
2012; Pan, Aharony, and Pentland 2011; McAuley and
Leskovec 2012; Arnaboldi et al. 2012). However, despite
that, there are many issues that are hardly addressed for ego
graphs. One such challenging problem is detecting distinct
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neighborhood patterns from ego graphs. This is an interest-
ing research problem and involves many challenging issues
that need to be addressed, such as (dynamic) characteris-
tics of the data, selection of appropriate features, choosing
an appropriate clustering technique, extraction of knowledge
from clusters and above all the effective interpretation of ego
clusters. For practical usage, such frameworks can be used
in psychological studies to monitor the mood swings of pa-
tients, identifying emerging leaders in disaster affected ar-
eas and analyzing communication patterns of people in epi-
demic, etc. Similarly, some other specific scenarios can be i)
given such ego graphs for several months, can we detect a set
of distinct neighborhood patterns within them and use this
information to get important cues for the next days? Here,
a key step relies on the ability to extract effective features
from each node that would best capture its characteristics,
so that we can cluster the nodes, ii) given spatial-temporal
phone data of students living together in a dormitory, can we
design a tool that will help identify their communication pat-
terns over time, to identify events such as holidays, exams,
or a flu epidemic?, iii) after extracting distinct neighbor-
hood patterns from ego graphs, can we use this information
to infer social behavior (personality traits) of the people?
These are of course only some of the many cases.

Current Work. In this work, we propose a novel solution
DUKE, Discover Useful Knowledge from Ego graphs, for
graph mining tasks of data from social media and spatial-
temporal networks. This work aims to provide a data-driven
instrument for graph interpretations, to be used in behav-
ioral sciences. Ego networks are explored to discover the
occurrences of prototypical neighborhood patterns by cat-
egorizing prototypes of interactions between users, and to
assess their changing role within the social networks. We
use five social media and four spatial-temporal datasets for
this, with 13 network level features and three unsupervised
clustering algorithms to detect clusters from the data. In our
experiments we use social media, namely Facebook, Twitter,
Foursquare, Wikipedia, collaboration networks and spatial-
temporal mobile-phone data, in particular from Bluetooth,
GPS and call-logs. For feature extraction, we use four cen-
trality features (degree, betweenness, closeness and eigen-
vector), three efficiency features (global, local and nodal),
two transitivity features (global and local) and four actor-
based features (ego density, ego neighbors, dominant edges
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and ego weight). Similarly, we use k-means, hierarchical
and affinity propagation for clustering purposes. We utilize
an unsupervised feature similarity technique to identify a set
of compact and less redundant features from the data, con-
currently reducing the likelihood for the inclusion of spu-
rious features to exaggerate the clustering results. We pro-
vide an empirical validation for assessing the quality of the
delivered clusters. Our analysis yields several insights that
not only reveal unique patterns within the data, but also em-
pirical evidence of a limit on the maximum possible neigh-
borhood patterns. In our experimental setting, we are par-
ticularly interested in what useful knowledge can we dis-
cover from clustering results. We choose three possible sce-
narios for knowledge extraction: i) we analyze the cluster-
ing patterns for the same set of users from three social me-
dia networks. We extract a common knowledge for users to
study how their behavior in different networks correlates to
each other, ii) each node in a social network has certain at-
tributes and characteristics that identify its position within
a network. To identify the relationship between the node at-
tributes and its characteristic patterns, we make use of multi-
label predictor fed with the extracted clusters as input, with
the aim of correctly classifying the metadata attached to the
nodes in real life, iii) we study clustering patterns for a small
sample over a long period of time to understand their behav-
ior at different time instances. To the best of our knowledge,
this is the first work that explores various graph measures on
social networks to automatically infer distinct neighborhood
patterns from ego networks.

The remainder of the paper is organized as follows: we
first present the background and related work on ego net-
works, followed by a description of our methodology. We
then discuss the datasets and experimental results followed
by the conclusion of the paper.

Background and Related Work
In this section, we discuss some basic graph notions and
summarize the related work.

Background
An undirected graph is denoted by G(V,E) where V is a
set of nodes and E is a set of edges. Given a graph G and
a node v ∈ V , Ego Network (v,G) is a sub-graph Ĝ(V̂ ,Ê),
where V̂ represents the direct neighbors of v. Ego networks
are subnetworks that are centered on a certain node. In this
work, we explore the first and second order neighborhood of
an ego network. Table 1 summarizes the used network fea-
tures. The feature details are reported in our technical report
(Muhammad and Van Laerhoven 2015).

Related Work
In this section, we review research works closely related to
ours, from two distinct fields: i) ego networks analysis using
psychological and network theory measures and, ii) discov-
ering the patterns using graph mining.

Ego Network Analysis Using Psychological and Network
Theory Measures A considerable amount of attention

Feature Category Selected Features
Centrality Measures
(Freeman 1978)

Degree1a, Betweenness1b,
Closeness1c, Eigenvector1d

Efficiency Measures
(Latora and Marchiori
2003)

Global2a, Local2b, Nodal2c

Transitivity Measures Global3a, Local3b

Actor Based Measures Ego Density4a, Ego Neighbors4b,
Dominant Ego Edges4c, Ego
Weight4d

Table 1: Extracted network features for ego graphs. We will use
the superscript notions in the later sections (See section ’Feature
Selection from the Datasets’ and particularly Table 3).

is devoted on studying five-personality traits from survey,
spatial-temporal and web mining data (Staiano et al. 2012;
Chittaranjan, Blom, and Gatica-perez 2011; Wehrli 2008;
Pan, Aharony, and Pentland 2011). Staiano et al. used net-
work level features on a spatial-temporal dataset collected
in an undergraduate student campus to investigate person-
ality traits. Their research shows that Bluetooth data iden-
tified different personality traits much better than call-log,
survey, Bluetooth and call-log data together. Chittaranjan,
Blom, and Gatica-perez developed an automated system for
classifying personality traits based on actor level features,
such as the use of camera, youtube videos, incoming call du-
ration, Bluetooth information, etc. Wehrli predicted person-
ality traits from the social networking website StudiVz using
network and actor based features. Pan, Aharony, and Pent-
land studied spatial-temporal and survey based data of ego
networks to identify the existence of individual-level corre-
lation between financial status and interaction patterns and
their connection to personality traits.

Apart from the five-traits model, other models are also de-
veloped for studying ego networks (Stoica and Prieur 2009;
McAuley and Leskovec 2012; Arnaboldi et al. 2012; Hen-
derson et al. 2011). Stoica and Prieur presented a model
to characterize undirected graphs by enumerating small in-
duced sub-structures. McAuley and Leskovec developed a
probabilistic model to infer social circles (friends, family,
college friends) from social network data. Arnaboldi et al.
analyzed twitter data to identify the social circles within
the ego networks. Henderson et al. proposed a feature ex-
traction model that recursively combines local (in and out
degree, total degree) and neighborhood (number of within-
egonet edges, and the number of edges entering and leav-
ing the ego net) features to produce behavioral information.
Ego networks have also been studied in the health-care do-
main (Madan et al. 2010; O’Malley et al. 2012). Madan et al.
analyzed Bluetooth scans, SMS networks, self-reported diet
and weight-related information collected periodically over
a nine-months period. Malley et al. discussed relationships
between different network features and how these properties
can be studied together in a health-care domain.

Discovering the Patterns Using Graph Mining The
problem of finding subgraph patterns has been addressed us-
ing apriori (Yan et al. 2008; Yan and Han 2002; Kuramochi
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and Karypis 2001) and pattern growth methods (Tong et al.
2007; Zhu et al. 2011). Yan et al. developed a classifier that
exploits the correlation between structural similarity and sig-
nificance similarity in a way that the most significant pat-
terns can be identified quickly by searching dissimilar graph
patterns. Yan and Han built a lexicographic order among
the graphs and then map each graph to a unique depth-
first search code and its canonical label. Later on, based
on the lexicographic order, it adopts the depth-first search
to mine the frequent connected subgraphs. Kuramochi and
Karypis used the idea of adjacent representation of graphs
and an edge-growing strategy to discover the frequent sub-
graph patterns. Frequent graph pattern mining using apriori
has some serious procedural problems. A frequent n-edge
labeled graph may contain 2

n
frequent subgraphs. The pres-

ence of too many patterns may not lead to much precise
knowledge. Pattern growth methods concentrate on repre-
senting patterns that preserve most of the information. Tong
et al. presented a SQL-based method for finding best-effort
subgraph patterns in attributed graphs, i.e. graphs with some
attribute value attached to it. Zhu et al. developed a pat-
tern growth approach where a small set of high potential
subgraphs is discovered and then large subgraphs are de-
tected by combining many smaller structures. The authors in
(Moustafa, Deshpande, and Getoor 2012) developed SQL-
based declarative language queries, where a given prede-
fined structural pattern is searched for in every node’s neigh-
borhood and the counts are reported. To the best of our
knowledge, we could not find any graph mining technique
to cluster ego graphs from data.

Methodology
We now discuss our methodology for extracting ego clusters.

Unsupervised feature selection. We use feature selec-
tion using feature similarity (FSFS) (Mitra, Murthy, and Pal
2002) to identify feature subsets from the data. Our selection
of an unsupervised feature selection technique is motivated
by the following three intuitions: i) looking for every permu-
tation is time consuming and causes delay for huge datasets.
Mostly, the ego networks are without any class label which
makes it very difficult to manually find any suitable feature
subsets, ii) similarly, it is inconceivable to identify a particu-
lar feature subset that produces promising results regardless
of the particular characteristic of the data, iii) FSFS has low
computational complexity with respect to the number of fea-
tures and number of samples in the data.

Now, we briefly summarize the FSFS approach. FSFS
uses the maximal information compression index defined as:

2λ2 = vr(x) + vr(y)

−
√
(vr(x) + vr(y))

2 − 4vr(x)vr(y)(1− (p(x, y))
2
))

(1)

where vr(x), vr(y) and p(x, y) denote the variance of fea-
ture x, y and correlation coefficient respectively. The low-
est value of index (zero) suggests that the two features
are linearly dependable on each other and increases as
the amount of dependency decreases. FSFS works in two

phases, namely partitioning the original feature set into ho-
mogeneous subsets and selecting a representative feature
from each such cluster. In the partitioning phase, it computes
the k nearest neighbors (features) of each feature using the
measure discussed above. Among them the feature having
the most compact subset is determined and its k neighbors
are discarded. The process is iteratively repeated until all of
them are either selected or rejected.

Feature evaluation. We use entropy (Mitra, Murthy, and
Pal 2002) and representation entropy (Dash and Liu 2000)
measures to evaluate the effectiveness of the feature subsets.
We minimize the likelihood for the inclusion of any spurious
feature. The entropy can be defined as:

E =
N∑
i=1

N∑
j=1

(sij .log(sij) + (1− sij).log(1− sij)), (2a)

sij = e−α.distij , (2b)

α =
−log(0.5)
dist

, (2c)

Here, distij and dist represent the Euclidean distance be-
tween data items i and j and the mean dissimilarity between
items in the dataset for a given feature subspace. Similarly,
a representational entropy can be defined as:

HR = −
d∑
j=1

λ̂j logλ̂j (3)

where λ̂j represents the m x m covariance matrix of a fea-
ture set of size m. We expect that the final reduced feature
sets have low redundancy, i.e. a high HR.

Data normalization and dimensionality reduction. In
our case, the input feature spaces are high-dimensional. The
performance of most clustering algorithms tends to scale
poorly on high dimensional data. For this reason, we select
the principle component analysis (PCA) for the dimension-
ality reduction. We normalize the features using equation 4
prior to applying it for dimensionality reduction.

V ∗ =
V −min(V )

max(V )−min(V )
(4)

In this equation, V denotes the variable that is normalized,
min and max indicate the two extremes of the variable.

Detecting the optimal number of clusters from clus-
tering algorithms. To perform clustering, we select three
well-known standard unsupervised clustering algorithms: i)
k-means, ii) hierarchical clustering, and iii) affinity prop-
agation (AP). We select different clustering algorithms to
find out the best clustering algorithm that detects the optimal
distinctive clusters. To identify the optimal number of clus-
ters, we select the L-method (Salvador and Chan 2003) and
the gap statistic (Tibshirani, Walther, and Hastie 2000). This
step aims at identifying the clusters that are well separated,
while penalizing an increasing number of clusters. The L-
method was chosen for the hierarchical clustering algorithm
due to its efficiency and good performance. The gap statistic
is chosen for k-means. AP does not require the number of
clusters to be determined before running it.
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Clustering evaluation. We evaluate the clustering results
using average Silhouette width of each cluster. It describes
how well an element is assigned to the cluster. It is calculated
using the mean intra-cluster distance a(i) for each i and b(i)
is the lowest average dissimilarity of i to any other cluster of
which i is not a member. The Silhouette width is defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(5)

The average s(i) over all data of a cluster is a measure of
how tightly grouped all the data in the cluster is. We also use
Jaccard and Rand indices to evaluate the clustering results of
the same set of users crawled from different domains. Sim-
ilarly, we assess the performance of the delivered clusters
using a label prediction task.

Datasets
We select nine publicly available spatial-temporal, collab-
oration and social networking datasets. We use Bluetooth,
GPS and call-log data from spatial-temporal datasets. We
build a call network, where participants act as nodes and the
number of calls between two nodes as edge weights. Sim-
ilarly, Bluetooth and GPS networks are built with partici-
pants as nodes and the count of social interactions as edge
weights. Spatial-temporal datasets often contain noisy edges
or so called ’familiar strangers’. There are several techniques
to prune out irrelevant edges. Thresholding is one of the
popular techniques, but it is a one-size-fits-all solution, i.e.
an edge may be relevant even with a low weight. We use
(Serrano, Bogu, and Vespignani 2009) to select the rele-
vant edges from the data. Similarly, we model social media
and collaboration networks as unweighted and undirected
graphs. Below we briefly discuss the datasets.

The Nokia dataset (Kiukkonen et al. 2010) contains the
spatial-temporal data of 36 participants gathered between
October 2009 and September 2011 from the French region in
Switzerland. The dataset contains a wide range of behavioral
data, such as Bluetooth, WiFi, GPS, Accelerometer, etc. The
Friends and Family dataset (Aharony et al. 2011) con-
tains the data collected between October 2010 and March
2011 from 40 individuals living in a married graduate stu-
dent residence. The collected data has the Bluetooth, SMS
and voice call data. The MIT’s Social Evolution dataset
(Madan et al. 2012) contains the data gathered between Oc-
tober 2008 and May 2009 from 74 participants living in
a dormitory. The dataset contains scanned Bluetooth de-
vices, logged call records, and SMS messages. The Orange
dataset (Blondel et al. 2012) contains the ego networks of
4,357 mobile users collected in Ivory Coast by French Tele-
com between December 2011 and April 2012. Facebook,
Twitter and Foursquare datasets (Coscia et al. 2014) con-
tain the social networks of the same set of users in these
three social media websites. Network of famous philoso-
phers (Ahn, Bagrow, and Lehmann 2010) contains famous
philosophers and their philosophical influences, as recorded
by users of the English-language Wikipedia. Besides links
to other philosophers, used to build the network, we also
have the metadata representing the philosophical concepts,
philosophical schools of thought, and so on. Arxiv HEP-TH

Network |N| |E| k

The Nokia 36 147 8.17
The Friends and Family 40 501 24.75
The Social Evolution 74 2,526 68.27
The Orange 4,357 25,9110 59.06
Facebook 2,081 5,618 3.29
Twitter 3,745 31,638 8.71
Foursquare 5,738 42,691 8.23
Philosophers 1,231 5,978 9.7
HEP-TH 9,877 25,998 5.26

Table 2: Basic statistics of the networks studied.

(High Energy Physics - Theory) collaboration network
(Leskovec and Krevl 2014) contains collaborations between
authors papers submitted to Physics - Theory category. If an
author i co-authored a paper with author j, the graph con-
tains an undirected edge from i to j. A general overview of
these networks can be found in Table 2, where |N | and |E|
represent the number of nodes and edges respectively and k
is the average degree of the network.

Clustering Results
We now present our experimental results. We first concen-
trate on determining the distinct neighborhood structures.
We evaluate the purity of the clusters. Next, we compare the
clustering patterns for the same set of users across differ-
ent networks. Since real world networks are enriched with
annotated node information, we measure the ability of each
cluster to predict the semantic information attached with the
metadata of the nodes within the cluster itself.

Network Selected Features Entropy HR

The Nokia Bluetooth dataset 1(a,b,c,d), 2b, 3b 0.31 1.99
The Nokia GPS dataset 1(a,b,d), 4(a,d) 0.19 2.23

The Friends and Family dataset 1b, 2b, 4(a,c) 0.25 1.31
The Social Evolution dataset 1b, 2a, 3b, 4b 0.10 0.80

The Orange dataset 1(b,c), 2b, 4(b,d) 0.45 7.30
The Facebook dataset 1b, 2(a,b), 3a, 4b 0.68 2.38

The Twitter dataset 1(b,d), 2(a,b), 3a 0.51 1.10
The Foursquare dataset 1(a,b,c,d), 2a, 3a,b 0.39 1.22

The Philosophers dataset 1b, 2(a,b), 3(a,b) 0.57 2.71
The HEP-TH dataset 1(a,b,c,d), 2a, 3a 0.73 1.70

Table 3: Feature selection by FSFS with entropy and representa-
tion entropy values. FSFS has detected different features for each
dataset. See Table 1 for the notions. The bold letters show that
the removal of these features from that particular combination im-
proved the score.

Feature Selection from the Datasets
After extracting features from the raw data, we feed the ex-
tracted features to FSFS and record the reduced feature set.
Table 3 shows the reduced feature subsets with their en-
tropy and representation entropy scores. We notice that the
reduced features vary for each dataset, i.e., different features
are selected based on the particular characteristics of the
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(a) Gap statistic for k-means (b) L-method results for hierarchical clustering

Figure 1: The results of gap statistic and L-method for datasets. The red dots represent the optimum number of clusters.

data. It shows the significance of feature selection for un-
supervised learning. We also perform exhaustive search on
the features to verify the optimal feature subsets. We notice
occasionally stronger results for some of the following eight
combinations: (i) centrality measures; (ii) efficiency mea-
sures; (iii) transitivity measures; (iv) centrality and effi-
ciency measures -i.e. the union of (i) and (ii); (v) centrality
and transitivity measures -i.e. the union of (i) and (iii); (vi)
efficiency and transitivity measures - i.e. the union of (ii)
and (iii); (vii) four actor based features; (viii) combination
of all 13 measures. We select the features with minimum
redundancy to avoid the inclusion of any spurious feature
that exaggerates the clustering results. The entropy and HR

scores for the mentioned feature spaces are discussed in our
technical report (Muhammad and Van Laerhoven 2015). In
some cases, we notice that the selected eight feature subsets
perform even better than FSFS. We especially report those
cases. Overall, we notice that the reduced feature sets ob-
tained from FSFS have the lowest entropy and highest repre-
sentation entropy, except for the Hep-TH and the Foursquare
dataset. For the Hep-TH dataset, the combination from FSFS
has a slightly higher entropy, the entropy dropped from 0.73
to 0.65 for the combination of four centrality measures (fea-
ture set (i)). For the Foursquare dataset, the exclusion of
global efficiency (2a) decreased the entropy from 0.39 to
0.33 and HR increased from 1.22 to 1.39 (feature set (v)).

Determining the Numbers of Clusters
For the given datasets, the applied gap statistic and L-
method identify different possible clusters even for the same
feature subsets. However, the optimal number of clusters
identified for any combination of features are no more than
eight. Figure 1(a) shows that k-means identifies a maximum
of seven clusters from any dataset. The optimal numbers of
clusters are detected for the Orange, Twitter and Foursquare
datasets. It shows six clusters for the Facebook and Philoso-
phers datasets. For smaller datasets, the maximum number
of clusters is five. Figure 1(b) shows the results for the L-
method. Overall, it identifies eight clusters for the Orange,
Facebook and Foursquare datasets, seven clusters for the
Twitter and six clusters for the Philosophers datasets. The
lowest number of clusters is four for the Nokia Bluetooth,
Friends and Family and Social Evolution datasets.

Evaluating Clustering Results

We choose the ideal number of clusters for the given datasets
and then apply the respective clustering algorithm to detect
the clusters. For each clustering result, we visually inspect
the clustering patterns. We analyze the clustering patterns by
again extracting its features. We find in total eight distinct
ego graph patterns as shown in Figure 2. The prototypical
clusters have the following properties and characteristics:

Cluster(a) (Linked neighbors): The ego node is the key
player tied to active players. It is in a dense, active cluster
at the center of events with many others. The ego has high
closeness centrality and low degree- and betweenness cen-
trality. The density of the graph is between 0.60 and 0.70.
The ego has many immediate neighbors that are strongly
connected to one another forming a strongly clustered net-
work. The network has many complete structures (cliques)
and the second order neighborhood is tightly connected.

Cluster(b) (Strongly linked): The ego has many immedi-
ate neighbors and high internal density. The ego has a highly
populated second order neighborhood. The graph has many
complete structures and the internal density is between 0.70
and 0.80. Even in case of removing the ego, there are multi-
ple paths in the network to transfer the information.

Cluster(c) (Dense): The ego node is an active player in
the network and contains a reasonable number of immedi-
ate neighbors. The neighbors of the ego node are well con-
nected. The graph has high internal density between 0.80
and 0.90. Apart from very few neighbors (two or three), the
remaining share a strong cohesion (bonding). Overall, the
graph has many complete sub-graphs (cliques). Even in case
of removing the ego from the network, it still contains many
complete networks and the information can be easily trans-
fered to other nodes. The ego’s connections are highly re-
dundant and most communication bypasses it.

Cluster(d) (Complete): The ego graph is complete and
the density of the network is 1.0. It shows that the ego and
its neighbors are actively in contact with each other.

Cluster(e) (Powerful ego node): The ego node is the
most powerful player and removing it will paralyze the net-
work. It has a high closeness and eigenvector centrality. The
ego node acts as boundary spanners, i.e. it controls the com-
munication between different parts of the network.
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(a) Linked neighbors (b) Strongly linked (c) Dense (d) Complete

(e) Powerful ego node (f) Strong ego neighbor (g) Less cohesive star (h) Star

Figure 2: Clustering results of ego graphs, depicting the ego node in the middle (red color), with connections to first and second-degree
neighbors. This study focuses on the automatic categorization of such ego graphs according to their graph structure. All in all, there exist
eight distinct trends. We label each graph according to its characteristics.

Cluster(f) (Strong ego neighbors): The ego node has
few immediate neighbors and the network is not densely
connected. However, some nodes in the graph are highly
populated and more powerful than the ego. The ego has a
high closeness and degree centrality, but low betweenness
centrality. The internal density is between 0.50 and 0.60.

Cluster(g) (Less cohesive star): The graph contains few
small structures. It contains few trivial triads and the remain-
ing neighbors form a star-shape network.

Cluster(h) (Star): Overall, the network has a sparse
structure. The ego graph has a star structure and immedi-
ate neighbors of the ego are not connected. The number of
neighbors varies depending upon the size of the network;
the structure is small for smaller networks and large for big-
ger networks. The overall density of the ego graph is very
low with no complete sub-graphs. Normally, such clusters
are identified by a high value of centrality measures. In such
cases, we found that the second order neighborhood of the
ego is even more powerful and denser in terms of structure.

Table 4 represents the clustering results. We detect mis-
classified clusters using two sources: i) we select clusters
with very low or negative Silhouette width as misclassified
instances, ii) we rely on visual inspection of the small clus-
ters. Similarly, we model Bluetooth and GPS modality from
the Nokia dataset. We further categorize the clusters in four
classes: i) linked structures (C(a), C(b)), ii) dense struc-
tures (C(c), C(d)), iii) informative ego (C(e), C(f)), and
iv) less dense (C(g), C(h)). One shall note that the inter-
pretation of the structures depends on many factors, such as
the environment of data collection, context data and so on.
In the later sections, we analyze some networks based on
context information to give meaningful interpretation to the
clusters. Now, we discuss major trends from Table 4.

Network C(a) C(b) C(c) C(d) C(e) C(f) C(g) C(h) M
Nokia BT +*! +*! +! +*! +*

Nokia GPS +*! +*! +*! +*! *
Fri& Fam +*! * +*! +*!

Social +*! +*! +*! +*!
Orange +* +* +* * +* +* +* +*!

Facebook +* +* +* +* * +* * +*!
Twitter +* +* +* +* +* +* +*!

Foursquare +* +* +* +* * +* +* +*!
Philosophers +* +* +* +* +* +* !

Hep-TH * +* +* +* +*!

Table 4: Clustering results for nine datasets using three algorithms.
The first row represents the datasets. It contains the results for the
features selected by FSFS. Similarly, C(a),. . . , C(h) represent the
short form of cluster (a),. . . , cluster (h). The letter M represents
the misclassified clusters in the datasets. We use three signs to
represent clustering algorithms. The +, * and ! signs represent the
k-means, hierarchical clustering and affinity propagation (AP) re-
spectively. There are some cells without entries representing that
for some combinations that particular shape is not detected.

Spatial-temporal clustering trends. Overall, we notice
that extraction of possible clusters is largely dependent on
the sample size and environment of data collection. The So-
cial Evolution and the Friends & Family datasets are col-
lected in a certain environment (student dormitory and mar-
ried graduate students living in a campus facility) with peo-
ple well familiarized with each other. Their clustering results
illustrate that only certain clustering patterns are prominent.
For the Social Evolution dataset, people are mostly confined
within C(a), C(b), C(b) and C(d) that represent strongly
clustered structures. Similarly, the Friends & Family dataset
analysis shows that C(a), C(d) and C(g) are prominent.
The remaining patterns hardly exist in the data. The Or-
ange dataset is gathered from a large sample of people liv-
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C(a) C(b) C(c) C(d) C(g)

S I S I S I S I S I
Friends & Family 0.47 21 0.86 9 0.54 10
Social Evolution 0.90 20 0.95 30 0.67 7 0.58 17

Table 5: Clusters– descriptive statistics of affinity propagation for
the Friends and Family and the Social Evolution datasets. The Sil-
houette index (S) and number of instances (I) in each clusters.

ing in a diverse environment who hardly know each other.
Their results show a large diversity of all possible cluster-
ing patterns. Similarly, we identify C(a), C(b), C(c), C(d)
and C(g) as prominent clusters for the Nokia dataset. Last,
we briefly note that C(a), C(b), C(c), C(d) and C(g) are
prominent for the spatial-temporal datasets.

Social media clustering trends. The social media net-
works are relatively bigger in size than spatial-temporal
datasets. Mostly, we observe similar patterns concerning
their characteristics and qualitative properties; however, the
frequency of their occurrences are unlike for the spatial-
temporal datasets. We discover an interesting pattern C(e)
in the social media networks, especially in the Philosophers
and the Hep-TH datasets. For example, we detect five promi-
nent patterns for the Hep-TH dataset using hierarchical clus-
tering, but the most prominent pattern is C(e) that hardly
existed in the spatial-temporal datasets. We notice in the
Hep-TH dataset that the first authors act as a bridge be-
tween different disciplines, i.e. their research connects dif-
ferent branches. Similarly, the spatial-temporal datasets suf-
fer from familiar stranger problem, which prevents certain
shapes from emerging. We notice that C(f) was more of-
ten visible in social media datasets than in spatial-temporal
datasets. Last, we notice that C(a), C(b), C(d), C(g) and
C(h) are prominent clusters for social media datasets.

Quantitative comparison of clustering algorithms.
Overall, when comparing the performance of the cluster-
ing algorithms, we notice that hierarchical clustering pro-
duces better clustering results concerning the purity of their
existence inside clusters and margin of error. Similarly, we
also note that all three techniques perform equally well on
smaller datasets, but their performances deteriorate more or
less for bigger datasets. Affinity propagation performs de-
cent on smaller datasets, but generates many outliers for
bigger datasets. We notice that it produces a large num-
ber of clusters for bigger datasets; especially for the Or-
ange dataset, we observe that the number of clusters equals
the sample size. Similarly, it detects more than 2,000 clus-
ters for the Hep-TH dataset. We notice that the delivered
clusters for bigger datasets are meaningless and incoher-
ent. Last, we observe strong results for affinity propaga-
tion on the Social Evolution and the Friends and Family
datasets as shown in Table 5. Similarly, the clustering re-
sults from k-means contain many misclassified instances for
bigger datasets. Basically, k-means is stochastic in its initial
conditions and therefore presents different trends for a fixed
number of clusters for every run. Compared to k-means, we
notice very few misclassified clusters for hierarchical clus-
tering. Table 6 shows the clustering results for k-means and
hierarchical clustering for four datasets along with their mis-

classified instances. We focus on the bigger datasets to in-
vestigate the purity of these patterns within the identified
clusters and identify misclassified instances. We notice that
k-means produces strong results for the Facebook and the
Hep-TH datasets, where the clusters have high Silhouette
width and fewer misclassified instances; especially only 14
misclassified instances for the Hep-TH dataset. We observe
this cluster by visual inspection. Similarly, we notice only 84
misclassified instances for the Facebook dataset. However,
we note that k-means detects a huge misclassified cluster
for the Twitter and the Foursquare datasets. The misclas-
sified clusters contain 368 and 597 instances with the Sil-
houette width of 0.05 and -0.25 respectively. For the Twitter
dataset, Table 6 shows that the Silhouette width is very small
for the clusters, which means the identified clusters are not
tightly connected to each other. For hierarchical clustering,
we identify best results for the Facebook, the Twitter and
the Hep-TH datasets. There are some instances reported in
Table 6 where hierarchical clustering identifies misclassified
instances but the misclassified clusters are relatively smaller
in size. We identify only 20 misclassified instances (a small
cluster) for the Facebook dataset, which are relatively fewer
as compared to 84 for k-means. However, for the Hep-TH
dataset, k-means has only 14 misclassified instances as com-
pared to 54 from hierarchical clustering, moreover, the Sil-
houette score is also relatively stronger for k-means. We also
notice a misclassified cluster for the Foursquare dataset, it
contains 254 instances and the Silhouette width is -0.10.

Clustering Evaluation across Social Networks
We now analyze the clustering results for the same set of
users in different social networks. We analyze how cluster-
ing patterns for users correlate across different networks,
i.e., do people follow the same communication patterns in
social media and spatial-temporal networks. We use the
Facebook, Twitter, Foursquare, Nokia and Orange datasets.
We have the relationships of the same set of users in three
social media websites. Similarly, we analyze the ego pat-
terns from Bluetooth and GPS data to understand how much
they correlate to each other. Last, for the Orange dataset,
we use clustering patterns extracted at two different time
instances. Further, we form different pairs of the networks.
We make three pairs from social media (Facebook/Twitter,
Facebook/Foursquare, Twitter/Foursquare), Bluetooth/GPS
from the Nokia and T1/T2 from the Orange datasets. For
each pair, we use the detected clusters as an input for the
partition evaluation measures. We use the Jaccard and Rand
metrics. Table 7 shows the results for the social media
and spatial-temporal datasets. Overall, we notice that social
media datasets achieve better results than spatial-temporal
datasets. We obtain high scores for the Nokia dataset, but
these values are still comparatively low considering the
small sample size. Similarly, for the Orange dataset, we ob-
tain maximum Jaccard and Rand similarity of 0.25 and 0.29
for hierarchical clustering; these scores are much lower for
the remaining algorithms. We emphasize this for two rea-
sons: i) Bluetooth and GPS data suffer from noisy edges,
we prune them, but they still exist, ii) humans are dynamic
in their activities, i.e., a person might call many people one
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C(a) C(b) C(c) C(d) C(e) C(f) C(g) C(h) M

S I S I S I S I S I S I S I S I
Facebook 0.53 999 0.47 453 0.34 82 0.75 80 0.33 383 84

k-means Twitter 0.60 895 0.17 772 0.24 136 0.19 350 0.16 716 0.49 508 368
Foursquare 0.53 1609 0.65 959 0.40 322 0.47 457 0.41 1128 0.50 666 597

Hep-TH 0.62 5341 0.75 1023 0.70 3499 14
Facebook 0.61 1090 0.51 399 0.75 46 0.59 115 0.87 4 0.74 320 0.93 114 20

Hierarchical Twitter 0.58 1727 0.56 646 0.70 97 0.24 415 0.72 560 0.69 245 55
Foursquare 0.61 2450 0.68 1087 0.79 181 0.35 420 0.53 189 0.67 707 0.71 425 279

Hep-TH 0.39 783 0.55 3941 0.59 1940 0.61 3089 54

Table 6: Clusters– descriptive statistics for k-means and hierarchical clustering for four datasets. The S and I represent the Silhouette width
and number of instances in a cluster, and M represents the number of instances in misclassified clusters.

Jaccard Index Rand Index
Social Media Nokia Orange Social Media Nokia Orange

F/T F/FR T/FR Bluetooth/GPS T1/T2 F/T F/FR T/FR Bluetooth/GPS T1/T2

k-means 0.34∗ 0.37∗ 0.25∗ 0.64 0.17∗ 0.39∗ 0.43∗ 0.30∗ 0.71 0.21∗

Hierarchical Clustering 0.42 0.43 0.33 0.62 0.25 0.47 0.49 0.38 0.68 0.29
Affinity Propagation 0.12∗ 0.14∗ 0.08∗ 0.57 0.11∗ 0.14∗ 0.17∗ 0.10∗ 0.61 0.13∗

Table 7: Evaluation metrics for clustering algorithms. The F, T and FR denote Facebook, Twitter and Foursquare. Symbol ∗ shows that the
hierarchical clustering outperforms its competitors by 95% significance interval.

week and no one in the second week. Contrary, we obtain
stronger results for the social media datasets with hierarchi-
cal clustering. The metrics scores for hierarchical clustering
are relatively strong, which indicates that many users do fol-
low similar communication patterns across social networks.
The performance of affinity propagation deteriorates on the
bigger dataset. Similarly, the pair of Facebook/Foursquare
gives the best results with Rand index of 0.43 and 0.49 for k-
means and hierarchical clustering. We notice an interesting
trend for the Twitter/Foursquare pair as the metrics values
are relatively lower (compared to the other two combina-
tions) for all the algorithms. The misclassified clusters dis-
cussed in the previous subsection play a role in distorting the
pairing results. Last, we also measure the statistical signifi-
cance of performance differences between algorithms. The *
symbols in Table 7 indicate a 95% significance interval. We
notice that hierarchical clustering outperforms k-means and
affinity propagation in all cases except for the Nokia dataset,
where k-means delivers slightly better results.

Quality Evaluation via Label Prediction

We now turn to assess the quality of the delivered clusters
using a label prediction task. We have two datasets, namely
the Philosophers and the Friends and Family datasets, that
have qualitative attributes of the nodes attached to them. We
select nine unique attributes for each node from the Philoso-
phers network, namely meta-physician, theologian, histo-
rian, political philosopher, physicist, analytic philosopher,
socialist, mathematician and biologist. Similarly, the Friends
and Family dataset contains a survey conducted on partici-
pants, which provides self-reported information about per-
sonality (Big Five). The participants were asked to use 1-5
point scales to answer the 44 questions Big Five question-
naire developed by (John and Srivastava 1999). The ques-

tionnaire owes its name to the personality traits shown in
Table 8. The scores of the five traits are computed by sum-

Traits Description Mean SD.Dev.
Agreeableness assertive, friendly, cooperative 30.28 4.88
Conscientiousness disciplined, organized, responsible 28.50 5.40
Extraversion active, sociable, enthusiastic 23.13 6.71
Neuroticism calm, unemotional 19.32 5.79
Openness imaginative, intelligent, insightful 33.71 7.31

Table 8: Different traits along with their key descriptions.

ming the (inverted when needed) raw scores of the questions
pertaining to each trait. The results mean and standard devia-
tion are reproduced in Table 8. We perform the Kolmogorov-
Smirnov goodness-of-fit test of normality on each data’s dis-
tribution. All traits are normally distributed (p < 0.05). For
each participant, we take the average score for each trait in
range 0 and 1. Further, we assign one to the top three traits of
each participant and zero to the remaining two. Afterwards,
we attach the clustering membership of each node as known
attributes, then its qualitative attributes as target labels to be
predicted; we then feed this to a state-of-the-art binary clas-
sifier and record its performance.

We use a multi-label classifier (Tsoumakas and Katakis
2007), i.e. a classifier that assigns to each sample a set of
target labels and is capable of predicting multiple target la-
bels. We choose the binary relevance method (BR) because
of its low computational complexity compared with other
multi-label methods. The BR is a problem transformation
strategy that decomposes a multi-label classification prob-
lem into L distinct single-label binary classification prob-
lems, Hl : X → {l,¬l}. Each binary classifier is then re-
sponsible for predicting the association of a single label.
Hence this method trains |L| binary classifiers H1, ...,HL
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Philosophers Friends and Family
P R F1 H.loss P R F1 H.loss

k-means 0.25 0.26 0.25 0.73 0.69 0.67 0.68 0.30
Hierarchical 0.34 0.37 0.35 0.61 0.73 0.72 0.73 0.26

AP 0.11 0.13 0.12 0.86 0.51 0.57 0.54 0.41

Table 9: Precision (P), Recall (R), F1 score (F1) and hamming loss
(H.loss) for the Philosophers and the Friends and Family datasets.

by transforming the original dataset into L datasets |Dl| that
contain all examples of the original dataset, labeled as l if
the labels of the original example contained l and as ¬l oth-
erwise. Each classifier Hj is responsible for predicting the
0/1 association for each corresponding label lj ∈ L. We
provide the assigned cluster along with its attributes as an
input to the classifier. Our datasets are of moderate size, so
we feed all clustering results to the classifier. We use a multi-
label version of Hamming loss, Precision and Recall for the
label prediction. We further derive F1 score from Precision
and Recall. Table 9 reports the results for the clustering al-
gorithms on two datasets. Overall, hierarchical clustering
outperforms its competitors. However, all three algorithms
have strong performance on the Friends and Family dataset.
The strong F1 scores hint that the detected clusters and the
personality traits are correlated to each other. Similarly, we
obtain a F1 score of 0.35 for hierarchical clustering on the
Philosophers dataset, which is also a good score. However,
it has a high Hamming loss of 0.61. The performance of
AP greatly deteriorates for the Philosophers dataset with F1
score and Hamming loss of 0.12 and 0.86 respectively.

Case Study of Discovered Clusters
In this section, we present a case study of using the clusters
extracted for the previous exposed evaluation. We demon-
strate that extracted clusters have practical applications in
the extraction of knowledge from real world scenarios. The
results are derived from hierarchical clustering, because it
mostly outperformed its competitors as discussed in the pre-
vious sections. We discuss the patterns for a sample of two
participants reporting health issues from the Social Evo-
lution dataset. The dataset contains results derived from a
baseline questionnaire. The symptom survey was conducted
for four months and contains questions regarding common
contagious conditions – sore throat, runny nose, fever, nau-
sea and mental health (depression and stress). Figure 3 rep-
resents the clustering results for two participants that re-
ported continuous health issues for the survey period. The
first plot represents a user often complaining about fever,
nausea and mental health issues, the second plot represents
a user complaining about a sore throat and a runny nose.
We notice that for the first participant C(g) and occasion-
ally C(h) (representing less dense clusters) are prominent
patterns. This reflects the typical behavior of the people with
these kinds of health issues: depressed and physically weak
(fever/nausea) people tend to rest and communicate less,
whereas people with less severe issues like a runny nose usu-
ally do not reduce communication with people. We notice
that C(a), C(b) and C(d) (all dense clusters) are prominent
for the second user.

Figure 3: Clustering patterns for two participants reporting health
issues. The blue and gray colors represent the participants and
weekends respectively. Similarly, brown and pink colors represent
two contagious diseases (sore throat, runny nose), and four other
diseases (fever, nausea or mental health sickness) respectively.

Conclusion
In this work, we studied so-called ego graphs extracted from
social media and spatial-temporal datasets to characterize
their neighborhood patterns. To the best of our knowledge,
this is the first study that focused on identifying neighbor-
hood patterns in ego networks from such diverse domains.
The major contributions of the paper are fourfold: i) we ex-
amined in a systematic way a wide range of network fea-
tures (especially those addressing the characteristics of ego
networks) and unsupervised techniques to identify the pro-
totypical ego network patterns. Our results have shown that
determining the optimal number of neighborhood patterns
is surprisingly intricate. In addition, in case of a bad sep-
aration between the clusters, clustering algorithms tend to
produce outliers and redundant clusters that can be mislead-
ing, ii) our clustering analysis detected eight prototypical
emerging clusters for ego networks, each of them charac-
terized by particular properties. We assigned labels to these
prototypical clusters based on their shapes and properties of
the ego and its neighborhood. We further categorized them
into linked structures, dense structures, informative ego and
less dense structures, iii) we investigated the purity of the
delivered clusters within the identified clusters. Our analy-
sis has shown that hierarchical clustering has produced opti-
mum clustering results with minimum error margin. Further,
we compared the clustering patterns across different social
media and spatial-temporal networks to discover a common
knowledge. Our experiments showed better results for the
social media datasets, iv) we showed in our results section
that this solution allows a discovery of useful patterns in dif-
ferent real world networks collected from information rich
datasets.

Limitations and future directions. Now we discuss pos-
sible limitations and future directions of this research: i) De-
spite the fact that we analyzed a large collection of datasets,
we are still not able to conclude an upper bound for the
maximum possible number of ego patterns. It is possible
that new shapes might emerge from large datasets, ii) We
used standard graph theory measures for our analysis, but
a new set of features will definitely shed more light on
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the clustering results and possibly new clustering shapes,
iii) The selection of algorithms based on the characteristics
of the dataset is still an open problem. We have shown in
our analysis that different algorithms have performed better
for different datasets. Additionally, the traditional clustering
algorithms are time consuming and not efficient for large
datasets. They produce too many outliers for large dataset.
A possible solution is to use BFR (Bradley, Fayyad, Reina)
or CURE (Clustering Using REpresentatives) for large
datasets, iv) Another potential future direction would be to
design a statistical model to efficiently infer clustering pat-
terns with minimum error margin, v) We relied on visual in-
spection for smaller dataset, but this is not a feasible option
for larger datasets. For that, the best options are the Silhou-
ette width and inter-annotator agreement scores, vi) Last,
the extraction of knowledge and interpretations of the clus-
ters is merely dependent on many factors, such as environ-
ment and context of the data collection. A possible extension
would be to collect data from different real-world scenarios
and then interpret the clusters for specific scenarios.
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