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ABSTRACT
Having mobile devices that are capable of finding out what
activity the user is doing, has been suggested as an attrac-
tive way to alleviate interaction with these platforms, and
has been identified as a promising instrument in for instance
medical monitoring. Although results of preliminary studies
are promising, researchers tend to use high sampling rates
in order to obtain adequate recognition rates with a variety
of sensors. What is not fully examined yet, are ways to in-
tegrate into this the information that does not come from
sensors, but lies in vast data bases such as time use sur-
veys. We examine using such statistical information com-
bined with mobile acceleration data to determine 11 activi-
ties. We show how sensor and time survey information can
be merged, and we evaluate our approach on continuous day-
and-night activity data from 17 different users over 14 days
each, resulting in a data set of 228 days. We conclude with
a series of observations, including the types of activities for
which the use of statistical data has particular benefits.

Categories and Subject Descriptors
H.1.m [Models and Principles]: Miscellaneous

General Terms
Measurement; performance

Keywords
Time use surveys; activity recognition; wearable computing;
mobile devices; probability model

1. INTRODUCTION
As we carry our mobile devices with us while performing
our daily activities and tasks, having a mobile device that
is aware of our activities would result in a variety of bene-
fits for its user. It has been suggested that interaction with
such activity-aware mobiles could be alleviated since the de-
vices know more about their users’ status [20]. Tracking the
user’s activities over longer periods with a mobile device is
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in particular interesting in various healthcare scenarios [15,
28]: Many mobile and wearable systems1 that monitor the
user’s movements and fitness activities [2] are commercially
available. Mobile phone platforms are being used as hubs to
gather such data or collect information from onboard sen-
sors to determine what the user is doing [5, 24]. Recognition
performance for activities like walking or sitting from mo-
bile sensors are already promising [3, 10, 12]. More diverse
activities, however, such as having lunch or vacuum clean-
ing, are less pronounced: Their complex nature requires not
just performant machine learning techniques and consider-
able amounts of training data, but also person-specific in-
formation. Especially in battery-driven and resource-limited
mobile platforms, an additional problem is that data acqui-
sition comes with a substantial cost.

For this purpose, we looked into promising research [16] that
investigated the use of prior knowledge on time use to im-
prove activity recognition on mobile and ubiquitous systems.
Additional information, such as an approximation of the
user’s typical schedule, could be combined with real-time
sensor data from a mobile phone. Time use information is
already available through national time use surveys, which
are statistical surveys that contain information from thou-
sands of individuals on where and when people are perform-
ing which activities on average. Recent work [4] used such
data bases to infer the user’s activity based on the activ-
ities of similar users within the survey. Results have thus
far shown that time survey data, when used from within
the same geographical and cultural region as the user, could
enhance activity recognition systems considerably.

In this work, we investigate a method that makes use of prior
knowledge like the time use data for activity recognition
with a mobile device, concurrently to mobile sensors. We
will have a look at a common classifier like the Support
Vector Machine (SVM). We show which features from time
use databases are important to consider and how our system
outperforms common models, resulting in high precision and
recall values for activities like sleeping and working. For this
purpose, we obtained inertial data from 17 subjects over a
recording period of 2 weeks each, resulting in a dataset of 228
days in total. We collected data from 11 activities that are
usually performed by the users, obtaining the ground truth
by keeping a diary. Results indicate that certain activities
can profit from prior information such as time use surveys.

1such as www.actigraphcorp.com/, last access 10/2013



The remainder of this paper is structured as follows: First,
in Section 2, we will give some insight into work related to
our research, after which we describe in Section 3 the meth-
ods used to determine the activities of the test subjects,
and describing the classifiers in Section 4. In Section 5, we
show the results obtained from three different classification
modalities. A short discussion about the experiment’s find-
ings will be held in Section 6. We conclude this work in
Section 7, giving also an outlook to future studies.

2. RELATED WORK
Embedding additional information to improve the recogni-
tion rates has been done in several studies [13, 14, 22]. Usu-
ally, information about the environment is being used, like
location or even time. For several years now, countries are
gathering data about the population, which might also give
some insight into the habits of the inhabitants. We will first
have a look at the most important parts of this work, mo-
bile activity recognition and time use studies, and will then
continue on how prior information has been used in the area
of wearable and mobile computing, concluding this section
with a summarize of ensemble classifiers.

2.1 Mobile Activity Recognition
Activity recognition with mobile sensors has been inves-
tigated for some years now [5, 24], with researchers also
analysing if it is feasible to use a mobile device for detecting
activities [17]. In [5], basic human movements (walking, sit-
ting, standing, climbing stairs) are detected in real-time on
a mobile phone by analysing the accelerometer data with a
high confidence. Similar results are obtained by researchers
in [24], again detecting basic activities on a mobile phone,
but also considering the orientation of the device. The per-
formance of the system is high, stating that basic activities
can be captured with a mobile device. Patel et al. [17] on
the other hand investigated for how much portion of the day
a mobile device (smartphone) is with the user. Interestingly,
results indicate that half of the time the mobile phone is not
with the user.

The idea of using mobile phones not only for real-time ac-
tivity recognition, but also for gathering useful information
about the user and the activities, has been investigated in
[8], in order to develop rhythmic data that can be used to
detect daily routines. We will have a look at such data in
the following section, which has not been gathered by mobile
devices, but by other means.

2.2 Time Use Surveys
Time use surveys (TUS) are inquiries performed by a coun-
tries government, asking participants to keep a diary of their
activities over a period of one to three days. Depending on
the region, time use surveys are being updated in different
intervals. In this study we used the German Time Use Sur-
vey (GTUS) from 2001/2002, which is being updated every
10 years. The latest version from 2011/2012 will be available
for researchers in 2015. In the GTUS, 13,798 participants
were keeping a diary to log in 10 minute intervals what ac-
tivity they performed. Additionally, location information of
where the activity took place or what secondary activity has
been performed (e.g. talking to friends while having dinner
or watching TV while eating) were noted. Also logged are

interrelations between household members, especially when
activities were carried out in company with other household
members.

Recently, researchers in [4] investigated the GTUS in re-
gard to benefits for activity recognition, identifying features
in the dataset that can be used to determine the activities
that occurred within the time use dataset. They extracted
activity histograms according to the investigated features,
e.g., time or location. From the histograms probabilities are
then calculated to infer the most likely occurring activity
within the time use survey.

Similar to [4], the work in [16] investigates the American
Time Use Survey (ATUS) and identifies time use surveys
as a promising instrument for designing activity recognition
systems. The ATUS can be freely obtained online2 for fur-
ther studies, while the GTUS is available for regional govern-
ment employees only. More details about time use surveys
in general with supplement information can be found online3

or in [18].

2.3 Using Prior Probabilities
Predictions have been used in various scenarios for activity
recognition [9, 11, 21, 27, 31]. Recently, researchers in [27]
predicted a person’s going-out behaviour in order to asses
if the person is going to leave the home or not. A rhythm
of a person’s habits has been established by observing with
a camera when a person is usually at home or not. This
information was then used as a prior for a Hidden Markov
Model (HMM). Here, time histories of people leaving or en-
tering the home have been generated. Especially in health-
care such scenarios have to be considered, when for example
elderly people living on their own are monitored in order to
be able to respond to emergencies. Daily routines can help
here by predicting what the user will be doing most likely.
A similar idea is being pursued in [11], by gathering prior
information by keeping a diary and additionally obtaining
GPS information about a person being at home. The paper
shows how the prior location improves the prediction.

In [9] on the other hand, individual and group behaviours
have been investigated in a large mobile phone dataset. A
probabilistic topic model has been used on the data, detect-
ing routines in the data to determine behavioural patterns.
Overall, the research community is interested in what people
are doing next, predicting the behaviour not only from the
same persons, but also from various individuals. Such infor-
mation could then be used in different models that deal with
sequential data where such prior probabilities or even pos-
terior probabilities might improve the classification results.
An example of such a classifier is the Conditional Random
Field (CRF) [29], which is a temporal probabilistic model.

2.4 Ensemble Classifiers
The idea of fusing two or more classifiers to improve the
recognition rate for activity recognition has been mentioned
in several works [1, 19, 23, 26]. Zappi et al. [30] for example
use multiple body-worn sensors for activity recognition in
the context of quality assurance in a car assembly factory.

2http://www.bls.gov/tus/, last access 10/2013
3http://www.timeuse.org/, last access 10/2013



Using a discrete HMM, the results led to an improvement in
the recognition rate. In [19], different ways of classifier fu-
sion or ensemble classifiers are being discussed, like mixture
of experts, bagging, boosting or algebraic combination rules.
The latter are usually majority voting, sum and product
rule. Researchers in [1] evaluated the two common combi-
nation rules (the mean and product rule) for fusing classifiers
by their posterior probabilities, which will be used later on
in Section 4.3.

In this study, the data we obtain is not high frequent, on
the one hand because the battery consumption on a mobile
platform can be reduced this way, on the other hand to re-
duce memory usage. We will show that low frequent data
is sufficient for efficient activity recognition by embedding
probabilities in the classification process. Researchers in
[16] already mentioned that ubiquitous systems might bene-
fit from time use data and that such data should be used in
the process of developing mobile platforms. This way, infor-
mation not only from the participants of this study is taken
into consideration, but also from time use surveys, which
represent a countries inhabitants. We show in the following
sections how time use survey data is being used to evaluate
data obtained from a mobile system.

3. METHODOLOGY
For recording inertial data we decided to use a system that is
already commercially available, is comfortable to wear over
a long time-span, but also enables researchers to get direct
access to the sensor data. We will first introduce the sen-
sor used for this study and then explain how we performed
activity recognition with a common classifier on sensor data
only and with time use survey data.

3.1 Mobile Sensors
For this study, we used the SenseWear Armband shown in
Figure 1 from BodyMedia4. The SenseWear is used to moni-
tor one’s activity, especially during workouts and while rest-
ing, e.g., sleeping [25]. It is worn comfortably on the upper
arm, as shown in Figure 1, and can rest there continuously
day and night. Additionally, it simulates data that could
be obtained from a mobile system which are the main ad-
vantages to use this device. A graphical tool displays use-
ful information to the user, like showing how data channels
change during time. Additional information, such as how
much activity has been performed or a step counter are also
accessible, enabling the user to keep also track of his fitness
status. The device is splash waterproof, which is why it can
be used during work-outs.

The SenseWear Armband embeds a 2-axis accelerometer, a
skin temperature, a galvanic skin response and a heat flux
sensor. Sensor values can be stored in the internal storage
in different intervals, from 32 samples per minute up to one
sample every 10 minutes. Depending on the log frequency,
the storage lasts for 2 hours only (32 samples per minute)
or a little more than two weeks (one sample per minute).
The power source is a common AAA battery, which needs
to be replaced by the user after approximately one week,
depending on how often the sensor was worn and how much
the user moved. The sensor automatically starts logging

4http://www.bodymedia.com/, last access 10/2013

Figure 1: BodyMedia SenseWear Armband worn by
a male (left) and female (right) participant. The
Armband is usually worn on the upper arm.

when skin contact is being detected and stops logging as soon
as the user takes off the unit. The recording frequency for
our study was set to one minute, being the optimal trade-off
for recording for a long time-span and not loosing too much
sensor information. Had we increased the sampling rate, the
device would have run out of memory after a few days only
instead of being able to record for 14 days straight.

3.2 Dataset Description
The SenseWear Armband was worn day and night by 17 test
subjects for 14 days each, resulting in a dataset of approx-
imately 228 days. While wearing the device, the subjects
were asked to keep a diary of common activities for the en-
tire recording period, usually recalling at the end of the day
what activities they performed. Some subjects kept a di-
ary by writing down the activity immediately after perfor-
mance. The list of the activities is shown in Table 1. We
obtained inertial data such as the average and longitudinal
and transversal acceleration, as well as the Mean Absolute
Difference (MAD) of the acceleration. A continuous dataset
of 14 days for a male participant is displayed in Figure 2,
showing in the top plot the MAD and the bottom plot the
average of the longitudinal (blue) and transversal (red) ac-
celeration. Each day starts at the numbering of the day
along the x-axis. The nights are immediately visible by seg-
ments where the acceleration information is low. Additional
sensor information like skin temperature has been logged,
but were not considered for this study. For the evaluation,
we used only the accelerometer data to infer the performed
activity. Note here that the activities that have been logged
are not equally distributed, especially the amount of per-
sonal care events appears rather low with 88 hours in total
as can be observed in Table 1. This can be explained by the
fact that the sensor was taken off for showering. Similar,
sports occurs only 40 times throughout the whole datasets,
either because the device was taken off during work-outs or
because the participants are not very sportive. Also, when
considering eating, this activity occurs very often, but does
not take up as much time as sleep for example.



Figure 2: Inertial data from the SenseWear Armband’s 2-axis accelerometer from one participant over 14
days before normalization. The top plot displays the Mean Absolut Difference (MAD), while the bottom plot
depicts the average of the longitudinal (blue) and transversal (red) acceleration over 20,312 samples, each
sample taken every minute.

Table 1: Activities taken from the time use survey
that were logged by the test subjects, additionally
displaying how often the activity occurred and for
how long in total.

ID activitygroup occurences duration [hrs]

1 Sleeping 247 1868
2 Eating 373 257
3 Personal care 223 88
4 Working 297 1047
5 Studying 67 215
6 Household work 215 284
7 Socializing 111 249
8 Sports 40 41
9 Hobbies 72 172
10 Mass media 205 397
11 Travelling 366 864

In order to later on compare our activities to the time use
activities, we established the list in Table 1 according to the
given activities in the time use survey, with one exception:
The activity personal care from the time use data includes
sleeping, eating and other activities in the area of personal
care, such as showering or dressing. We decided to split
up these activities into the first three activities as shown in
Table 1, especially to be able to catch sleeping and eating
on its own.

We chose to use a high variety of test subjects as summarized
in Table 2 to capture different data and especially different
activity behaviours according to their profession to stress-
test our algorithm. The subjects are between 21 and 48
years old of which 12 male and 5 female. The majority of
the participants are common employees, working either at
the university or in an office, but also students participated,
who are known to have a completely different daily routine
than employees. Additionally, we display the amount of data
recorded by each participant in Table 2.

3.3 Evaluation Measures
A common measurement for describing the recognition rate
is accuracy, which can be derived from a confusion matrix. A
confusion matrix is a n×n matrix, where n is the amount of

Table 2: The test subjects that participated in this
study, along with additional information like gen-
der and age. Also displayed is the amount of data
obtained from the participant.

subject gender age data [hrs] comments

1 male 32 338 employee
2 female 28 334 student
3 male 31 333 employee
4 male 27 319 employee
5 male 28 284 employee
6 male 32 334 employee
7 male 30 320 employee
8 male 27 328 student
9 male 28 315 employee
10 female 35 346 housewife
11 female 29 321 employee
12 male 31 340 employee
13 male 26 274 employee
14 female 28 292 employee
15 male 21 316 student
16 male 25 334 student
17 female 48 352 housewife

classes in the classification. The rows of the matrix represent
the ground truth, i.e., the actual class, while the columns
represent the predicted classes. A benefit of a confusion ma-
trix is that it directly shows if the system is confusing two
classes, i.e., commonly mislabelling one as another. Con-
sider the confusion matrix in Figure 3 (left) with n = 3.
Accuracy is the sum of the diagonal divided by the sum of
all occurrences (here: 15/21 = 0.71).

The overall accuracy is often not enough to reveal particular
details of the system’s performance. To gain this informa-
tion, calculating per class performance values, namely pre-
cision and recall, are necessary. For this purpose, the confu-
sion matrix of n > 2 has to be considered as a two-class ma-
trix, by summing up the rows and columns outside the actual
class. We obtain the confusion matrix in Figure 3 (right).
True positives (TP) are the correctly predicted classes ac-
cording to the ground truth and the false positives (FP)
are the wrongly predicted classes in regard to the ground
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Figure 3: Left: Example of an confusion matrix with
three classes C1, C2 and C3. Right: Confusion ma-
trix shown as a two-class matrix, with classes C1 and
C2′ = C2&C3.

truth. The false negatives (FN) on the other hand are all
the activities labelled as one class but do actually belong to
another class. The true negatives (TN) are the sum of all
the true positives of the other classes, i.e., the sum of all
correctly predicted classes. Here, precision is the amount of
correct labelled classes (TP) that was labelled as the activity
in the ground truth:

precision =
true positives

true positives+ false positives
(1)

From (1) we calculate for class 1 in Figure 3: 6/(6 + (1 +
1)) = 0.75. Recall is defined as the proportion of the data
originally labelled as an activity that was correctly classified
as the activity:

recall =
true positives

true positives+ false negatives
(2)

leading to a recall of 6/(6 + 1) = 0.86 for class 1.

Most activity classes are being recognized by our system (see
Section 5), which can be observed in the various confusion
matrices we established and also in Figure 6. Nevertheless,
when considering classes that have been very poorly or not
at all detected, the overall accuracy for recognizing a partic-
ipants activity is still pretty high, while precision and recall
are rather low. In order to depict how well the data de-
scribes each class, we will focus on the precision and recall
values only.

With a mobile sensing platform like the SenseWear Arm-
band, we are able to record low frequented sensor data over
a long time-span. For 17 participants in this study we will
investigate how activities can be sensed in a mobile environ-
ment, evaluating the results by applying precision and recall
on the obtained classifications. We will now have a closer
look on the classification techniques and how the data was
prepared for classification, explaining how probabilities have
been calculated from the mobile sensor approach.

4. CLASSIFICATION
The method proposed in this work can be described in three
steps: The inertial data is first being evaluated with a com-
mon classifier to determine the activities, after which we use
the time use dataset only to infer the activity. Then, the
results from the common classifier and the time use proba-
bilities are fused to improve on the results from the first two
steps. For Sections 4.1 and 4.2 we evaluate the activities
by dividing the dataset into five equal folds per participants
dataset, performing a leave-one-fold-out cross-validation per
test subject to enable user-specific activity recognition.

4.1 Mobile Sensors Only
For detecting the activities within the sensor data, we used a
Support Vector Machine (SVM) [7]. The implementation of
the classifier was done completely in Python. For this pur-
pose we used the sklearn5 package, which embeds an SVM
library that is based on LIBSVM [6]. We use a linear SVM,
since we are dealing with large datasets and have a multi-
class problem at hand. As a strategy, the one-vs-the-rest
method is applied, which basically trains a SVM for one
class and tests it against the rest of the classes. Before
starting the SVM training, we normalize the dataset. Then,
we balance the training set by randomly choosing data rows
from labelled features and duplicate them to receive a con-
form dataset with an equal amount of samples per activity.
As shown in Table 1, the occurrence of activities is unbal-
anced, especially sleep and work dominate the datasets. We
perform a five-fold cross-validation to estimate the optimal
penalty parameter C on a small subset of the training data,
which is being used in the training phase of the classification
process. After training the SVM, we estimate the classes for
the test set. Additionally, we calculate the softmax output
for the testing data, receiving a likelihood estimation for the
input data. The softmax output is defined as

σprob =
1

1 + e−2∗d , (3)

where d is the decision function from the SVM, being de-
scribed by the Support Vectors of the dataset. The SVM
outputs for each datapoint x1, ..., xi the decision function
f(x1), ..., f(xi), describing the distance to the calculated hy-
perplanes of the SVM. The likelihoods will be used later on
when fusing the mobile sensors and time use results.

4.2 Time Use Only
The time use classification technique uses a maximum-likeli-
hood estimation for determining which activity took place.
For this purpose, we make use of features f within the time
use survey, like time, age and gender. In [4], different fea-
tures have been evaluated for their use in activity recogni-
tion, identifying time and location as useful features. For
this study, location information was not logged, since the
used sensor is not equipped with a sensor like GPS to infer
the location at a given time. Having the user log additionally
where the activity took place would have increased the effort
for keeping a diary. Therefore, we consider time combined
with other, available information, adding age and gender as
features.

We calculate from the time use dataset a histogram for each
of the given features time, age and gender and the 11 activ-
ities, obtaining a 4D histogram of the shape [144, 5, 2, 11].
The shape corresponds to 144 10-minute time-slots per day,
5 age-groups6, 2 gender types (male and female) and our 11
activites. According to the 3-tuple (time, agegroup, gender)
we sum up all the occurrences for each of the 11 activities.
We then calculate the distribution of the 11 activities for
each 3-tuple to obtain the probabilities.

5http://scikit-learn.org, last access 10/2013
6Note here that for downsizing reasons and to obtain a rep-
resentative histogram, we divide the time use survey into 5
years age groups (20-24, 25-29, 30-34, 35-39, 45-49), accord-
ing to our participants.
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Figure 4: Example of likelihoods estimated from the
sensor (top plots) and the time use (bottom plots)
approach for a male subject in his thirties, display-
ing the activities sleeping and eating.

The maximum-likelihood estimation calculates then the prob-
ability P (ci|f1, ..., fn) for a target class ci, i ε [1, ..., 11] and
the features f1, ..., fn, classifying the activity by the high-
est probability according to the 3-tuple given in the sensor
dataset.

4.3 Ensemble: Sensors and Time Use
In this section we describe the combination of likelihoods
from the mobile sensors and the time use survey, resulting
in a new likelihood-table that is used to determine the ac-
tivities. The equation

ci = argmaxi

(
P (ci|x) + P (ci|TUS)

2

)
(4)

describes the procedure of estimating the class c by applying
the mean rule [1] on both likelihoods. We scale the likeli-
hoods from both mobile sensors and time use survey for
each activity class ci, i.e., we calculate for all likelihoods of
activity ci the scaling by the equation

Pci =

(
Pci − abs(min(Pci))

max(Pci)− abs(min(Pci))

)
(5)

to avoid the domination of bigger likelihoods over those in
smaller numeric ranges. Note, that the likelihoods could be
weighted additionally, depending on how the overall classi-
fication behaves. The weighting would be applied to equa-
tion (4). The overall likelihood P (ci) would be calculated
for the mobile sensors after the training phase and multi-
plied with each class probability P (ci|x) in the test set. The
same would be done for the time use dataset, obtaining the
overall probabilities P (ci|TUS).

Figure 4 shows the likelihoods for one participant at the age
of 32 after scaling of the mobile sensors (top plots) and time
use (bottom plots) likelihoods. Displayed are the activities
sleeping and eating over approximately two days, showing
how likely they are to occur at a specific point in time. The

rhythmic nature of the probabilities for the time use data
can be observed here, as well as for the likelihoods for the
mobile sensors which exhibit much more noise.

Being able to allocate likelihoods to the results of the mo-
bile sensors offers a possibility to combine the likelihoods
with the probabilities calculated from the time use survey.
This way, we are able to not only consider information from
mobile sensor data of the participants, but also additional
information from participants of the time use survey, which
describe the usual habits of the regional inhabitants. We
will now take a look at our results and special findings in
the next section.

5. RESULTS
In this work we compare three different classification tech-
niques for the same dataset. We will be discussing the results
individually, highlighting the differences for each modality.
We will first visually inspect the outcome, then we are going
to discuss the results quantitatively.

In Figure 5 we see a qualitative evaluation of all three modal-
ities we used. Displayed are in different colors the activities
from a male participant in his early thirties for 14 days,
showing from top to bottom: the ground truth, i.e., what
the user was actually doing, the estimated activities from
the mobile sensors, the time use only and the ensemble of
the two modalities. When observing the ground truth, we
discover that a certain pattern or even rhythm is visible in
the recurrence of the activities throughout the 14 days. Such
rhythm could help in the classification process when known.
A rhythmic behaviour is also visible in the mobile sensors
plot, which is riddled with small detection episodes of differ-
ent activities. The time use exhibits the most clear rhythmic
activity representation by displaying for each day the same
activity sequence. The time use classification takes into con-
sideration only the information about time, age and gender.
Therefore, we observe here what a male person between 30-
34 years is usually doing. Would we imply other features
like day-of-the-week, the plot would surely differ. Remark-
ably, the sensor based approach shows a high variety in the
results, except for the activities that seem to take up more
time during a 24-hour period, such as sleeping and working.
We observe a high variety in the data, because the influence
of the mobile sensors is taken into account here. We addi-
tionally notice how other activities are being detected more
often, as for the ensemble in Figure 5 socializing and eating.
We will now summarize the quantitative results, starting
with the mobile sensors only.

5.1 Mobile Sensors Only
When using a Support Vector Machine (SVM) classifier to
detect the 11 activities from the sensor data, we observe that
it is feasible to catch all of the activities but with mostly low
recognition rates. Overall, the most confident precision and
recall results are obtained for sleep (88.7% and 85.35%) and
working (30.3% and 43.68%), which is followed by travel
(24.32% and 23.2%) as can be observed in Table 3. The rest
of the activities perform rather poorly. A reason for that
is that the training data for some activities is not distin-
guishable, since we balance the sensor values for each class
as described in 4.1. Classes with a larger occurrence within
the dataset do have an advantage over the other classes.



Figure 5: Example of classification results for a male subject (32), showing from top to bottom: the ground
truth, estimated activities from the sensor, the time use and the ensemble of both modalities. Displayed are
all 14 days from left to right, with barplots showing the activities in different colors. Immediately visible is
the improvement when fusing both sensor and time use in the ensemble plot, exhibiting a higher variety of
detected activities over the whole dataset.

Table 3: Overall precision (p) and recall (r) results
for each activity for all three classification methods,
sensor (sen), time use (tus) and ensemble (ens). The
highest score for each activity is displayed in bold,
showing how the ensemble method exceeds the re-
sults from the sensor and time use only based ap-
proaches for most of the activities.

activity p sen r sen p tus r tus p ens r ens

sleep 88.59 85.36 92.87 82.64 83.22 95.62
eat 5.98 13.91 0.0 0.0 30.45 19.76
pc 13.67 6.29 0.0 0.0 15.11 14.1
work 30.0 43.65 55.35 46.06 56.38 48.74
study 3.77 9.34 0.0 0.0 11.5 9.13
hw 11.34 17.71 34.18 14.25 7.76 20.87
socialize 12.3 9.43 0.0 0.0 30.43 13.84
sports 12.65 4.03 0.0 0.0 2.39 7.73
hobbies 5.11 6.93 0.0 0.0 11.92 9.49
mm 20.74 14.42 55.2 31.06 30.97 44.53
travel 24.31 23.24 0.1 0.0 6.68 35.61

The data of these classes exhibit a higher variety of features,
which is a benefit for the training process. Note here that
the classification process is completely independent from the
duration of each activity, which could lead to different re-
sults when considered and used in a sequential classification
model.

In Figure 6(a) we can observe the precision (top) and recall
(bottom) values and how they distribute for each user over
all the activities. Activities that were not performed by the
user are therefore never detected, since there is no train-
ing data for these activities. Unsurprisingly, sleep was de-
tected with a high confidence for all the participants. Work

varies quite a lot, depending also on the participant and the
amount of work phases that have been logged in the diary.
Students for example do work, but only a few hours per
week, like participant 15. Precision is high (43.4%) while
recall degrades to 8.25%, which means that many of the
working events were unidentified. Participant 1 for example
is an employee, working 8 hours every day, which is being
displayed in the results of precision and recall both being in
the range of 60%. We note here that the data representation
plays a significant role for the classification process.

The overall results for all the participants for the mobile
sensor approach lead to a precision of 20.42%, and a recall
of 21.11%. We can conclude that it is possible to detect
certain activities with a high confidence over a large dataset
which contains inertial data that is low frequent (one minute
intervals), using a common classifier like the SVM. However,
since the activities are discriminated rather poorly, we need
to improve the recognition rates with the help of additional
information embedded in the classification process.

5.2 Time Use Only
We observe in Table 3 and Figure 6(b) that with the time
use data only, we detect four out of 11 activities from the
dataset, which are sleeping, working, household work and
mass media usage. The precision and recall scores for the
time use based approach for each activity and user are de-
picted here individually. As features for the time use dataset
we use as much information as possible, namely time, gender
and age. Overall, we reach a precision and recall of 23.76%
and 17.4% respectively. The overall results for travel can
be neglected, since precision and recall are below 1%. Re-
markably, travel was detected for a 21 years old male par-
ticipant only, who is travelling home on the weekends for
several hours. This coincides with a small portion of the es-
timation from the time use dataset. Even though the other
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(a) Results for the mobile sensors
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(c) Ensemble results for sensor and time use

sle
ep eat pc

work
stu

dy

houshold

socia
lizin

g
sports

hobbies mm
tra

vel
0.0

0.2

0.4

0.6

0.8

1.0
Recall U01

U02
U03
U04
U05
U06
U07
U08
U09
U10
U11
U12
U13
U14
U15
U16
U17

sle
ep eat pc

work
stu

dy

houshold

socia
lizin

g
sports

hobbies mm
tra

vel
0.0

0.2

0.4

0.6

0.8

1.0
Recall U01

U02
U03
U04
U05
U06
U07
U08
U09
U10
U11
U12
U13
U14
U15
U16
U17

sle
ep eat pc

work
stu

dy

houshold

socia
lizin

g
sports

hobbies mm
tra

vel
0.0

0.2

0.4

0.6

0.8

1.0
Recall U01

U02
U03
U04
U05
U06
U07
U08
U09
U10
U11
U12
U13
U14
U15
U16
U17

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17Participant:

Figure 6: Precision (top) and recall (bottom) results for three different classification techniques from left
to right: mobile sensors only, time use only estimation using the features time, gender and age and the
combination of both modalities (ensemble). Each participant is displayed in a different sign and color.
Immediately visible is that the ensemble exhibits a high variety of detected activities and is improving on
recognizing more activities in comparison to mobile sensors and time use.

participants are travelling, the activity takes up only a few
minutes, which is why it is difficult to detect it. Also, de-
pending on the time use histogram, travelling is often not
the most likely occurring activity.

Overall, precision for all four activities range from 34.18%
to 92.87%, exceeding the results from the sensor based ap-
proach for these activities (see Table 3). Nevertheless, the
rest of the classes are not recognized by the system, since
the likelihoods are too small and therefore exceeded by the
likelihoods from the other activities. Our findings show that
the participants most common activities are detected with
a high confidence with the time use dataset only.

5.3 Ensemble: Sensors and Time Use
Combination results for the mobile sensors and time use
dataset are displayed in Table 3 and Figure 6(c), showing
again for all participants, coded in a different symbol and
color, the classification results with the ensemble of mobile
sensors and time use data. We see that in contrast to time
use only, we now capture all the activities appearing in the
datasets. In regard to mobile sensors only, we detect cer-
tain improvements for precision and recall, but also some
degrading results for a few activities. For sleep for example,
we obtain a lower precision than when applying each of the
other two models for participant 16 (green cuboid). Even
though the results for precision were the lowest for mobile
sensors and time use, we still wonder why it is dropping to

55%. After investigating the ground truth and estimated
classes, we discovered that participant 16 is exhibiting a
very unusual sleeping pattern, e.g., sleeping between 8pm
and 10pm, watching TV until midnight and then going to
bed again, waking up quite early the other morning. It
seems that the ensemble is confusing too many classes here,
which is why precision is dropping. For the overall results
for all activities, we obtain precision and recall of 28.01%
and 28.38% respectively.

The results in Table 3 indicate that adding time use data
after the classification process of the mobile sensor data, it
is feasible to improve on the recognition rates of the mobile
sensors only. We will now discuss in detail our findings,
highlighting important results that were observed during the
evaluation process.

6. DISCUSSION
Having evaluated 17 datasets consisting of a total of 228 days
of mobile sensor data leads to several interesting results,
which are being summarized and discussed in the following
paragraphs:

Time use surveys are highly useful for improving the
recognition rates for activities that make up a significant
portion of the user’s day, which in this study were mostly
eating, working, socializing and mass media. The ensemble
approach leads to better results than just using the mobile



sensor data or the time use dataset to infer the activity.
These results confirm what was mentioned in [16], that the
use of time use data could enhance certain activity recog-
nition systems. Additionally, the recognition rate benefits
from activities that occur more regular in the time use sur-
vey for the inspected features, e.g., a male subject in his late
twenties will be most likely working in the afternoon.

Time use statistics fit mobile devices. We benefit from
the size of the time use database, which is below 1MB.
Therefore, the data can be immediately pre-loaded on a
ubiquitous mobile device. Combined with a common classi-
fier, activity recognition can be improved directly on a mo-
bile environment. Additionally, time use data incorporates
information about the habits not only from the mobile user,
but also from the people from the time use survey. A large
number of people (here: over 10,000) are present in the time
use database, along with their usual routines.

It is important to note that we inherently exploited the
knowledge from the time use survey data, as we classified
low-frequent sensor data only. It is not trivial to detect
activities with such low frequent data using a common clas-
sifier, but we nevertheless recognized certain activities such
as work with a high confidence. Also sleep can be detected
very accurately with 2D inertial data sampled over 1 minute.

Time use surveys are less useful for detecting activities
that occur only for a small portion of the day, e.g., travelling.
Although the sensor classifier was quite confident in detect-
ing travelling (3rd best recognition score for mobile sensors
only, see Table 3), adding the time use survey information
led to a drop in precision. Note here that travelling in our
study includes usually activities like going home, going for
lunch, taking the bus, etc., which occur not regularly and
take up a small amount of time.

Even though our results are very promising, we believe that
some aspects could still be improved. First, the ground truth
was gathered by participants keeping a diary, where it is
not clear how accurate the participants entered the activ-
ity events in the notebook. Another way of gathering the
ground truth could be to let the user keep a diary directly
on the mobile device if possible (a smartphone would be well
suited for that task). Secondly, we might benefit from know-
ing the participants location, which is an evaluated feature
of the time use survey, as mentioned in [4]. GPS information
is already available on most of the mobile devices, which is
why recording this information additionally is feasible.

7. CONCLUSIONS
This paper presents a novel approach of improving activity
recognition on a mobile platform by simulating mobile usage
with the SenseWear Armband and combining time use infor-
mation with a common classifier. Making use of additional
information in a classification process on a mobile device has
many advantages. First, the sampling rate of the sensor data
can be reduced. We showed how recognition rates vary with
just using a common classifier and adding time use informa-
tion after the classification process. Second, we improve the
results for certain activities with an ensemble model. Pre-
cision for activities like eating, socializing and hobbies have
been increased by approximately 25%, 18% and 6% respec-

tively in contrast to using mobile sensors only. We discussed
certain advantages of using time use survey data and iden-
tified the limits of embedding such data in the classification
process.

In this paper we simulated sensor data that could have
been obtained on a mobile device. For this purpose we
used a SenseWear Armband device, which embeds a 2-axis
accelerometer. The next step would be to put time use
databases on mobile platforms such as a smartphone or a
smartwatch, to perform real-time activity recognition on the
device. Further, we will investigate whether the location can
improve on the recognition rates.

Another interesting aspect is to use the time use data as
a prior within the classification process. We would like to
analyse the usage of Conditional Random Fields as a se-
quential probabilistic model, weighting the sensor data with
the time use probabilities before training the data.
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