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Abstract—The advent of a range of wearable products for
monitoring one’s healthcare and fitness has pushed decades of
research into the market over the past years. These units record
motion and detect common physical activities to assist the wearer
in monitoring fitness, general state of health, and sleeping trends.
Most of the detection algorithms on board of these devices
however are closed-source and the devices do not allow the
recording of raw inertial data. This paper presents a project
that, faced by these limitations of commercial wearable products,
set out to create an open-source recording platform for activity
recognition research that (1) is sufficiently power-efficient, and
(2) remains small and comfortable enough to wear, to be able to
record raw inertial data for extended periods of time. We study
especially, via high-resolution power profiling, several trade-offs
present in the choice for the basic hardware components of our
prototype, and contribute with three key design areas that have
had a significant impact on our prototype design.

I. INTRODUCTION

One of the enduring challenges in creating and deploy-
ing robust activity recognition systems is the deployment of
wearable sensors that are unobtrusive and lightweight. This
has also been identified in earlier research on mobile sensing
platforms, for example in [1]. Several publications in activity
recognition research have observed that long-term operation
of the wearable sensing units is critical for various types
of application scenarios. Long-term monitoring of psychiatry
patients, for example, can be considered as one of the more
challenging scenarios, due to its constraints regarding the type
of sensors, the power efficiency aspect, and usability con-
siderations. While commercially available actigraphs provide
abstracted data in form of activity counts, there were no
wearable platforms that allowed the users’ activities to be
captured as raw acceleration data for more than a few hours.

In our case, due to lack of available off-the-shelf sensor
platforms that would fit the requirements, a custom sen-
sor unit had to be designed and built. This has led us to
consider building a prototype that would explore long-term
activity recognition approaches with a focus on the recording
equipment. A trade-off between two features was prevalent
throughout this design phase. A main requirement is that a
user accepts to wear the wrist-worn units continuously, day
and night. Design, size and weight are important, as in [2], but
also functionality: Although the unit was meant to record data,
many users, especially in the medical domain, would only wear
the device if it provided them the function of a basic wrist-
watch, both for its functionality and for wearing something that
would raise questions. On the other hand, the device needs to
be power-efficient enough to be able to record inertial data at

Fig. 1: The custom-made inertial data logger was designed for
long-term (day and night) recording of data for activity recog-
nition at 100 Hz, while simultaneously taking user acceptance
requirements for wearing such as device into consideration.
We focus on the evaluation of low-power design choices.

a high sampling rate for extended periods (weeks at a time)
on a single battery charge, thus requiring components to be
turned off or in sleep mode whenever possible. Our prototype
is open-source, publicly available at www.ess.tu-darmstadt.de,
whereas most other platforms are not.

We focus on the latter requirement of low-power operation,
while assuming the constraint of user acceptance, which in our
case led to the inclusion of a particularly small battery and the
addition of an OLED display. Turning off the display whenever
possible, and turning it on only when required by the user, is
hereby the straight forward choice in preserving limited power
resources. Figure 1 shows the current prototype.

The remainder of the paper is organized as follows. Section
II presents the main components of the wearable platform.
Section III describes our experimental setup to measure power
consumption. Section IV is dedicated to discussing obtained
evaluation results. The paper is concluded in section V.

II. WRIST-WORN UNIT DESIGN

The custom-built platform is centered around a Microchip
PIC18F46J50 microcontroller, which embeds in a small-scale
form-factor key components for acquiring and recording in-
ertial data. Among the most relevant features embedded in
the microcontroller are the real-time clock, multiple internal
oscillator circuits, digital and analogue communication inter-
faces, and a full-speed USB 2.0 communications module. The
real-time clock is specifically important to obtain accurate time
stamps during logging, which are then used in the visualization
of the sensor data to the user through a human readable
time axis. Furthermore, the time stamps are necessary to



synchronize the sensor data with user annotations, whether
kept in diaries or added interactively on recall basis.

The main sensor unit of our platform is the 3-dimensional
ADXL345 microelectromechanical system (MEMS) ac-
celerometer, which is able to obtain accelerations in a range
between ±2 up to ±16 g with sampling frequency up to
3600 Hz. The accelerometer sensor is connected via a Serial
Peripheral Interface (SPI) digital bus with the microcontroller.
In our experiments, the accelerometer sensor was configured
to a sensitivity of ±4 g at 10 bit resolution and a sampling
rate of 100 Hz. The accelerometer unit itself comes with
important features, such as a double-tap and fall detection,
low-power modes and an internal FIFO buffer that allows to
transmit sensor values in bursts to the microcontroller. This
latter feature is important, as it allows the main processor to
switch to power-efficient sleep modes or perform other tasks
between these communication burst. In addition to the time
and acceleration values, ambient light intensity is regularly
obtained through a photosynthetic diode.

Due to the amount of data being generated at 100 Hz, a
local flash memory is needed to store the acceleration data
along with the time stamps. Non-volatile flash memory suits
the application scenario demands, since it is available off-the-
shelf in small form factors (microSD cards) and can preserve
stored sensor data even when the battery runs out of energy.
Connectors and circuitry are available on the sensor board for
attaching the microSD card and for storage of sensor data.
The microSD card is then transparently accessible via USB as
a so-called mass storage device that appears to the user as a
common memory stick with FAT16 file system.

The prototypes are powered from miniature Li-Polymer
rechargeable batteries with a capacity of 180 mAh. For user-
friendly recharging of the battery via USB the sensor is
equipped with the MAX1551 charger integrated circuit. To
meet the requirements of long-term 24/7 deployment, the unit
is packed in a custom shock-proof case and provided with an
anti-allergic textile wrist strap. The miniature OLED display is
used for visualization of the current time, date or sensor values.
The display is by default turned off and can be activated by
the user by double-tapping the watch.

III. EXPERIMENTAL SETUP

This section presents the experimental setup to obtain
current consumption figures for our prototypes. We first present
the hardware setup to record the current drain traces. Aiming at
performing reproducible tests for all our test cases, we propose
to use a benchmarking platform. Lastly, to access how much
a sensor would last in a real-world scenario, we deploy the
sensor for multiple days to measure overall consumption.

A. Measuring Current Consumption

Critical in the power evaluation of the different parts of our
prototype is the way we measured the individual components’
energy consumption footprints. This section covers the details
of our method to measuring and record the energy consumed
by our prototype in particular modes. After presenting the
basic principles of operation, we provide the details on our
measurement setup based on the Arduino Due1 platform.

1http://arduino.cc/de/Main/ArduinoBoardDue.
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Fig. 2: The schematics to measure current consumption via
voltage drop over a resistor. To acquire and log the current
consumption footprint for detailed off-line analysis, we use
the Arduino platform supplying a reference voltage of 1.0 V.

Figure 2 depicts the schematics of the voltage measurement
circuit with which we have obtained detailed recordings of
current consumption, shown later in the evaluation section.
Following the Ohm’s law, we can from the measured voltage
drop over a sufficiently small resistor compute the current
drawn by the sensor device: I = V

R = 1
10V , with R = 10Ω.

The Arduino board is connected to a computer and used
as a high-resolution voltage logger over the resistor R on
the analog A0 pin against the ground GND pin. A reference
voltage of 1.0 V is supplied to the AREF pin, and power for
both the prototype and the Arduino is provided by a regulated
bench power supply. The A0 pin is sampled through an ADC
at full speed, whereby the resolution is set to 12 bit. The
measured values are transmitted to a computer for logging and
further off-line evaluation.

To access the current consumption of different operation
modes of our prototype, we need to consider the current drain
over the operation’s duration, which is given by the area under
the curve for the current draw measurements. Most relevant
information for power profiling of a sensor device can be
gathered by obtaining (a) the baseline current consumption of
the sensor device when in low-power idle or sleep mode, (b)
current consumption of different hardware components used
to perform various tasks, such as sampling the accelerometer,
writing data to persistent memory, or displaying information
on the display. To obtain current consumption for different
operations, we need to first identify these in our voltage
data set, extract corresponding voltage readings and compute
the area under the curve, for which we use the composite
trapezoidal rule (trapz in Python).

B. The Robot Arm Benchmark

In order to obtain comparable current consumption figures
for all the different configurations, for each test the data logger
should be moved in a similar, human-like, way and for a
similar amount of time. A human is not able to perform
the motions for each test as reproducible as required, which
motivated us for finding a suitable platform. Luckily, we were
able to use a robotic arm in one of the robotics research groups
at the university for our experiments. The robot is able to
perform very precise motions for a specified amount of time, or
repeatedly for a given number, whereby the motion itself can
be programmed by either by manually defining the trajectory
in space, or by providing the angular configuration of the joints
and letting the software decide on the cheapest trajectory.
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Fig. 3: A robot arm was used to perform a set of motions in
a reproducible way. The simulation (top) depicts one of the
motion traces, the photos (middle) show the sensor and mea-
surement hardware attached to the platform. The acceleration
data (bottom) reveals the repetitive execution of this motion.

Figure 3 shows the trajectory simulation as well as photos
from the actual deployment, with the sensor and the measure-
ment hardware being mounted on the robot arm. This way we
were able to obtain the current consumption measurements,
along with acceleration data from the sensor node. Since the
robot is not designed for long-term operation, only short-
lasting tests with different configurations were conducted.

C. Long-term Current Consumption Measurement

While the robot arm is a great benchmark utility for
comparing different combinations and parameters, a real-world
experiment is impossible to model. In order to access how long
a sensor would last on a single battery charge in real-world
conditions, multiple sensors were deployed to be worn at the
human wrist continuously for full 10 days.

In this experiment, using the aforementioned hardware to
capture detailed current consumption figures is not feasible. In-
stead, the consumption is computed via the battery capacitance
difference: Obtaining the capacity of the full battery before the
deployment (Figure 4), and the remaining capacity after these
10 days, we are able to compute the average current drain over
the deployment time frame. Based on the acceleration data
obtained and the overall activity intensity during this period,
we can estimate how long a sensor would last when deployed
in a long-term application. Furthermore, attaching a sensor to a
constantly moving or vibrating device will allow to evaluate the
runtime characteristic of the sensor nodes on a single battery
charge, and access the quality of manufacturing of the sensor
or the impact of different configuration settings.

IV. EVALUATION

During the design of our prototype, following design
choices were found to have a high impact on the low-power
operation of the system, and will be evaluated in this section:

1) Which component should control the sampling, the micro-
controller or the accelerometer itself?

2) There are a multitude of microSD cards available on the
market, does it matter which to use?

3) The OLED display is necessary for certain applications;
how much energy does it consume?
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Fig. 4: Determining the capacity of four fully charged batteries
via a 110 Ω resistor via the area under the curve up to the
nominal voltage of 3.3 V (highlighted in gray for Bat 3).
Similarly, we can obtain the remaining capacity of a battery
that was powering a sensor in a deployment.

4) How long will the prototype last on a single battery charge
with a sampling rate of 100 Hz?

To investigate these questions thoroughly, a number of
short tests were performed to obtain current drain figures with
the setup presented before, whereby settings and components
have been varied. We considered in our investigation mi-
crocontroller vs. accelerometer FIFO sampling, different data
compression settings, three different low-power modes, four
different flash cards, the effect of using the OLED display as
well as the impact of adjusting the sampling frequency. These
test cases are summarized in Table I.

A second test aimed at measuring total current consumption
for a long-term deployment, as one would expect in real human
activity recognition scenarios. For that, we deployed two
sensors that have been worn continuously day and night for full
10 days. By measuring the capacity of the full battery before
the test and after the deployment, the current consumption for
this time frame can be computed.

A. Which Component Should Control the Sampling?

In most sensor unit implementations where sensor data
need to be acquired at equidistant intervals, the microcontroller
is commonly the unit that times and polls for new data from the

TABLE I: Overview on the different test cases, varying differ-
ent parameters, such as the sampling method and frequency,
low-power modes, run-length encoding, and the microSD card.

No. Sensor Sampling Freq. LPM RLE SD card

1 Basic PIC 10ms 100 Hz normal 2 TS 1 GB
2 OLED PIC 10ms 100 Hz normal 2 TS 1 GB
3 Basic FIFO 100 Hz normal 2 TS 1 GB
4 Basic FIFO 100 Hz low-pwr 2 TS 1 GB
5 Basic FIFO 100 Hz low/auto 2 TS 1 GB
6 Basic FIFO 50 Hz low/auto 2 TS 1 GB
7 Basic FIFO 25 Hz low/auto 2 TS 1 GB
8 Basic FIFO 100 Hz normal 2 SD 2 GB
9 Basic FIFO 100 Hz normal 2 TS 2 GB
10 Basic FIFO 100 Hz normal 2 SB 1 GB
11 Basic FIFO 100 Hz low/auto 0 TS 1 GB
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(a) PIC polling every 10 ms
causes small peaks of 1 ms width.
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(b) Accelerometer’s FIFO buffer
allows communication in bursts.

Fig. 5: Current consumption traces showcasing the two sam-
pling methods: (a) microcontroller polling for samples every 10
milliseconds, and (b) accelerometer sampling with its internal
FIFO buffer. Note that transmitting 32 samples at a time
reduces the overall communication overhead and allows the
microcontroller to sleep for longer periods of time.

sensor. Such typical behavior for a 3D MEMS accelerometer
is depicted in Figure 5a: every couple of milliseconds (10
in this case, due to sampling at 100 Hz), the sensor unit is
woken up from a low-power sleep mode via a timer interrupt,
to communicate with the accelerometer (via SPI) and acquire a
new value tuple (consisting of the x, y, and z axis). This causes
every 10 milliseconds a small peak in power consumption,
taking about a millisecond.

Many recent MEMS accelerometer chips come with a
large set of digital support functions, however, including an
operation mode which lets the accelerometer do the acquisition
of new 3D acceleration samples for storage in a local FIFO
buffer. For the ADXL345 used on our prototype, this buffer
holds 32 samples, which means filling a buffer takes a bit more
than 300 milliseconds for our target sampling rate of 100 Hz.
Figure 5b shows the typical current draw pattern in such a
case. Additionally, it is possible to invoke the accelerometer’s
power-saving functionalities that cause more noise but has a
slight effect on the current draw as well.

After obtaining initial current draw figures for sleep mode
(0.24 mA), the FIFO or polling communication (2.8 mA),
and writing to the microSD card (13.5 mA), a set of small
tests lasting 7 minutes was conducted in order to evaluate
different operation modes and hardware components (listed in
Table I). The result is that FIFO sampling is more efficient:
First, while the accelerometer is collecting the sensor samples,
the microcontroller can be put to low-power sleep mode to
preserve energy. Second, transmitting the 32 values at a time
results in a reduced communication overhead and almost the
half the current drain (Table II, the sampling column).

B. What a Difference an SD Card Makes

After the acquisition of the sensor values, these are typ-
ically first stored in a buffer inside random access memory
(RAM). Once this buffer in the microcontroller’s volatile
memory is filled up, it needs to be offloaded to permanent
storage. Many wearable devices that are used to record fine-
grained sensor data nowadays utilize flash memory, either on-
board flash chips or replaceable storage cards (e.g., microSD).
Such replaceable cards have two main advantages: First, these
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(a) PIC sampling every 10ms and
writing data to microSD card.
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(b) FIFO communication bursts
and writing data to microSD.

Fig. 6: Current consumption traces with (a) polling and (b)
burst communications between the microcontroller and the
accelerometer (smaller peaks), along with writing to an SD
card (big peaks), revealing the energy cost of this operation.

can be easily bought in large quantities and at appropriate
sizes of multiple Gigabytes. Second, broken cards can be easily
replaced without affecting the sensor device itself.

In our study, writing data to the SD card is the most
expensive operation with regard to current consumption (not
considering the operation of the OLED display). With our main
goal being able to perform activity recognition from sensor
data where we specifically rely on subtle detailed information
in the signal, there is also the need for high-frequent sampling
(at 100 Hz). Obviously, storing the raw sensor data will
result in lots of writing operations, impacting the lifetime of
the sensor. Carefully designing and implementing the logging
routine yields a huge power efficiency potential. Figure 6
shows examples of current consumption traces for sensor
polling and burst communication, along with the writing of
sensor data to the microSD card.

One of the possible approaches to reduce the amount of
write operations is to compress sensor data on-line in the mi-
crocontroller’s RAM, before storing it to the microSD card. For
our sensor device, we use run-length encoding (K-RLE) [3],
which is a very common and widely used method to compress
data. In our case, the two advantages of K-RLE are: (1) it
compresses identical sensor values and preserves subsequences
with a varying signal, and (2) it can be used to filter out noise
in the signal, thus performing very efficiently on flat sensor
data, when correctly choosing the threshold. Choosing K = 2
over K = 0 in our tests resulted in a significant reduction
of write to flash operations from approximately 23 to 6% of
overall consumption (cf. Table II, tests 5 and 11).

Considering our data logger, the study revealed that is also
mandatory to carefully chose appropriate memory cards. To
show their impact on the overall current consumption, we
considered four microSD flash cards from three manufacturers,
namely Transcend, Sandisk and SwissBit, with capacities of 1
GB and 2 GB. Figure 7 shows the findings regarding these
cards, with an unexpected result: the 2 GB Transcend card
turned out to consume almost three times the current of its 1
GB version or the 2 GB card by Sandisk. The 1 GB SwissBit
card has a low plateau current drain of 2.8-3 mA, matching the
level of microcontroller and accelerometer communications,
and a very short peak of approximately 45 mA lasting 1
millisecond. This is also reflected in the overall consumption
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Fig. 8: Current consumption trace of a data logger with the
OLED display. Using the display results in a high current drain,
represented by the high peaks on the left side. After the display
has been turned off by the user (double-tap feature), 10ms
polling from the microcontroller becomes visible.

figures of the tests 3, 8, 9, and 10 in Table II. Hereby it is
necessary to note that the SwissBit card contains single-level
cell flash memory, whereas the other cards have multi-level cell
flash, and therefore comes at a much higher price (10 fold),
but yields advantage with regard to power consumption. The
total current drain of the writing operation (namely the area
under the curve) is therefore much lower than of the other
microSD cards (Figure 7e), making this more expensive card
much more preferable in this comparison.

The conclusion of this evaluation is that cheap consumer
cards need much more thoroughly testing before being used in
long-term deployments. Just relying on the peak current drain
figure given in the data sheets is not sufficient. What matters is
the actual current consumption trace that will reveal the details
of this essential hardware component. Obviously, choosing
industry single-level cell flash memory has a huge advantage
of much lower energy consumption, at a high monetary cost.

C. The (Battery) Cost of an OLED Display

Our prototype is equipped with an OLED display, which is
programmed to show current time and date for a few seconds
whenever the user double-taps the data logger. This was
particularly a requirement for several long-term trials, in which
many users reported unwilling to wear a unit on the wrist that
would look unfamiliar enough to raise questions. By making
it look and function as a wrist-watch with the addition of the
display, acceptance was much higher. However, this component
comes at a higher production cost for the entire prototype,
and undoubtedly at an impact on power consumption. Figure
8 shows a subsequence of the display current consumption just
before it was turned off by the double-tap from the user.

The OLED display requires 3.3 V power supply for the
integrated display driver, which nicely fits our data logger
design. On the other hand, the OLED display also requires an
additional supply of 12 V for its back-light. To achieve this, a
step-up circuit is necessary, consisting of multiple additional
components. The drawback of this approach is the reciprocal-
proportional dependency of voltage and current: to achieve a
step-up from 3.3 V to the required 25 mA at 12 V (according
to the data sheet), we need to supply at least 90 mA. Our
measurements show that due to the step-up circuit, the OLED
display and all other hardware components, the consumption

TABLE II: Comparison of the electric charge consumed in
total, and for the three main operations: writing to microSD,
transfer of acceleration samples from the accelerometer to the
microcontroller, and the operation of the OLED display.

No. Total Writes to SD Sampling Display

mAs mAs % mAs % mAs %

1 130.72 4.76 3.6 63.65 48.7
2 353.93 1.74 0.5 4.64 1.3 347.28 98.1
3 93.40 5.78 6.2 29.22 31.3
4 72.78 7.40 10.2 26.15 35.9
5 84.68 6.19 7.3 28.65 33.8
6 61.37 3.84 6.3 13.64 22.2
7 46.80 2.12 4.5 7.28 15.6
8 103.29 13.21 12.8 29.26 28.3
9 84.85 7.41 8.7 28.33 33.4
10 103.40 1.44 1.4 30.48 29.5
11 95.71 22.28 23.3 26.44 27.6

peaks reach up to 140 mA at 3.3 V. Current work therefor
focuses on a more efficient implementation of the display.

Although the display was turned on only for a short period
of time during the test, the consumption of the OLED and the
step-up circuitry reaches more than 98% of the total current
draw (Table II). With this result, while not representative
for real-world usage, it becomes very important to efficiently
design the usage of the display interface. This particularly
means that the display has to be turned off as often as possible
when not needed by the user.

D. The Impact of Reduced Sampling Frequency

Varying the sampling frequency has a direct impact on the
amount of sensor data generated by the accelerometer unit.
While we aim at high sampling rate of 100 Hz to capture
full detail of human motion, lowering the sampling rates can
still be tolerable for various applications. For example, in
sleep monitoring and actigraphy scenarios, raw sensor data is
generally converted to activity counts, whereby the epoch size
is generally relatively large (in the range of minutes).

With that, we face a trade-off between data granularity and
life time of the sensor, which directly impacts the usability
aspect. Reducing the sampling rate from original 100 to 50
or 25 Hz results in a proportional decrease of communication
between the accelerometer and microcontroller (Table II, tests
5, 6, 7) and in the amount of write operations to the SD
card. While the sensor node will still consume current for
basic operation (microcontroller computation, accelerometer
sampling, real-time clock, some loss in the circuits) on a level
of approximately 0.4 mA, the overall consumption is reduced.

Thus, a reduced sampling rate will significantly improve
the life-time of the sensor, which was also confirmed by
multiple long-term tests. Sensors, configured for a sampling
rates of 100 as well as 50 Hz were worn continuously for 14
days at the wrist. At 100 Hz, the sensors were able to obtain
sensor data for up to 11 days, before the batteries were drained
completely. With a sampling rate of 50 Hz, even after 14 days
the batteries were not completely drained, and the sensors are
able to log for additional couple of days.



0 5 10 15 20
milliseconds

0

20

40

60

80

100

m
A

(a) 1 GB Transcend

0 5 10 15 20
milliseconds

0

20

40

60

80

100

m
A

(b) 2 GB Sandisk

0 5 10 15 20
milliseconds

0

20

40

60

80

100

m
A

(c) 2 GB Transcend

0 5 10 15 20
milliseconds

0

20

40

60

80

100

m
A

(d) 1 GB SwissBit
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Fig. 7: Current consumption traces of the four SD cards used in the experiment. The 1 GB Transcend and 2 GB Sandisk turn
out to be very similar. The 2 GB Transcend card (c) has a much higher peak consumption, while requiring few milliseconds
less to finish its task. The 1 GB SwissBit card (d) has a significantly lower power consumption, at a much higher purchasing
price. Computing the area under the curve results in total amount of current spent for the writing-to-flash-memory operation.
After extracting these peaks from obtained dataset, the distribution of per peak current consumption is shown in subfigure (e).

E. The 10-day Deployment Test

The evaluations presented before have focused on the
impact of different settings and components on the current
consumption of the prototype data logger. Aiming at deploying
the data logger outside laboratory conditions at the wrist of
users, in order to obtain continuous day and night human
motion data, an evaluation is required that considers current
consumption over a comparable time frame. For this, two
sensors have been deployed for capturing human motion for a
time frame of 10 days. The sensors were worn continuously
day and night, and were only taken off during showering or
bathing. The configuration for these sensors was exactly as
in test 4 (Table I): 100 Hz FIFO sampling, low-power modes
enabled, RLE with K = 2, Transcend 1 GB card. The OLED
display was not used at all during the logging period.

The overall current drain of the sensor was obtained over
the capacity change from a fully charged battery before the
deployment to the capacity state after the 10 days. The delta
of these values, divided by the time frame, provides us with an
average current drain figure, and with that allows to estimate
runtime for this particular sensor-battery pair. For example, a
sensor running with the configuration above for 10 days of
logging consumed an electric charge of 93 mAh. With that,
one day of operation approximately drains 9.3 mAh from the
battery. With a nominal battery capacity of 180 mAh, the
sensor node should theoretically last more than 19 days.

Experience shows that this estimated runtime is not
reached. The reason for this are the physical characteristics
of the flash memory: First, the high peak consumption of
the SD card (approximately 36 mA, cf. Figure 7a), and
secondly, its relatively high operating voltage of 3.3 V with
very little deviation tolerance. While the microcontroller, the
accelerometer sensor and other components on the sensor
board can tolerate lower operating voltage, writing to flash
memory will fail as soon as the battery voltage drops below
3.2 V. With this constraint in mind, the runtime of a sensor
node with the given setup accounts for up to 14 days.

V. CONCLUSIONS

This paper presented the experience gathered in developing
a wrist-worn and low-power activity logging unit, which is able
to record 3-dimensional acceleration data at a sampling rate
of 100 Hertz for two weeks on one battery charge. Using the
form-factor of a wrist-watch to safeguard user acceptance, we
specifically focused on the choices and parts of our prototype
that have the biggest impact on energy consumption of the
whole unit. After presenting the details on how we obtained our
measurements using an off-the-shelf low-current acquisition
setup, we contribute with these findings in particular:

• Accelerometer-based FIFO sampling has shown to result
in slightly better energy figures than microcontroller-based
sampling, requiring shorter idle times between samples.
• The choice of SD card manufacturer and size showed strong

variations on the energy footprint of the whole unit. The
current draw for 2 GB Transcend consistently reaches 100
mA, whereas for others 35 mA was measured. A SwissBit 1
GB card exhibits lowest consumption for write operations.
• The OLED display, though appreciated by the users wearing

our prototype, has an enormous impact on energy consump-
tion. This adds importance to any mechanisms that turn off
the display whenever it is not needed by the user.
• A 10-day test has proven to be an efficient method to

estimate how long a battery under normal usage would last.
For our prototype, considering the SD flash requirement for
an operational voltage of 3.3 V, this was calculated to be
approximately 14 days.
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