
Trainspotting: Combining Fast Features to Enable
Detection on Resource-constrained Sensing Devices

Eugen Berlin and Kristof Van Laerhoven
Department of Computer Science

Technische Universität Darmstadt

{berlin,laerhoven}@ess.tu-darmstadt.de

Abstract—This paper focuses on spotting and classifying
complex and sporadic phenomena directly on a sensor node,
whereby a relatively long sequence of sensor samples needs
to be considered at a time. Using fast feature extraction from
streaming data that can be implemented on the sensor nodes,
we show that on-sensor event classification can be achieved. This
approach is of particular interest for wireless sensor networks as
it promises to reduce wireless traffic significantly, as only events
need to be transmitted instead of potentially large chunks of
inertial data. The presented approach characterizes the essence
of an event’s signal by combining several simple features on low-
cost MEMS inertial data. Using a scenario and real data from
vibration signatures generated by passing trains, we show how
with this approach the classification of passing trains is possible
on miniature nodes placed near the railroad tracks. Experiments
show that, at the cost of slightly more local processing, the chosen
features produce good train type classification with up to 90%
of trains correctly identified.

Index Terms—feature extraction, sensor data abstraction, event
classification, wireless sensor networks

I. INTRODUCTION

Deploying a sensor network offers various positive and well-

documented implications, such as minimizing the intrusion and

disruption of the environment and its inhabitants, and being

able to monitor wide areas with a minimum of resources. Wire-

less sensor network applications have traditionally focused a

lot on the periodic sampling of sensor data over long stretches

of time and space, by using robust, distributed, and power-

efficient sensor devices that collectively observe phenomena

from a variety of locations. Many sensor network applications

observe trends over an area by regularly sampling slow-

moving values such as humidity or air pressure, meaning that

nodes periodically wake up and disseminate their information

across the network. Another well-published type of application

aims at spotting sporadic events, such as sudden rises in

temperature or the presence of methane, which are tackled

by detection on the individual nodes. The advantage of this

type of sensing is that the nodes themselves already filter out

most of the sensor data, creating less overhead for the wireless

medium that is shared between nodes.

Recent advances in computer technology, in hardware as

well as in software, have lead wireless sensor networks to be

more scalable with their nodes being deployable for longer

periods of time and being able to achieve battery-preserving

low-power modes. Sensor networks have also been deployed

ac
ce

le
ra

tio
n

va
ria

nc
e

Fig. 1. A small sensor placed directly at the railway tracks captures vibrations
caused by passing trains. From the raw sensor data of these events (middle
plot), features can be extracted that are characteristic enough to be be used
for on-sensor event estimation and classification (bottom plot).

to monitor or detect critical events, such as geothermic activity

[1] or emergency scenarios [2], [3], that require high-fidelity

data analysis in (or close to) real-time. This often conflicts

with the fact that wireless sensor networks are heavily con-

strained by their hardware resources. In particular wirelessly

transmitting the raw sensor data to a base station that has the

processing capabilities will require high amounts of energy,

and this will often constitute the main reason that nodes in

the network to run out of battery power.

This paper focuses first and foremost on data abstraction

in cases whereby sensors are sampled at relatively high

frequencies, from hundreds of Hertz for inertial sensors up

to thousands of Hertz for microphones. We argue that on-

node data abstraction is still possible with a combination of

simple features based on mean, RMS, standard deviation, or

signal amplitude that can be computed on microcontroller-

based hardware. For events that need to be represented by

thousands of samples onward, such characterization would pay

of as it reduces the raw data to a fraction of its original size.

Figure 1 depicts a typical event in the case study that was

used in this paper to evaluate our approach: The vibrations

caused by passing trains are captured nearby the railway tracks

by a small sensor node that is equipped with a sensitive inertial

sensor. From the sensor’s readings signature, we propose to

extract a set of features that can be used for detecting what type

of train just passed and to approximate what its length was in

wagons. The features can be calculated in an online fashion,

meaning that they can be implemented on sensor platforms

where memory and storage resources are limited.978-1-4673-1786-3/12/$31.00 c© 2012 IEEE

 978-1-4673-1786-3/12/$31.00 ©2012 IEEE

The remainder of this paper is structured as follows: In

section II we will frame this research amid the most important

and relevant related work. Section III is dedicated to our

feature extraction approach. The sensor hardware is explained

in section IV. Our experimental dataset is being presented in

section V, while the evaluation and the chosen parameters and

the results will be presented in section VI. Finally, we will

discuss our results in section VII.

II. RELATED WORK

Sensors to monitor infrastructure, such as roads, railways,

buildings, bridges have featured in quite a few research sce-

narios to motivate wireless sensor network infrastructures. The

diversity of type of applications, of the employed sensors, and

of the deployment and setup procedures has grown hugely.

Monitoring and anomaly detection in structures is highly

sought after to improve safety and organize maintenance tasks.

Event and flow detection for alarm systems or traffic manage-

ment is another popular category of application scenario. This

section highlights several application scenarios that are tangent

to our case study of train detection, and presents other related

work in sensors and features for event detection.

Bridge health monitoring systems, such as in [4], use

vibrations and apply independent component analysis (ICA)

and other complex and computationally expensive features and

approaches to monitor and ensure infrastructure safety.

Several application scenarios have been proposed that also

target railway safety and train detection. Train arrival de-

tection with accelerometers, presented in [5], is used to set

of an alarm to warn workers on tracks, being a short-term

deployment scenario that uses off-the-shelf accelerometer and

communication system. In [6], the need for train detection is

motivated, presenting some established train detection systems

(e.g. axle counters to count wagons) and giving an outlook

on future systems such as ERTMS/ETCS or satellite-based

ones. Vibration sensors on running trains are used in [7]

to monitor rail deformation thus increasing safety. Another

work, [8] presents a train wheel detection system based on

electromagnetic sensor arrays. A wireless sensor network is

presented in [9] that is aiming at monitoring railroad operation,

reducing the number of accidents and improving the efficiency

of maintenance activities.

Various research, such as [10], [11], [12] or [13], describe

different application scenarios to detect and classify rare

events. They focus on distributed observation of an area to

spot the presence of ground vehicles or humans using vision-

based, acoustic, seismic, magnetic and infrared sensors. While

the deployment scale of these scenarios differs a lot, the feature

set is kept relatively simple in these works. This correlates

with the need or desire of deploying especially low-power and

low-computation sensors. In the research scenario of a car toll

system [12], types of vehicles such motorcycles, cars, pickup

trucks, vans, and buses, are detected using the vehicle length,

average observed energy and hill-pattern peaks in the signal

are chosen as features that are easy to compute, following a

very similar approach to the one taken in this work.

Power efficiency is a big topic throughout the sensor net-

work community, but also in other research domains. The

power constraints also hold for instance in the wearable

and mobile sensor research domains, leading to approaches

that aim at processing more data at its source, instead of

transmitting the sensor data to a base station or just storing

it in local memory. Detecting activities on a smart phones

a processing platform, as presented in [14], will reduce the

communication load and extend the lifetime of the sensors.

This paper focuses especially on those wireless sensor

network applications that observe phenomena that cannot be

detected trivially by for instance sensor values passing set

thresholds. To this end, we chose the detection of train types

by means of the vibration signature they exhibit in nearby

inertial sensors. The events in this scenario are (1) happening

sporadically with most of the time nothing happening, (2) short

in nature as trains’ vibration patterns tend to take some seconds

to maximally a few minutes, and (3) can be detected by many

redundant sensors along the same track to ensure high-enough

precision in detection. Detection of trains in the categories that

will be given later would for instance enable giving workers on

the railroad more information on typical train speeds, or would

enable railroad bridge engineers to deduce an approximate

figure on weight and usage of said structure.

The next section will present the proposed features that in

combination will give an abstract but sufficiently rich picture

of the events so that they can be detected with straightforward

classifiers. Though also the classifiers would perhaps be im-

plementable on the nodes themselves, we focus on the feature

extraction and investigate classifiers later in the evaluation.

III. FEATURE EXTRACTION

Focusing on the application of spotting and categorizing

passing trains as a representative scenario for a wider range

of application types, the main goal is to extract simple features

directly on the sensor node itself, and propagate either these

throughout the network instead of raw data or a classification

based on these. In both cases the feature calculation is focused

on, while we assume the classification to be either straightfor-

ward enough to also implement on the sensor node, or be done

on a more powerful platform at the network’s sink.

For the rest of the paper, including the experiment setup,

we will assume a sensor sampling rate of 100Hz and the data

resolution set to 10 bit. Although this is far from sufficient

for exact vibration analysis, we argue that with using the

basic features discussed in this section on data from low-

cost but precise MEMS inertial sensors suffices to capture

the events for the application’s needs. The features discussed

here will thus not rely on calculations and transformations

in the frequency domain but instead approximate shapes and

amplitudes within the signal to enable event classification.

Events are assumed to occur sparsely over the course of

time, so most of the data acquired by the sensor is not relevant

and can be discarded after verifying no events are present in

the data. A windowed standard deviation calculation was found

to accurately detect these flat signal sections between events.

Whenever an event occurs, the sensor node will thus detect

the changing sensor values, including the start and stop times

of the event and the event duration, and temporarily buffer

the sensor data from the event for further evaluation. As the

node’s RAM tends to be limited, storing of the data stream

can be done in an online fashion on peripheral memory such

as an attached SD card. The feature analysis and calculation

are thus limited to online algorithms: They are required to run

incrementally on partial buffers of the event’s data at a time.

Since the sensor has the time of event occurrence and also

its duration in number of samples, the latter can directly be

used as a distinct feature. This feature is similar to what others

have used to detect types of ground vehicles, for instance [12].

As we are interested in abstracting the vibrations pattern

caused by trains, using the overall variance to describe a train

event would be another higher-level feature. Extracting other

features from the sensor data that describe the signal footprint

requires a more detailed look at the signal properties. For this,

the vibrations caused by each axle or carriage/truck of train

wagons, can be extracted by a sliding window approach and

represented as variance peaks, as shown in Figure 1. Counting

these local maxima in the variance will create a feature that

is expected to correlate to the number of wagons in the train.

The amplitude of the signal was also chosen as a feature.

Hereby, either the real signal amplitude can be utilized or

alternatively, since the windowed variance is computed for the

above described peak detection, the maximum peak value as a

representative for the amplitude can be used instead (the latter

is visible in the bottom plot of Figure 1).

The ability to characterize the events directly on the sensor

node with these features makes it possible to forward these few

abstractions of the event instead of its original raw sensor data

representation. When considering a wireless sensor network

that should be deployed for railway monitoring tasks, this

means a much more energy efficient way of notifying a base

station or logging data for future offline analysis.

The presented feature routines are in essence the result of

a trade-off between having highly-accurate vibration informa-

tion but requiring a high amount of processing power, and

settling for more abstract information while being able to do

these calculations on more light-weight platforms. The features

also do not require thousands of samples per second. From this

follows that relatively low-cost and low-power sensor nodes

can be utilized with microcontrollers that can for instance lack

floating point units, as the next section will specify.

IV. SENSOR HARDWARE

The type of sensor is critical to the experimental data de-

scribed in the next section, in which trains’ vibration footprints

were captured while passing by the deployed nodes. This

section provides the implementation details on the design

choices for this type of node, as deployment issues are in

this scenario crucial. It argues in particular for the use of an

inexpensive and power-efficient inertial sensor to detect and

characterize trains passing by, rather than using more accurate

but also more resource-demanding vibration sensors.

Fig. 2. The sensor node board with microcontroller, accelerometer and
microSD card used for the collection of this paper’s dataset. The USB port
was used for configuring, initiating logging for the sensor node and afterwards
accessing the captured data. A weatherproof plastic enclosure holds all
components including a small lithium-polymer battery (size: 37x33x15mm).

Since the sensor node needs to be surviving a longitudinal

deployment at a train track, the targeted environment can be

expected to be especially hostile. Even though the used sensor

node is a research prototype, a plastic enclosure was used and

practical considerations for deployability included a range of

outdoor situations that might damage the sensor node:

• extremely high and low temperatures caused by direct

sunlight in summer or snow cover in winter

• high amounts of humidity, snow or rain conditions

• accumulating dust and presence of dirt

• limited availability of a nearby power supply

The sensor modules used in the evaluation for this paper’s

were designed to be small, robust and inexpensive enough to

be left at the tracks in a variety of weather conditions. Built

around a Microchip PIC microcontroller, an SD card for local

storage and a 3D MEMS accelerometer (Fig. 2), the sensor’s

main board contains interfaces for reprogramming, wireless

extension, configuring the sensor node, and additional sensors

such as light or temperature sensors. The 3D ADXL345

accelerometer is set to sample its data at 100Hz and message

the data in bursts of 32 samples to the microcontroller. The

gaps between the bursts thus give the microcontroller enough

time to process the previous burst of sensor data and to go into

a low-power idle mode to preserve battery power. The sensor

was configured for sensing vibrations on its most sensitive

setting, using the low ±2g range and the full 10-bit resolution.

The node’s battery is a small-scale 180mAh lithium polymer

battery which is able to power the sensor for approximately

two weeks while logging all data to the SD card.

The choice of low-power microcontroller-centered design

makes the entire module small and cheap to produce, but also

brings one of the bigger challenges that this paper faces: The

limited amount of memory resources and the lack of a floating-

point unit poses a harsh limit on the used algorithms and their

implementation. The proposed feature routines therefore need

to be able to work under strict memory constraints and should

avoid the use of complex functions as they are for example

used in Fourier analysis, as discussed in the previous section.

Fig. 3. Different train types that were recorded and classified during the
evaluation. Fast inter-city and the city hopper passenger trains at the top, a
fast regional passenger train in the middle, and a cargo train at the bottom.

The choice for an inexpensive off-the-shelf MEMS inertial

sensor to detect and characterize particular trains by the vibra-

tions they generate, has two consequences: (1) These sensor

nodes could be built easily in large quantities, while occupying

a minimal volume and generating data at a bandwidth and

resolution that can be immediately processed by the on-board

available processing power. (2) On the other hand, the quality

of the sensor data can be expected to be less accurate than

that of specifically-designed vibration sensors, placing more

importance on the extraction of distinctive and characteristic

features as proposed in this paper.

The raw logging used only about 20% of program and

random access memory. The proposed feature calculations

would thus comfortably fit on these sensor nodes, enabling

execution in an online fashion on the sensor node to forward

only these through the wireless network instead of the usually

larger amount of raw vibration data. To evaluate whether the

features are descriptive and discriminant enough, however, we

will in the remainder of this paper perform an experiment on

their quality in characterizing observed vibration patterns. The

following section will describe the deployment of the sensor

nodes and the type of events that were captured in the datasets.

V. TRAINSPOTTING DATASET

The experiments discussed in this paper rely on a dataset

taken with the prototype sensor node, discussed in the previous

section, while placed nearby a railroad track. This section

presents the recorded dataset and gives an overview on its

characteristics and information content.

The data used in this paper comes from two separate

recordings that were conducted nearby two different railroad

tracks in different locations, in order to have an as rich as

Fig. 4. Part of the data set, showing approximately 35 hours of sensor data
(top plot): The data contain sparse but complex events caused by passing
trains. Vibrations patterns shown in the two bottom plots were caused by
a regional passenger train accelerating from the nearby station (duration 16
seconds) and a cargo train with loaded wagons (duration 30 seconds). The
proposed features were tested on this data with two common classifiers.

possible dataset. The combined data contains in total 247

events, where an event is defined as a train passing by, whereby

182 of the trains were annotated with the corresponding train

type as they could be traced by to the available train schedule.

The remaining 65 train events were labeled with ”unknown”

and not used in the classification evaluation. Figure 3 shows

some types of trains that were observed to be running on those

tracks. Figure 4 shows this part of the dataset, including a

zoom-in on a fraction of the data, and showing two exemplar

events caused by a regional passenger train and a cargo train.

The first of the two recordings comes from a low duty

railroad track and has approximately 24 hours of continuous

sensor data, during which in total 53 trains passed by. This

track services only smaller passenger trains that consist of a

two-car articulated unit (Fig. 3, upper right). At certain times

during the day, mostly during rush hours, there are also trains

running that consist of multiple such wagons. The sensor’s

location was not nearby a station or place where trains tend to

slow down. The trains’ signatures thus tended to be relatively

short and passing by at similar speeds.

The second recording was added to the first to increase the

dataset’s complexity by having been carried out on a busier

railroad, spanning 35 hours of continuous data collection and

capturing 194 train events in total. This track is used by

a higher variety of trains, such as inter-city and regional

passenger trains as well as cargo trains. The sensor node

was this time also deployed nearby a train station that is

only served by some regional passenger trains. While some

passenger trains as well as cargo trains were passing the

train station without slowing down at the station, others did

decelerate and accelerate from this station, thus adding more

diversity to train speeds and thus their signature’s length.

Being interested in the 182 labeled events only, the rest of

the data was discarded as irrelevant for this kind of application

after verifying that all events were indeed from passing trains

(and not for instance from other application-irrelevant events).

In a wireless sensor network scenario, it would be a common

approach to discard the data between events, i.e., the flat

accelerometer signals between trains passing by, then process

the raw data from events locally and only transmitting the

result of the feature processing or classification. In the case

of this paper’s study, results needed to be reproducible and

we therefore opted for continuous logging of raw data on the

local flash memory, which is also a power-intensive operation.

Since the dataset contains many different train types that

mainly differ by name due to their scheduled tours, but in

reality turn out to be similar regarding the type of wagons and

locomotive used, a decision was made to group the annotations

in four main categories. The categories reflect main train types

as they tend to be found on European railroads. The three inter-

city passenger train types (ICE, IC, EC) mostly consist of same

type and number of wagons are therefore grouped as class A.

The two regional train types (RE, RB) were categorized as

class B. All types of cargo trains were put together in class

C, while so-called city-hopper passenger trains form class D.

After retrieving the nodes and downloading their recorded

data, annotations were added by using available train schedules

as well as train configuration databases that specify how

the trains were constituted, including number of wagons and

position of the locomotive(s). No further data was available re-

garding the cargo trains, and unscheduled or re-directed trains,

some of which were single locomotives without wagons, that

could not be traced back in the schedules were as previously

mentioned disregarded.

Figure 3 shows photos of different train types running on the

rail tracks of interest. The first class consists of fast inter-city

passenger trains that contained 5 up to 9 wagons. The second

class are the fast regional passenger trains that consist of 5 to 8

wagons, whereby there are some trains that stop at the nearby

train station while others do not. The city hopper passenger

trains consist of 2-car articulated units, whereby multiple such

wagons are put together during rush hours. Finally, there is the

cargo train class that had the most diverse setups and speeds,

but mostly consisted of a much longer signature (due to having

a bigger locomotive pulling far more wagons than the trains

in the passenger train category).

The next section will discuss the implementation and

parametrization of the features used with this dataset to

classify the train events present in this dataset, as well as the

evaluation and discussion of the results.

VI. EXPERIMENTS

This section describes the offline evaluation of the previ-

ously presented features on the data set introduced in the

previous section. First off, the parametrization details for the

features and the methodology is given for the evaluation,

followed by a discussion of the actual evaluation results.

A. Evaluation setup

This section discusses which features have been extracted

from sensor data with which set of parameters, and how they

were evaluated by using them to classify the train events.

Since our experiments were conducted offline for repro-

ducibility, a first step requires that from the large amount

of data only the actual train events are detected from sensor

data. With this step we also acquire the start and stop time

of an event, thus being able to compute its duration (in

milliseconds). Additionally, the overall variance of this event

is computed to give a rough estimation on how much vibration

the train has caused. More specifically, valid patterns are

detected by computing the variance over a sliding window

with a relatively small size of one second (using half a second

for window overlap) and a small threshold (set to 1.5 to cancel

out the small amounts of noise in the original raw data). Start

and stop boundaries of each event, along with its raw data

and its duration, were extracted as separate data chunks for

further analysis. For each of these events, the overall variance

was added and used as a feature for classification.

In addition to these overall event features, a more short-term

sliding window was used to extract dense vibration patterns

that correspond to the wheel impacts on the rails. For this step,

the choice of window size is crucial, as from this depends

whether we will be counting the axles, the trucks (also called

’bogie’ or a ’wheel truck’), adjacent trucks, or whole wagons

(carriages with multiple axles). This truck count will then be

used as another feature for classification, but might also be of

interest to an application that requires tracking the train length

or the train’s configuration (e.g., in rail bridge monitoring).

To achieve this, we tested sliding window sizes on the

interval from 100 up to 300 milliseconds (or 10 to 30 samples).

Computing windowed variance resulted in the characteristic

plots shown in Figure 5, with the raw sensor data is the

upper and the resulting variance in the bottom plot. Hereby, a

window size of 160 milliseconds was found to produce best

classification performance. Using a peak detection algorithm

based on the slope of the signal, the local maxima in the

variance plot were found and highlighted as green dots. The

number of peaks thus tends to correlate to the number of

wagons the train consists of, and this feature can be expected

to be of particular importance for distinguishing the cargo train

class (an example of this can also be seen in Fig. 5a).

With this optimal window size of 160 milliseconds, an early

analysis showed that counting the trucks to estimate number

of passenger carriages worked fairly robust. Counting trucks

to estimate the number of wagons for the cargo trains on the

other hand turned out to be more error-prone, most likely due

to the high vibration levels caused by the cargo wagons and

the high variance of different train speeds (due to cargo trains

often passing the nearby station at low speeds, and also speed

limits that are for instance imposed during the night time or

at peak times). Counting pairs of trucks (holding up to two

axles each) of adjacent wagons, on the other hand, can be

distinguished more easily for all train types.

0 500 1000 1500 2000 2500 3000

ac
ce

le
ra

tio
n

3 : [3120. 707.61 55.]

va
ria

nc
e

(a) A cargo train event of 31 seconds duration. The raw signal suggests that
the train cars were loaded less in the first and more in the second part. Here,
55 peaks were detected and some missed, probably due to high noise level.

0 200 400 600 800 1000 1200 1400

ac
ce

le
ra

tio
n

2 : [1472. 33.05 19.]

va
ria

nc
e

(b) A regional train of 6 wagons accelerating from nearby train station. High
variance peaks in the beginning indicate the locomotive. The variance peaks
with decreasing time gaps in between show the impact of each truck.

0 100 200 300 400 500 600

ac
ce

le
ra

tio
n

2 : [480. 489.97 7.]

va
ria

nc
e

(c) A regional train of 6 wagons not stopping at the train station. The high
variance at the end of the event indicates that this train is being pushed by a
locomotive. The variance peaks capture pairs of trucks of adjacent wagons.

0 100 200 300 400 500 600

ac
ce

le
ra

tio
n

1 : [536. 167.02 9.]

va
ria

nc
e

(d) A fast inter-city passenger train of 8 wagons (including the locomotive)
passing at high speed. The fixed window size is too wide and can not capture
each truck, but pairs of trucks of adjacent connected wagons.

0 50 100 150 200 250

ac
ce

le
ra

tio
n

4 : [264. 27.42 3.]

va
ria

nc
e

(e) A city hopper passenger train is a 2-car articulated unit equiped with
three trucks, two axles each. Reducing the sliding window size might allow
capturing each axle separately.

0 100 200 300 400 500

ac
ce

le
ra

tio
n

4 : [480. 46.98 6.]

va
ria

nc
e

(f) This city hopper passenger train consists of two wagons, thus having 6
trucks with 2 axles each. The variance peaks nicely correspond to the 6 trucks,
having almost no gap between the two wagons.

Fig. 5. Examples of train events that were detected in the sensor data. Each subfigure shows raw acceleration data in the upper and variance computed on a
sliding window of 0.16 seconds in the bottom plot. Peaks extracted from the variance are marked with green bullets. Due to various train assemblies as well
as different train speeds, just counting the number of variance peaks computed on a fixed sliding window will not give a good classification performance.

With these features calculated, a 5-fold leave-one-out cross

validation study was conducted. All events were grouped per

train class and those were divided in 5 folds, whereby 4

were used for training the classifier and remaining fold was

used for testing. For each fold, the true labels of the cross

validation part (given by the annotation of the dataset) as

well as the labels obtained by the classification were stored,

and afterwards used to build the confusion matrices. From a

confusion matrix, we then compute the classification accuracy

per class of interest as well as the total accuracy for the given

set of features and chosen parameters.

Two classifiers were used for the evaluation: The K nearest

neighbor (kNN) classifier was chosen particularly due to

its simplicity and popularity. Additionally, a support vector

machine (SVM) classifier was chosen for comparison. This

way we are able to evaluate the features’ performance, and test

whether the choice of the classifiers has a significant impact,

too. For the kNN classifier, k was set to 5 nearest neighbors,

as it was found to produce best classification results. In the

SVM case, a linear kernel was used. The evaluation was im-

plemented in Python, using publicly available library packages

available from the Debian software repository, namely the

mvpa library for the kNN and svmutil for the SVM.

B. Evaluation results

This section presents and discusses the results of the kNN

and SVM classifiers that were chosen for the evaluation. The

confusion matrices given in Figure 6 show the classification

performance for the kNN classifier and the four train cate-

gories. The confusion matrices for the SVM classifier are given

in Figure 7. For these, the different sets of features were tested,

while the best performing parametrization with 5 folds, k = 5,

and the sliding window size of 0.16 seconds were set.

Relying on the event duration as a single feature results

in a weak classification performance, as can be seen in the

confusion matrix shown in Figure 6a. The fast inter-city trains

are mostly confused with the city hopper trains, reaching a

class accuracy of only 22.22%. The reason for this strong

confusion lies in the relation of speed and train length: on

average a short and slow city hopper train generates a vibration

pattern that is as long in time as the fast inter-city trains which

are longer but pass by faster (from 3 up to 7 seconds).

The same observation holds for other train types as well,

whereby other train classes do not exhibit such high degree

of confusion, reaching class accuracies of 61.76, 85.71 and

67.92% respectively. The regional passenger train class is

being confused with all other train classes, probably because

A B C D
predicted class

A

B

C

D

ac
tu

al
cl

as
s

4 1 13

4 21 5 4

11 66

13 4 36

(a) Event duration only

A B C D
predicted class

A

B

C

D

ac
tu

al
cl

as
s

11 5 2

8 26

1 1 75

2 51

(b) Event duration and variance

A B C D
predicted class

A

B

C

D

ac
tu

al
cl

as
s

16 2

7 24 1 2

1 76

53

(c) Duration, variance, # of peaks

A B C D
predicted class

A

B

C

D

ac
tu

al
cl

as
s

9 7 2

4 26 4

4 73

4 3 46

(d) # of peaks only

Fig. 6. Summary of the kNN classification results for the train type classes (A to D) and different feature sets presented as confusion matrices: Combining
all features results in the best performance. The classes are: A - fast inter-city trains; B - regional passenger trains; C - cargo trains; D - city hopper trains.

A B C D
predicted class

A

B

C

D

ac
tu

al
cl

as
s

1 17

19 6 9

13 64

1 52

(a) Event duration only

A B C D
predicted class

A

B

C

D

ac
tu

al
cl

as
s

13 5

9 24 1

1 76

2 51

(b) Event duration and variance

A B C D
predicted class

A

B

C

D

ac
tu

al
cl

as
s

11 7

7 24 1 2

1 76

1 1 51

(c) Duration, variance, # of peaks

A B C D
predicted class

A

B

C

D

ac
tu

al
cl

as
s

6 4 8

25 9

3 74

5 1 47

(d) # of peaks only

Fig. 7. Summary of SVM classification results for the train type classes (A to D) and features sets presented as individual confusion matrices. Event duration
and variance are particular strong features. The classes are: A - fast inter-city trains; B - regional passenger trains; C - cargo trains; D - city hopper trains.

its many instances where they do not stop at the nearby train

station (thus being as fast as inter-city trains at this particular

spot) and trains that do and then accelerate from the station,

leading confusion with long city hopper trains or very short

cargo trains. The total accuracy for this feature and chosen

classification parameters accounts to 69.78%.

The SVM classifier’s performance with event duration as the

single feature is much worse for the inter-city train class: these

are heavily confused with the city hopper passenger trains

(cf. Fig. 7a). The other classes perform considerably better,

with 55.88, 83.12 and 98.11% per-class accuracy respectively,

producing a total accuracy of 74.18%, and thus slightly

outperforming the kNN classifier overall.

Using the total event variance as a second feature signifi-

cantly improves the kNN classification’s performance (Figure

6b). The accuracy for the inter-city class jumps to 61.11%,

since the total vibration impact of a faster and heavier inter-

city train is higher than of the light city hopper, the confusion

at this spot is drastically reduced compared to the previous

results. A similar but less significant improvement can be

observed with the cargo train and city hopper classes. The

confusions between the inter-city and regional trains on the

other hand still remains, which most likely is due to their

similar duration and vibration signature. This especially be-

comes graspable when considering just the regional trains that

do not stop at the nearby train station and therefore do not slow

down (cf. Fig. 5 c) and d)). All train type classes thus gain

a performance boost, now reaching 76.47, 97.4 and 96.23%

in per-class accuracy. The total accuracy for the chosen set

of features lies at 89.56%. Only slightly better results can

be achieved by the SVM classifier, where the total accuracy

reaches 90.11% (Figure 7b).

The number of peaks in the vibration pattern has been pre-

viously mentioned as an attractive feature candidate. Testing

different window sizes from 0.1 up to 0.3 seconds in 0.02 steps

revealed, to our surprise, that using the peaks as an additional

feature does not improve the performance significantly. While

there is no improvement for the kNN at all, the SVM classifier

improvement accounts to 0.3 % over the previous feature set

(with duration and overall variance). The reason might lie in

the fact that the number of peaks corresponds heavily to the

duration of the event already, and thus not offering much more

information to distinguish train categories.

Since the windowed variance was computed with a fixed

window width for all events, regardless of their duration,

one possibility to improve on the per-class accuracies might

be to adapting the parameters for the windowed variance

according to the length of the pattern. By adding the maximum

value of the windowed variance (which represents the variance

amplitude), we are able to boost the total accuracy a little

bit more, reaching 92.86%. When evaluating the performance

of each class (Figure 6c), we observe that the city hopper

train class is performing at 100% accuracy. Only one false hit

happened with the cargo train class, being confused with a

fast inter-city train. Some confusion still happens between the

fast inter-city and the regional passenger train classes, which,

as already mentioned, is most likely due to the non-stopping

regional passenger trains that belong to the class. In this case,

the kNN classifier shows better performance than the SVM,

which reaches a total accuracy of 89.01%.

When considering just the number of peaks (wagons, win-

dowed variance footprint), without duration or total variance

of the event, the classification performance drops to a total

accuracy of 84.62% for kNN (Figure 6d) and 83.52% for SVM

(Figure 7d). Since the number of peaks corresponds to the

duration of the event on the one hand, but also covers the

vibration properties of the trains, the obtained performance

lies between the performances of duration on the one hand

and duration with overall variance as features on the other.

While the number of peaks did not improve the classifica-

tion performance in our evaluation, the information encoded

in this feature is still valuable. Using the number of peaks

and the distances between those can be used to distinguish

regional trains that are accelerating from the train station from

the trains that do not stop there. Additionally, a feature pair

consisting of the number of peaks together with the variance

values might push the accuracy more, but is left for a planned

further study over a larger data set.

The comparison of the results for both chosen classifica-

tion algorithms shows that the performance is very similar.

While the classifications are comparable, the SVM approach

requires much more time for training and evaluation. A low-

footprint version of the kNN classifier could furthermore be

implemented on the sensor node, which could allow on-sensor

classification with an overall accuracy over 90%.

VII. CONCLUSIONS

This paper proposed a set of features for event detection

in wireless sensor networks that can be calculated online on

the individual sensor nodes, and are descriptive enough to

allow characterization with a straightforward classifier. The

features have as an advantage that only small descriptors need

to be sent through the network, thereby reducing the network’s

communication overhead and power demand.

To evaluate the proposed features, a case study was pre-

sented in which small and robust wireless sensor nodes are

deployed at train tracks to detect and identify passing trains

by their vibration signature, as it is picked up by a sensitive

inertial sensor on board. A real-world dataset was recorded,

allowing a reproducible comparison of the proposed features

and an evaluation on their impact on classification of events.

It was found that with the event duration and overall vari-

ance the classification performance reaches a total accuracy

of 89.56%. The best performing feature set consisted of the

duration, the overall variance and the variance amplitude

(value of the highest variance peak), reaching a total accuracy

of 92.86%. These results, achieved with a kNN classifier with

k set to 5, performs similarly to an SVM classifier reaching a

total accuracy of 92.31%, while being better suited for future

explorations on on-sensor classification.

At the time of writing, a larger-scale project is being started.

We expect from this a significant gain of information that is

needed for a long-term deployment of multiple sensors, as

well as a throughout evaluation of our approach, with both

offline as well as online classification implementations. This

paper’s data set and evaluation scripts are available from the

first author.

REFERENCES

[1] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees,
and M. Welsh, “Deploying a wireless sensor network on an active
volcano,” Internet Computing, IEEE, vol. 10, no. 2, pp. 18–25, March-
April 2006.

[2] T. Gao, C. Pesto, L. Selavo, Y. Chen, J. G. Ko, J. H. Lim, A. Terzis,
A. Watt, J. Jeng, B. rong Chen, K. Lorincz, and M. Welsh, “Wireless
medical sensor networks in emergency response: Implementation and
pilot results,” in 2008 IEEE Conference on Technologies for Homeland
Security, December 2008, pp. 187–192.

[3] T. Gao, T. Massey, L. Selavo, D. Crawford, B. rong Chen, K. Lor-
incz, V. Shnayder, L. Hauenstein, F. Dabiri, J. Jeng, A. Chanmugam,
D. White, M. Sarrafzadeh, and M. Welsh, “The advanced health and
disaster aid network: A light-weight wireless medical system for triage,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 3,
pp. 203–216, September 2007.

[4] J. Huang, H. Ogai, C. Shao, J. Zheng, I. Maruyama, S. Nagata, and
H. Inujima, “On vibration signal analysis in bridge health monitoring
system by using independent component analysis,” in Proceedings of
SICE Annual Conference 2010, August 2010, pp. 2122–2125.

[5] L. Angrisani, D. Grillo, R. Moriello, and G. Filo, “Automatic detection
of train arrival through an accelerometer,” in Instrumentation and
Measurement Technology Conference (I2MTC), May 2010, pp. 898–902.

[6] J. W. Palmer, “The need for train detection,” in IET Professional
Development Course on Railway Signalling and Control Systems (RSCS
2010), June 2010, pp. 52–64.

[7] C. Wang, Q. Xiao, H. Liang, X. Chen, X. Cai, and Y. Liu, “On-line
vibration source detection of running trains based on acceleration mea-
surement,” in 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, October 2006, pp. 4411–4416.

[8] P. Donato, J. Urena, M. Mazo, J. Garcia, and F. Alvarez, “Electro-
magnetic sensor array for train wheel detection,” in Sensor Array and
Multichannel Signal Processing Workshop Proceedings, July 2004, pp.
206–210.

[9] E. Aboelela, W. Edberg, C. Papakonstantinou, and V. Vokkarane, “Wire-
less sensor network based model for secure railway operations,” in
25th IEEE International Performance, Computing, and Communications
Conference (IPCCC 2006), April 2006, pp. 624–628.

[10] S. Gupte, O. Masoud, R. Martin, and N. Papanikolopoulos, “Detection
and classification of vehicles,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 3, no. 1, pp. 37–47, March 2002.

[11] G. P. Mazarakis and J. N. Avaritsiotis, “Vehicle classification in sensor
networks using time-domain signal processing and neural networks,”
Microprocess. Microsyst., vol. 31, pp. 381–392, September 2007.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1276528.1276723

[12] S. Keawkamnerd, J. Chinrungrueng, and C. Jaruchart, “Vehicle clas-
sification with low computation magnetic sensor,” in 8th International
Conference on ITS Telecommunications (ITST 2008), October 2008, pp.
164–169.

[13] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design
of a wireless sensor network platform for detecting rare, random, and
ephemeral events,” in Proceedings of the 4th international symposium on
Information processing in sensor networks, ser. IPSN ’05. Piscataway,
NJ, USA: IEEE Press, 2005.

[14] F.-T. Sun, C. Kuo, and M. Griss, “Pear: Power efficiency through activity
recognition (for ecg-based sensing),” in 5th International Conference
on Pervasive Computing Technologies for Healthcare (PervasiveHealth
2011), May 2011, pp. 115–122.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

