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Abstract

Robot systems largely depend on embedded systems to operate. The interfaces of those embedded systems, e.g. motor

controllers or laser scanners, are often vendor-specific and therefore require a component that translates from/to the

Robot Operating System (ROS) Middleware interface. In this work we present an implementation and evaluation of a

ROS Middleware client based on the Contiki operating systems, which is suitable for constrained embedded devices,

like wireless sensor nodes. We show that in-buffer processing of ROS messages without relying on dynamic memory

allocation is possible. That message contents can be accessed conveniently via well-known concepts of the C language

(structs) with negligible processing overhead compared to a C++-based client. And that the message-passing middle-

ware concept of ROS fits nicely in Contiki’s event-based nature. Furthermore, in order for an environment enriched with

wireless sensor network to help robots in navigating, understanding and manipulating environments a direct integration

is mandatory.
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1. Introduction

Exploring previously unchartered and possibly risky environments with technology is the focus of sev-

eral research initiatives. In numerous disaster recovery and monitoring scenarios for instance, robots are

envisioned as a reliable instrument to enter and survey dangerous territory without risking human lives (as

for instance during the Fukushima incident [1]). An alternative approach uses large distributed networks

of wireless sensors that could be deployed by air to cover the area of interest, as for instance proposed by

[2] where small and cheap wireless sensor nodes can support first responders in disaster mitigation. Both

robot and wireless sensor network (WSN) approaches have their advantages and disadvantages: The former

generally lends itself well in circumstances when actuation could prove vital during the exploration but takes

time to cover and observe larger areas, the latter tends to be faster in capturing signals from a larger territory

but does not include means to take significant action. This has led to several approaches enabling communi-

cation across nodes from a wireless sensor network and mobile robots active within the same environment.
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For example, the sensor nodes dropped by a mobile robot [3] could not only provide sensor measurement

but also an ad-hoc deployed wireless communication infrastructure.

Middleware to enable such direct integration of WSN and robot systems is still rare. In this paper

we describe the direct integration of WSN platforms into the popular Robot Operating System [4]. ROS

provides a message-passing publish/subscribe communication mechanism. The problem at hand is how to

efficiently exchange those messages and how to create a simple, yet robust resource discovery mechanism.

We decided for a code generation approach to translate ROS messages to a machine-native C-struct memory

layout and show that a simple centralized proxy approach to resource discovery can achieve reasonable and

robust synchronization despite the unreliable transmission links in wireless sensor networks. Compared to

the standard ROS-client, this allows to use platforms which have no C++-support, where dynamic memory

allocation is prohibitive or support for predictable execution speed (like real-time application) is necessary.

While we evaluated our system 1 on the Contiki operating system, it is general enough to be also applied on

other operating systems like TinyOS for example.

Several publish/subscribe middleware systems have been proposed for the specific needs of wireless

sensor networks but with different goals in mind. LooCI, proposed by Hughes et. al. [5], supports many use-

ful features like run-time introspection and dynamic reconfiguration and has a similar approach to defining

messages. However these features are already available in ROS and therefore an adaption would have been

too expensive. Active Messages in TinyOS [6] also define messages at compile-time, as well as the wiring of

components. While this allows for optimizations it is not applicable to the dynamic nature of the ROS envi-

ronment. The Constrained Application Protocol (CoAP) [7], an IETF effort to standardize a webservice-like

middleware system for contrained devices, also provides similar mechanisms to the publish/subscribe ROS

system. It however lacks a type system for the exchanged messages but might prove to be an alternative

for resource discovery. ROSSerial 2 is the most similar effort but aims for general embedded systems, like

the Arduino. There is however only partial support for resource discovery in wireless sensor networks and

networked connections in general. We compare our implementation of the message en-/decoders to the ones

generated by ROSSerial.

2. System Design

The governing goals of our design are to avoid unnecessary runtime and API complexity while main-

taining a low memory/code footprint, portability and robustness against transmission failures. These goals

stem mainly from the special requirement of the embedded platforms typically used in wireless sensor net-

works. Memory constraints, in the scale of a few kB and the overhead of dynamic memory allocation are the

toughest challenges posed by these microcontrollers. In section 2.1 we present the design of an “in-buffer”

en-/decoding scheme for ROS messages. Another important factor of the design is the unreliable nature of

wireless communication, which not only influences the actual data transmission but also the overhead of

maintaining a congruent view of the available resources in the network. We show two strategies for facing

this challenge in section 2.2.

In order to ease the transition for programmers with a ROS background, we map most of the ROS con-

cepts to our implementation. ROS networks are organized as components. These are executable processes

that are connected to other components via topics or services. Topics provide a publish/subscribe mech-

anism which enables many-to-many one-way transports. Services on the other hand provide one-to-one

remote procedure call interactions based on the publish/subscribe mechanism. Both interactions are based

on the exchange of messages, which are defined as nested data structures containing primitive types (in-

tegers, floating points, . . . ) and arrays. These messages are defined during compile-time and attached to

1The proposed system is publicly available at https://www.github.com/pscholl/contiki_rosnode
2During preparation of this paper a further alternative ROS-Client became available, also relying on dynamic memory allocation

despite aiming for embedded systems. It is freely available at https://github.com/openrobots-dev/uROSnode
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Fig. 1: This figure shows the resource discovery and connection establishment of ROS com-

ponents. Each block represents a component running either on a PC System (right side) or on

a wireless sensor node (left side). Dotted lines represent the exchange of (ordered by number)

management information. Black colored components shows the subscription establishment for

PC components and green for subscriptions. Yellow and red show the same for a wireless sensor

node, i.e. all communications runs through the proxy component. Blue lines represent the actual

data exchange on established connections.

topics/services during run-time, which leads to a statically typed message exchange. Topics, services and

message alike are identified by strings, which also allow for hierarchical ordering. Following the taxonomy

of Eugster et. al. [8] we can see that this design can be coined as a hierarchically-ordered Topic-Based

Publish/Subscribe system with static component deployments.

2.1. En-/Decoding ROS messages in C

A central part of our proposed ROS middleware client is the encoding and decoding component of ROS

messages. Since ROS messages are defined during compile-time we adopted a code generation approach to

map the on-wire ROS message format to the machine-dependent C struct memory layout. The generated

code tries to minimize the number of additional memory needed to hold the message and the memory

required during en-/decoding. To achieve this, especially in the absence of dynamic memory allocation,

most operations are done inside the transmission buffer with only a small fraction done via memory allocated

temporarily on the stack. Such a code generation approach allows to adapt the endianess of primitive types

as well as aligning the message to the machine’s natural data access width by reordering the objects inside

the message.

The ROS on-wire message encoding works by sequencing the objects of a message one after another.

Primitive types (like integers, floats . . . ), arrays of fixed size, nested messages, arrays with a dynamic size

as well as strings are supported. Dynamic arrays and strings are the exception, since they are prepended

with their length, i.e. the pascal string encoding. An example of an encoded message can be seen in Fig. 2.

The left hand side of this figure contains the message declaration of two nested messages, the shaded areas

in this figure shows the message as it would be encoded in a transmission buffer. One can see that objects

are put into the buffer one after another, while the structural information has been stripped.

The straightforward ROS message encoding is not directly mappable to a C-struct memory layout, be-

cause there is no language construct to allocate memory for dynamic sized arrays (and strings for that matter)

inside of structs. However, if we allow for a slight increase in storage space the memory can be reorganized

to allow for natural access (in the sense of available C language concepts). To achieve this we conceptually

split the message into a static and dynamic part. As its name implies the static part holds all members, for

which the size is know during compile-time, i.e. primitive types, static arrays, and additionally indirections

to the dynamic sized object. The data of these dynamic objects will be moved to the dynamic part (i.e. to

the tail) of the memory buffer and can only be accessed through aforementioned indirections. This approach

allows to define a ROS message in the most natural C-language struct, which can be seen in Fig. 2. The
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Fig. 2: The memory layout (and declaration) of an on-wire ROS message and the respective C

struct layout (and its declaration). Shaded areas depict actual used memory, while non-shaded

areas depict structural information that is not stored/transported. Lines in this figure constitute the

operation during en-/decoding, solid lines are copy operations while dashed line show when man-

agement information needs to be added (and accordingly further memory needs to be allocated)

or can be removed.

right-hand side of this picture shows the respective C-struct declaration and its memory layout, the figure

also shows where necessary indirections are created. So, all primitive types and static arrays will end up in

the head part of the message buffer, dynamic sized objects will be replaced by indirections and their data

moved to the tail of the message buffer. It should be noted that this approach can not be easily applied to

nested messages, since these can contain dynamic sized objects too and therefore their size is not known

during compile-time. The code generator takes care of this by “unrolling” nested message definitions. So for

each nested message, there is a special part of code which en-/decodes a particular nested message inside the

containing message. By reorganizing the static objects to the head of the message buffer, moving dynamic

objects to the tail of the buffer and adding according indirections it is possible to map ROS messages to a

natural C struct memory layout.

In order to decode a ROS message to a C struct we propose the following two-step algorithm, which

only temporarily allocates memory on the stack and places the result in the original transmission buffer:

1. Allocate memory for all static members from the stack and copy all static members into this memory

region. While copying, alignment and endianess of primitive types are fixed. Additionally, indirec-

tions to dynamic arrays and strings are initialized since information on their size is now available.

2. In the second step, we iterate over all message member in reverse order. The data of each dynamic

member is then moved to its respective position at the tail of the message buffer. Once this movement

has been completed, the static members are copied from the stack into the transmission buffer and the

decoded message is returned.

In step 1 the overhead in storage space is introduced. Compared to the ROS encoding, the C struct

encoding needs additional management information in order to support dynamic members. For dynamic

arrays the overhead equals the size of n + 1 indirections, where n represents the number of elements in the

arrays and one additional indirection is needed for storing the position of the arrays inside the message buffer.

For strings the overhead can be calculated with the following formula: sizeo f (char∗)− sizeo f (uint32 t)+1,

which represents the size of the indirection needed to access the string and the space reduction by converting

from a length-prefixed string to a null-terminated C-string.
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Encoding messages from a C-struct representation to the ROS message representation takes less effort.

Simply iterating over all members in the message and copying their data, again fixing endianess and align-

ment issues, and prefixing by length for dynamic members does the job. This of course only works when

transmission buffer and message buffer do not overlap. However, we have seen that by allowing a small

overhead in memory consumption allows to access the static and dynamic members of ROS message with

C constructs.

2.2. Resource Discovery

In this paper the term Resource Discovery is used to address mechanisms which allow string descrip-

tions to be resolved to actual data sources. In the case of our proposed ROS client, strings can be used

to address topics as well as services. The central ROS master keeps track of the networking addresses of

individual nodes, of the respective topics they publish on/subscribe to and their advertised services. In our

implementation the WSN proxy performs this task for the WSN. This centralized proxy is used to keep

transport-agnostic information about the advertisement/subscription of the connected WSN nodes. For ex-

ample, whenever a WSN node wants to subscribe to a specific topic it sends a request to the WSN proxy,

which then negotiates this request with the OS master, creates a connection to the remote node and bro-

kers the data exchanged on this topic. Fig. 1 shows the message exchange of the WSN proxy, ROS master

and participating nodes during topic negotiation (i.e. subscribing to/publishing on a topic) inside the ROS

network, and over the WSN boundary.

While a centralized approach to resource discovery, like the one presented here, constitutes a single point

of failure it has several advantages that make it a viable solution. First of all, multiple different transport

protocols like TCP/IPv6, UDP/IPv6, serial transmission lines or the XBee protocol can be supported. While

for most of the thinkable protocols a direct connection between the nodes of the ROS network and WSN

network is not possible (e.g. one node communicates via the XBee protocol), it is still possible to directly

connect those that do. For example, if both a WSN node and a ROS node communicate on the same IP link

a direct connection can be established instead of brokering all message through the proxy, mitigating the

single point of failure. The same applies to connections inside the WSN network as well, in which case the

WSN proxy only provides a central register of resources and their respective network addresses.

In order to increase the portability of the proposed system we decided to adopt a stubborn message ex-

change strategy for resource discovery. Furthermore, assuming an unreliable transport channel allows to

cover a large number of different transport channels at the expense of increased implementation complexity

- resource discovery needs to be as reliable as possible. To keep this complexity on a manageable level

we adopted a stubborn communication strategy, i.e. nodes communicate their advertised/subscribed topics

and services to the WSN proxy in a periodic fashion. This strategy does not scale well and is not very

resource-efficient, but can be customized to the specific environment by adapting its periodic. Such a pe-

riodic exchange of resource information provides a robust discovery mechanism and allows to guarantee a

discovery latency with high probability for unreliable channels as can be seen in Section 3.3.

3. Implementation and Evaluation

Our implementation is based on the Contiki [9] Operating System. Contiki provides the means to com-

municate with PCs through its TCP/IPv6 stack via 6LoWPAN. The ROS Publish/Subscribe middleware

concept fits nicely into the event-based nature of Contiki - messages published on a topic are delivered to

Contiki processes as an event and are also published to topics in such manner. It should be noted that while

our implementation is based on Contiki, it is also general enough to be ported to other OSs like TinyOS [10]

or even use it as an alternative ROS client on PCs.

In this section we compare our implementation to the ROSSerial 3 implementation, which also targets

embedded platforms. We quantify the performance and memory overhead of both solutions, as well the

3available at: http://www.ros.org/wiki/rosserial
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Table 1: This table shows the code size in bytes, as reported by the compiler-generated memory

map file, of the ROSSerial and our implementation on various WSN platforms.

C++ ROSSerial C our solution

discovery de-/encoder total discovery de-/encoder total compiler

TMote Sky 996 2502 3498 806 3774 4580 msp430-gcc 4.6.3

Zolertia Z1 1356 2332 3688 806 3814 4620 msp430-gcc 4.6.3

RedBee EconoTag - 936 3052 3988 arm-gcc 4.3.2

Jennic-based jNode - 788 3583 4371 ba2-gcc 4.1.2

Intel Core i7 1205 2015 3220 1074 2222 3296 gcc 4.7.2

delay of our resource discovery strategy in presence of unreliable transmission links. Our WSN proxy

(called hector serialization) 4 implementation is compatible to the ROSSerial one and can be used in place.

3.1. Memory Overhead

We evaluated two different types of memory overhead. The first one originates from the necessary

code to handle resource discovery and to de-/encode the ROS message format. Table 1 shows the size of

our proposed solution split into a discovery and a de-/encoder part compared to the C++-based ROSSerial

solution. The specific messages for which these de-/encoders were generated for are shown in Fig. 2. We

compiled our solution for multiple typical WSN platforms that are supported by Contiki, like the TMote

Sky, Zolertia Z1, RedBee EconoTag, the Jennic-based jNode and for a native environment based on an Intel

Core i7. It can be seen that our C-based solution consumes more code memory for the de-/encoder when

compared to the C++-based ROSSerial solution. This increase in memory consumption is mainly due to

the fact that our solution supports arrays of nested messages, which needs code to unroll this nesting. This

feature is not supported by the ROSSerial implementation and leads to a lower code memory consumption.

For messages which are not using these nested arrays similar space is required for both solutions. It can also

be seen that discovery has comparable code complexity.

The second overhead we can look at is the memory required to store the message. For encoding messages

this overhead is nearly the same, in both cases the message needs to be stored either on the stack or in static

buffers. Additional memory, i.e. information that is not transferred, is needed for accessing strings and

dynamic arrays via indirections. This additional memory is also needed when storing a decoded message.

Our solution however decodes in the transmission buffer, which allows to save the memory for almost the

whole message. If we let ns be the number of strings, na the number of dynamic arrays, m be the number

of elements in an array with nested messages, and sizeo f (x) be the bytes required to store an object without

string and array data, we can calculate the memory required for storing a decoded message. For ROSSerial

this equals sizeo f (msg) + ns ∗ sizeo f (char∗) + na ∗ sizeo f (void∗), i.e. the whole message plus additional

space for storing indirections to strings and arrays. For our solution the additional required space is only

ns ∗ sizeo f (char∗) + (na + m) ∗ sizeo f (void∗). So our solution requires less additional storage space, while

also supporting arrays of nested messages.

3.2. Performance Overhead

We define performance overhead as the time needed to translate a message from the ROS on-wire format

to the memory layout used by the programmer’s code. In our implementation this overhead stems mainly

from the adjustment of the memory layout of ROS messages to the architecture-dependent C-struct layout.

Since there is no concept of in-place strings or dynamic arrays in C, these need to be shifted to the tail of

the message buffer in order to be accessible from the message header. Integral types like floats and integers

have to be copied as well in order to convert them to their machine-native format.

4available at: https://github.com/tu-darmstadt-ros-pkg/hector_serialization
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Fig. 3: Time needed for the two en-/decoder implementation to encode/decode a ”worst-case”

message on a PC. It’s clearly visible that the use of dynamic memory management (via realloc)

is a performance problem during decoding.
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Fig. 4: Required time and number of succesfully transmitted packets to subscribe to a topic under

simulated packet loss.

To quantify this overhead we measured the CPU time difference required to encode/decode the two mes-

sages shown in Fig. 1 with the C++-ROSSerial implementation and our proposed C-based implementation.

We ran these experiments on a linux machine with a quad-core Intel Core i7 CPU running at 2.8GHz. Each

measurement was repeated 10000 times and, since ROSSerial does not support nested dynamic arrays, we

varied the length of the included array of strings as the worst case scenario for both implementations. Fig. 3

shows the result of this experiment. While the encoder performance is virtually the same, the ROSSerial

decoder shows almost a 10-fold increase in runtime compared to our C-based solution. This mainly stems

from the use of dynamic memory management (via realloc) in this decoder to support dynamic arrays. In

our solution this is solved by reordering the memory layout and moving dynamic arrays to the tail of the

buffer. One can also see when the memory needs to be moved around during the realloc operation and when

enough memory is still available (the sharp decline in time consumption during decoding for ROSSerial is

an artifact of this). Our solution can therefore decode messages faster while not relying on the availability

of a dynamic memory management unit.

3.3. Discovery Latency

To validate our resource discovery approach, we emulated an increasing packet loss and measured the

time and the number of exchanged packets required to subscribe to a single topic. For this we setup we
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ran our Contiki implementation on a standard linux machine. Communication was done via a TUN/TAP

device, which emulates network interfaces on linux. Subscription requests were sent every 250ms. To

simulate various random packet losses we employed the NetEm [11] package available on linux. We varied

the packet loss from 0 − 80%, measured the walltime and number of exchanged packets needed until the

WSN proxy acknowledged the subscription on this topic, and repeated each measurement 20 times. The

result of this experiment can be seen in Fig. 4. We can see that the delay is only slowly increasing while

the number of exchanged packets shows an increased effort. While interpreting the number of transmitted

packets it should be kept in mind that the dropped packets are not included in this figure. So for example

under a packet loss of 60% 10 packets have been successfully sent from the node to the proxy until the

acknowledgment was successfully received. However even under high packet loss rates the subscription

delay is reasonably small, showing that our simple stubborn resource discovery approach is robust.

4. Conclusion and Future Work

Connecting Wireless Sensor Network to the Robot Operating System is hindered by missing middleware

for constrained devices like WSN nodes. Together with ROSSerial this paper presents first steps towards

integrating the Wireless Sensor Network world with the Robot Operating System on the application layer.

We have shown that despite the non-fitting design of the ROS message encoding (by simply sequencing

all message members) an integration is achievable and that even a simple resource discovery approach can

achieve robust functionality.

It remains open however whether our approach is feasible for large networks, leaving specifically the

question whether research in WSN protocols can be applied fruitfully. Future work should look into dif-

ferent resource discovery schemes, for example the topic-based publish/subscribe concept could be mapped

to multicast approaches. Especially multicast DNS for topic resolving and multicast communication for

message exchange could prove to be a viable alternative to a centralized approach. Furthermore, a message

encoding which explicitly separates static and dynamic parts of a message might prove to be an important

optimization.
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