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Abstract—Many sensor network applications observe trends
over an area by regularly sampling slow-moving values such as
humidity or air pressure (for example in habitat monitoring).
Another well-published type of application aims at spotting
sporadic events, such as sudden rises in temperature or the
presence of methane, which are tackled by detection on the
individual nodes. This paper focuses on a zone between these two
types of applications, where phenomena that cannot be detected
on the nodes need to be observed by relatively long sequences
of sensor samples. An algorithm that stems from data mining
is proposed that abstracts the raw sensor data on the node into
smaller packet sizes, thereby minimizing the network traffic and
keeping the essence of the information embedded in the data.
Experiments show that, at the cost of slightly more processing
power on the node, our algorithm performs a shape abstraction
of the sensed time series which, depending on the nature of the
data, can extensively reduce network traffic and nodes’ power
consumption.

Keywords-sensor data abstraction, piecewise linear approxima-
tion, SWAB, time series shape analysis, wireless sensor networks

I. INTRODUCTION

Through recent advances in computer technology, in hard-
ware as well as in software, wireless sensor networks have
shown to be easily scalable and deployable for longer periods
of time. Deploying a sensor network has various positive well
documented implications, such as minimizing the intrusion
and disruption of the environment and its inhabitants that are
the focus of scientific interest and research. Wireless sensor
networks currently have moved away from being just data
samplers; monitoring and processing/analyzing slow-moving
environmental values such as humidity, temperature or air
pressure on the sensor itself have become common practice.

More recently however, sensor networks are also deployed
to monitor or detect critical events, such as human activity [1],
volcano activity and eruptions [2] or emergency scenarios [3],
[4], that require high-fidelity data analysis in (or close to) real-
time. This conflicts with the fact that wireless sensor networks
are heavily constrained by their hardware resources. Wirelessly
transmitting the raw sensor data to a base station that has the
processing capabilities will require high amounts of energy,
often resulting in the network nodes to run out of battery
power. To prolong the lifetime of the sensor network, wireless
communication needs to be reduced. This can be achieved by
compressing the sensor data before it is forwarded to the base
station for further analysis.

Even when sensors are sampled at relatively high frequen-
cies (e.g., from hundreds of Hertz for inertial sensors up
to thousands of Hertz for microphones), data abstraction is
still possible. Simple features such as mean, RMS, or signal
amplitude can be easily computed, reducing the raw data
to a fraction of its original size. Unfortunately, for some
applications these features are not descriptive enough.

In this paper, we propose a method that abstracts time
series to its basic shape descriptor. Our approach is the
reduction of the raw sensor signal by computing a piece-
wise linear approximation that preserves its shape. Since the
computational complexity is higher than computing simple
features as mentioned above, our work is aiming at a field
where monitored phenomena require more potent features, in
particular the shape of the sensed signal. Thus, our work is
targeting at applications with the following properties:
• frequency sampling is high in relation to communication

bandwidth,
• temporal signal patterns are important to observe and

preserve (shape of the signal especially),
• local nodes cannot perform immediate pattern detection

and need to forward data to a base station for analysis.
Hereby we use the term “shape of a signal” without a formal
definition, relying on how it is used in the Data Mining
community (as in “shape matching” [5]).

This paper is structured as follows: In section II we will
frame our work amid important related work. Section III is
dedicated to our embedded approximation algorithm that is
described in detail. Our experimental environment and setup,
the chosen parameters and the results will be presented in
section IV. Finally, we will discuss our results in section V.

II. RELATED WORK

A good example of the use of features in body sensor
networks is the Mercury wearable sensor network platform
[6] that is used for on-line analysis of motion data to monitor
patients with Parkinson’s Disease or epilepsy. The authors of
Mercury are aiming at long-term deployment of their wearable
sensor network, and thus pay a lot of attention both to battery
lifetime and hardware resource constraints. Their approach to
handle this high-fidelity data is to compute high-level features
(such as mean, RMS, maximum peak-to-peak amplitude, peak
velocity, and RMS of the jerk time series) from the raw
signal and transmit only the features to the base station, thus



preserving a considerable amount of bandwidth and energy.
On the other hand, when the features are indicating a motion
that is of particular interest, the raw data that was previously
stored on the sensor node needs to be downloaded for more
detailed analysis. By preserving the shape of the signal, our
method would avoid the storage and transmission of raw
data as well, this way reducing battery power consumption.
Although the characterization of Parkinson’s tremors is likely
more efficiently done with these high-level features, epileptic
seizures would benefit from shape-based representation.

Early work [7] already identified that it is more beneficial to
process/compress data on a sensor node and only wirelessly
transmit its compression over the network. Various lossless
compression algorithms, such as LZW, bzip2 or GP-zip have
been evaluated, whereby the authors not only compared the
algorithms’ compression performance, but also the power
consumption needed to compute the compression. While the
paper is focusing on the lossless compression of data, our
approach targets at other applications where lossy abstraction
of data is allowed and even welcome. Still, the basic idea of
reducing the amount of data by using relatively cheap CPU
computation instead of power-hungry wireless transmission of
uncompressed data holds for both approaches.

Run-length encoding (RLE) [8] is a very common and
widely used method to compress data, also in wireless sensor
networks. In [9], an adaptation of the common run-length
encoding algorithm is presented, the K-RLE algorithm, which
in essence is run-length encoding with a threshold K > 0.
The main advantage of K-RLE is that it not only compresses
identical sensor values, but, with a correctly chosen threshold,
can be used to filter out noise in the signal. It, obviously,
performs very efficiently (in terms of the approximation error)
on flat data, or data with flat periods in the signal. On the
other hand, if the sensor readings are constantly fluctuating,
run-length encoding often results in even more data than the
plain raw signal. In this paper, we use both the plain raw
data transmission, as well as the K-RLE algorithm, to evaluate
against the performance of the algorithm proposed by us.

Another approach to approximate sensor readings has been
presented in [10]. Here, a sensor node that is monitoring
the development of a physical variable over time can adapt
to a time series model among a specified set of candidate
models, and then only transmit the model parameters. For
example, when monitoring temperature or humidity, it can be
described by a linear model with corresponding parameters.
Once the currently chosen model and its parameters have
been transmitted to the base station, future sensor readings
can be predicted, both at the base station, as well as on the
sensor node itself. If the sensor readings lie within predefined
application-dependent error bounds, wireless communication
is not needed. When the new sensor readings exceed the
error bounds, the model and its parameters will be updated
and transmitted to the sink. This approach is interesting for
applications where the sensors can be expected to behave ac-
cording to a small and fixed set of models, such as temperature
or humidity sensors. The drawback is that sensor data with
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Fig. 1. SWAB approximates a time series to a set of segments, with a sliding
buffer in which local bottom-up segmentation is done [13]. Once bottom-up
finishes and produces the next segment (here, the leftmost one), the buffer
is slid over new data. Our adaptation (below) replaces the original sliding
window phase by moving the buffer up to the data point where the slope
changes sign.

behaviors that are harder to model, that require extremely high
number of models or that require constant adjustments of the
model either are not feasible or result in a large overhead.

III. EMSWAB

Key to our approach is the on-line approximation of sampled
sensor data into a representation of linear segments that is
efficient to manipulate and faster to process than the raw sensor
data. The linear segments can be visualized in an identical way
to the original data in a time series plot, while the number of
data points can be significantly reduced. Our approximation
algorithm has its origins in the research field of time series
data mining and stems from a modified version of the SWAB
algorithm [11], [12] for a wireless sensor node.

A. SWAB

The algorithm proposed in this paper is a modification
of SWAB [13] targeting a variety of types of time series
data, such as stock exchange data, ECG measurements or
powerplant load monitoring. SWAB is a combination of a
bottom-up approximation step that is performed on a buffer
of raw data points, and the sliding window step where new
raw data points are added to the buffer. The authors of
the SWAB algorithm mention that optimizations are possible
for particular data, for instance, by incrementing the sliding
window with multiple samples instead of one (which showed
beneficial in case of ECG data). SWAB’s standard version
moves a sliding window, recalculating an approximation cost
and matching it to a threshold for every additional sample of
raw data (see top plot in Figure 1).

Our adaptation exploits the property of certain sensors’ data,
which tend to heavily fluctuate by producing characteristic
peaks in the time series, and instead of the sliding window
step moves the buffer on to the next data point when the
slope’s sign changes between positive and negative, or zero
(see bottom plot in Figure 1). This means that instead of
having to iteratively calculate the approximation cost, one
simply has to calculate the slope between adjacent data points
xj and xj+1 and stop when the signum function changes value,
or sgn(xj − xj−1) = sgn(xj+1 − xj).



This speeds up the process as it requires a single test
per sample (O(n) with n the samples the buffer is shifted
over), instead of recalculating costs over the segment (O(n2)
regardless whether sum of squares or the L∞ norm is used for
the cost calculation). Although the bottom-up part of SWAB
remains costly, substituting the sliding window technique leads
to a significant speedup when the sensors are sampled at a
high frequency or if many sub-sequences with a flat signal are
present (i.e., when no peaks appear).

Previous performance evaluations of our modified algorithm
and the original SWAB have shown that at a marginal increase
of the approximation error on a 24-48 hours data set the mod-
ified version performs almost twice as fast (∼ 1.89). As the
original SWAB is known to give a high-quality approximation
of the signal and our modified version performs in a similar
error range, the remaining question that we will answer in this
paper is whether the modified SWAB can be implemented on a
sensor network node and at which cost in processing resources.

The next subsection will provide details on the embedded
implementation of SWAB’s modified version, emSWAB. We
will particularly motivate several choices that made the algo-
rithm implementable on a microcontroller-based sensor node.

B. Embedded SWAB (emSWAB)

After implementing the bottom-up approximation as well
as the slope sign change part for general purpose personal
computers and evaluating their performance on already avail-
able off-line data sets, previous experiments indicated that
this modification is efficient enough to be implemented on
an embedded sensor platform [11], [12]. In this paper we will
look at the implementation of this algorithm on wireless sensor
nodes in general.

The basic functionality of a sensor unit running emSWAB
is as follows: a sensor is being sampled at a specific fixed
frequency, producing what we define as raw data values. The
new sampled data is forwarded to the emSWAB algorithm
that decides whether to store the value to a buffer or, if
enough values are available in the buffer already, to run the
bottom-up approximation step, thereby producing the next
approximating linear segment. This segment is stored to a
buffer that eventually will be wirelessly transmitted into the
sensor network for further analysis at the base station (see
Figure 2). Hereby the segments are represented by data points
that consist of an index (∆i value in time in amount of
samples, to the previous data point) and the corresponding
sensor value.

One of the main issues we know in advance we will be
facing when porting mSWAB to an embedded system is that a
floating point unit is not available in hardware. Thus, following
two adoptions were necessary and are important to be noted:

First, the approximation cost function was changed from
Euclidean Distance to sum of distances. This way, instead of
computing the sum of squared distances and then computing
the square root, we only look at absolute distances between the
raw data points and their corresponding interpolated value on
the segment. This adoption reduces the computational load for
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Fig. 2. Basic functionality of emSWAB on a wireless sensor node. The
emSWAB takes a buffer of raw data, computes a bottom-up approximation,
and produces the next segment as the final result of the approximation step.
The buffer is then filled with new raw data. The produced segments are
buffered and finally wirelessly transmitted to a base station.
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Fig. 3. Example for the computation of the approximation cost (sum of
absolute distances) for a candidate segment during the bottom-up approxi-
mation step. Since floating point unit is not available on a microcontroller,
the computation of the interpolated points on the segment needs additional
attention.

the microcontroller, as well as the memory requirements, by
avoiding costly implementations of the square and the square-
root functions.

Second, when computing the approximation cost between
an approximating segment and raw data points, corresponding
interpolation points on the segment need to be computed (Fig-
ure 3). For example: we want to compute the approximation
cost of the candidate segment that will be created when the
two blue segments will be merged. Given the two points for
the candidate segment (i0; v0) and (i2; v2), both consisting
of an index and the sensor value, we can utilize the linear
interpolation formula

vinterp = v0 + (i0 + iinterp)
∆v

∆i

where ∆v = v2 − v0 , ∆i = i2 − i0

to compute the interpolation values for the indices iinterp ∈
{i0 + 1, i0 + 2, . . . , i1, i1 + 1, . . . , i2 − 1}. The approximation
cost c is then the sum of absolute distances between the raw
data values and the interpolated points:

c(i0,i2) =

i2∑
k=i0

|vk − vinterp,k| .

The lack of the floating point unit on a microcontroller is
especially grave for the division step in the formula above that
will cause additional error. For example, this error becomes in
particular obvious when considering a candidate segment with
a positive slope that is still smaller than 1: if (i0 + iinterp) ·
∆v < ∆i, the division will result in zero. From this follows
that the interpolated point equals the raw data value, and this



results in a distance and thus in the approximation cost of
zero.

To preserve as much accuracy as possible, we slightly
transform the interpolation formula, forcing the division by
∆i to be the last step in the computation:

vinterp =
v0 ·∆i + (i0 + iinterp) ·∆v

∆i
.

This transformation has been verified to preserve the accuracy
better than the traditional way to compute the interpolation,
and therefore was implemented in emSWAB.

Additionally, emSWAB can be further optimized by reduc-
ing the amount of repeating computations. For example, when
the initial bottom-up approximation costs for a given buffer
of raw data have been computed, a copy of those values can
be stored and partially reused later. Once the approximation
is finished and the next segment is produced, only the costs
for those points will be removed that have been merged
out by this particular segment. Other raw data points and
their corresponding initial approximation costs remain. The
approximation costs only need to be computed and stored for
new incoming raw data values.

To allow easy portability to different hardware platforms
and operating systems, we have chosen to implement our
emSWAB algorithm as a library in standard C(95/99). The
source code of the library has been made available at the
project website1.

With the emSWAB algorithm now described in detail, in
the next section we will present the experiments methodology
and evaluate its performance on several data sets of which the
data could be captured within a wireless sensor network.

IV. EXPERIMENTS

In this section we will present the performance of the pre-
sented emSWAB algorithm and compare it to two other data
dissemination techniques: transmitting the raw data without
any compression or abstraction (RAW), and the run-length
encoding of the raw data (RLE). The evaluation is done on
several representative data sets in wireless sensor network
applications.

First, we will present the methodology of the experiments,
the data sets on which we evaluate our algorithm, and the
experimental setup, and then look at the performance figures
under various circumstances.

A. Methodology

The raw sensor data that is used during these experiments
was taken from various public data sets. Examples of the data
can be seen in Figure 4. Hereby, the data sets ECG 1 and 2,
Power and Space are subsequences of the data sets that are
freely available at http://www.cs.ucr.edu/∼eamonn/discords/.
The data sets Sleep and Hapkido are subsequences of data sets
that are freely available at http://porcupine2.sourceforge.net/.

The two ECG data sets represent two different anomalies
in a normal heart beat, where the first is an oscillation

1http://www.ess.tu-darmstadt.de/projects/
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Fig. 4. Different publicly available data sets used in the experiments. The
data sets were chosen for their variety of the signal, displaying characteristic
patterns. Whenever present, we have chosen the subsequences that contained
anomalies, such as high variant section in the latter part of ECG 1 (top plot)
or the sudden drop in the “energized” phase of the Space data set.

of high frequency and the second is a small bump. The
Power data set represents power requirements/loads that were
recorded at a powerplant and spans multiple days. The Space
data set shows a normal cycle in a Space Shuttle Marotta
Valve time series, with an anomaly during the “energized”
phase, where the signal shall stay high. The Hapkido data
set shows human activity data, namely acceleration data of a
sensor that was attached to the ankle of a person performing
Shinson Hapkido training. Finally, the Sleep data set shows
accelerometer signals of a person sleeping and changing her
sleeping position during the night.

The main aspect about the used data sets are the essentially
different types of signal in terms of occurring patterns: on the
one side of the spectrum there are long spans with flat signals
(as in Sleep or Space) and constantly varying sensor values on
the other side (as in Hapkido). Hereby, for our experiments and
evaluation, the original sampling frequency is not considered
important. More important is the shape of the signal and its
preservation during the on-line approximation and abstraction
on the sensor node.

We use these data sets to compress the signal utilizing our
approach as well as the forwarding of raw data and the run-
length encoding technique. With our approach, once a new
sensor value is sampled, it is forwarded to the emSWAB
algorithm. The resulting approximating segments are buffered
first and transmitted via radio to its neighbors or a base station
when enough segments have been accumulated. Hereby, the
segments are represented by data points consisting of a ∆i

value (number of samples that were abstracted to the previous
segment point) and the actual sensor value.

Our evaluation goal is to be able to provide specific per-
formance figures and estimated power consumption for the



algorithm that is easy to reproduce. To achieve this, we have
ported the emSWAB algorithm to Contiki [14]. Contiki is
a very popular and widely used open-source, multi-platform
and multi-tasking operating system for embedded wired and
wireless sensor networks. It is written in C and is designed for
variety of microcontroller- and microprocessor-based sensor
nodes that have limited hardware resources. One of the main
aims is a low-power radio communication in wireless sensor
node networks. The Contiki OS project has various tools and
implemented features, whereby the two most important for our
work are the Cooja network simulator [15] and the power-
profiling mechanism Energest [16].

Most experiments were conducted using the Cooja cross-
level sensor network simulator. As the experiment target
system we have chosen the very popular Tmote Sky / TelosB
sensor node as the hardware platform. The node is a 8MHz
MSP430-based board with 10kB RAM, equipped with a
CC2420 IEEE 802.15.4 compliant radio chip, 1 megabyte ex-
ternal flash memory, and optional sensors. The most important
power consumption figures, as noted in the Crossbow TelosB
data sheet, are:
• MSP430 and circuit power consumption:

1.8mA in active and 5.1µA in sleep mode,
• RF transceiver power consumption:

23mA in active, 21µA in idle and 1µA in sleep mode.
Using Contiki’s software-based on-line power-profiling

mechanism Energest [16], we were able to record how long
the sensor node was staying in the low power mode (LPM)
or was busy doing some computation (CPU), for example
emSWAB computing the approximating segments, or was
wirelessly transmitting (TX) data to the base station. Since
our experiments focus on the sensor node sending abstracted
data only, the time spent for actively listening or receiving data
(RX) is negligible. By logging the time spent in each of these
four states (modetime) and applying the corresponding power
consumptions, current or overall power consumption per state
over a period of time can be estimated, by for instance:

PowerCPU (mW ) =
modetime(ticks) · 1.8(mA) · 3(V )

frequency( ticks
s ) · runtime(s)

.

Besides being able to use current power consumption to
adapt sensor nodes behavior as it is for example done in related
work, our primary goal is to evaluate how much power can be
preserved by computing a linear approximation of the signal.

B. Some figures on the sensor node images

The footprint of our experimental Tmote Sky / TelosB
module image with emSWAB implemented in Contiki is
364.120 bytes, where less than 1% is taken by the emSWAB
image. On a different sensor node, featuring a PIC18-based
microcontroller from Microchip instead, our emSWAB imple-
mentation has a footprint of 2440 bytes.

The buffer size for the bottom-up approximation step was
initially set to 20 values, bounding the buffer to minimum 10
and maximum 40 raw data values. When the approximation
is computed, a buffer with corresponding indices that are

stored as 16 bit unsigned integers is additionally needed. Thus,
our implementation results in a buffer of 40 unsigned bytes
(sensor values) and a buffer of 40 unsigned 16 bit integers
(indices), requiring 120 bytes of memory. To be able to store
and work with merging costs for adjacent pairs of segments, an
additional array of unsigned 16 bit integers is needed. In order
to speed up the costs computation (as described previously),
two costs arrays are used, resulting in additional memory
requirements of 156 bytes.

The structure implemented as union used to store the
segments that are produced during the approximation step is
40 bytes large. Its size can be varied, depending on the size
of the wireless communication package. We chose a value of
up to 20 data points (19 segments) that are represented by an
index and the actual sensor reading.

To avoid losing new raw sensor readings, a raw data buffer
of size 120 is used, adding 120 bytes to the overall memory
requirements. The buffered sensor readings will be copied into
the emSWAB buffer. Once the approximation is computed, the
data points that have been merged to one resulting segment
will be deleted.

C. Results

After discussing the methodology and presenting some
figures on the sensor node images, in this section we want to
evaluate the performance of emSWAB for different merging
threshold against the raw data dissemination and the run-length
encoding techniques.

In Figure 5, we see two plots that visualize the Energest
power estimation logs: the upper plot for run-length encoding
and the lower plot for emSWAB with a merging threshold
of 5 and an initial bottom-up buffer size of 20. Here, the
Hapkido data set was used. Note that this is only a fraction of
the whole log that was recorded during the simulation, since
visualizing the log entirely would make it unreadable. The X-
axis represents the sensor reading ticks, whereas the Y-axis
shows the number of CPU cycles that were spent in the four
different system modes.

Both plots show that most of the time the sensor node
stayed in low-power mode. Sampling and storing a new sensor
value is almost negligible when abstracting the data with run-
length encoding, therefore CPU usage only appears when the
data is wirelessly transmitted to the network (MAC overhead).
The emSWAB plot, on the other hand, shows that more
computation is required. However, the amount of data that
needs to be wirelessly transmitted is reduced, resulting in
a decreased amount of wireless communications: with the
emSWAB approach 4 times, against 7 times with run-length
encoding.

Since in the example given above a relatively low merging
threshold of 5 has been used for emSWAB, the resulting
approximation is close to raw data. Increasing the threshold
will result in a more coarse grained approximation. This will
lead to more computation on the one hand, thus increasing the
CPU load, but will reduce the amount of data to be transmitted
even more.
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Fig. 5. Power consumption estimation with Energest: comparing the performance of run-length encoding and emSWAB techniques using the Hapkido data
set. The plot show how long (in terms of CPU cycles) the system stayed in one of the four modes: CPU - time spent on calculation, LPM - low power mode,
TX - wirelessly transmitting the abstraction, RX - listening or receiving (negligible). Run-length encoding performs very similar to raw data dissemination
(not shown here). Obviously, the emSWAB algorithm requires more time for computation, but profits through less data that needs to be wirelessly transmitted.
Increasing the merging threshold for emSWAB will result in more computation, but due to a more coarse grained approximation in even less data to be
transmitted.

In the following, Figures 6 - 11 present emSWAB’s perfor-
mance on the data sets mentioned before (see Figure 4). To be
able to compare the performance figures of the different sensor
data abstraction techniques, and to decide which one performs
better or worse, we need to compute the relative time required
for every system mode. To achieve this we sum the time the
node has spent in each of the four different system modes,
and weigh these by the overall time. Additionally, for every
data set emSWAB’s merging threshold is varied to show its
direct impact on the algorithm’s performance and the estimated
power consumption. The values used for the merging threshold
are mt = {5, 10, 15, 20}.

Figure 6 shows performance figures for the Hapkido data
set. This data set has a highly fluctuating signal that leads
to a poor performance of the run-length encoding technique.
A fine-grained emSWAB approximation (mt = 5) demands
more time for its computation, thus resulting in a higher
CPU load, but is balanced out by a smaller-sized abstraction.
This results in lower package size and thus in less wireless
communication, thereby preserving battery power. Increasing
the merging threshold and by this forcing a more coarse-
grained approximation will reduce the footprint even more, as
can be seen in the plot, but result in a higher approximation
error that might become critical for preserving the shape.

Figure 7 shows performance figures for the Sleep data set.
This data set is different in nature compared to the Hapkido
data set, in that it contains long periods with constant sensor
values: the signal stays flat, is shortly interrupted by a jump to
another level, and then stays flat again. The good performance
of the run-length encoding abstraction is therefore not surpris-
ing. emSWAB does perform well on this data, too, but at a
much higher cost in terms of computation time, preventing the
sensor node from entering the desirable low-power mode.

Figures 8 and 9 show performance figures for the two
ECG data sets. The main difference in these two data sets
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Fig. 6. Energest performance of raw data dissemination, run-length encoding
and emSWAB for different merging thresholds using the Hapkido data set. In
this data set, the data exhibits continuing varying patterns, which lead to a
poor performance of the run-length encoding method. The high computational
demand of emSWAB is balanced out by the decreased amount of data to be
transmitted.
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Fig. 7. Energest performance of raw data dissemination, run-length encoding
and emSWAB for different merging thresholds using the Sleep data set. For
this data, RLE is superior to both raw data dissemination as well as our
emSWAB approach. Since sensor values remain the same for long periods
of time, transmitting data is minimized when compared to the RAW method.
Also, the overhead of emSWAB in processing means that less time is spent
in the power-saving mode.
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Fig. 8. Energest performance of raw data dissemination, run-length encoding
and emSWAB for different merging thresholds using the ECG 1 data set.
Since the data set contains flat as well as high variety signal, the overall
performance of run-length encoding fits between the Hapkido and Sleep data
sets. emSWAB requires additional time for computation, but results again in
a lower amount of data to be transmitted, outperforming both RAW and RLE.
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Fig. 9. Energest performance of raw data dissemination, run-length encoding
and emSWAB for different merging thresholds using the ECG 2 data set.
These results give a very similar picture to the performances that were
achieved on the ECG 1 data set. Since the signal in this case lacks the high
variance part, the time needed for the emSWAB computations is drastically
reduced. This is also the reason for the better performing RLE.

is the type of the anomaly present in the signal. ECG 1
has a part with highly varying signal that prevents run-length
encoding to perform as good as it does on ECG 2 that does not
contain this kind of anomaly. emSWAB performs well on this
combination of flat and high variance signal, outperforming
RLE and matching the time needed for computation (and
MAC communication overhead) when approximating with a
merging threshold of 20. Since the signal in the ECG 2 data
set has no high variance part, run-length encoding produces an
abstraction of a smaller size. On the other hand, also emSWAB
performs better on this data set, again outperforming RLE even
for the small merging threshold.

Figure 10 shows performance figures for the Power data
set. Due to reoccurring characteristic patterns as well as lots
of noise in the signal, run-length encoding performs worse
than on clean data as it is the case for Sleep or ECG 2 data
sets. In this case emSWAB performs much better, especially
with a higher merging threshold. Filtering out the noise and
thus considerably reducing the footprint of the approximation,
emSWAB even outperforms RLE in terms of cumulative CPU
load (approximation computation plus the wireless communi-
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Fig. 10. Energest performance of raw data dissemination, run-length
encoding and emSWAB for different merging thresholds using the Power data
set. The performance of the run-length encoding technique is significantly
worse due to the high level of noise in the signal. In this case emSWAB with
a higher merging threshold shows much better performance. This indicates
that the noise is filtered out, resulting in a smaller approximation footprint.
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Fig. 11. Energest performance of raw data dissemination, run-length
encoding and emSWAB for different merging thresholds using the Space data
set. The performance figures on this signal are very similar to those of the
Power data set, again due to the signal shape. The data mostly consists of
parts where the signal slowly climbs of falls, resulting in a poor abstraction
when using the RLE approach. Approximating the signal with linear segments
(emSWAB) allows us to preserve the shape of the signal with less data.

cation overhead).

Figure 11 shows the performance figures for the Space data
set. The signal in this data set contains less noise as in the
previous one, but run-length encoding is still not performing
optimal. This is due to the underlying shape of the signal
that contains long periods of slowly climbing or falling sensor
values. emSWAB’s linear approximation does preserve this
linear shape of the signal, reducing the amount of data to be
transmitted, outperforming run-length encoding both in terms
of the footprint as well as the time needed for computation
and the communication overhead.

In this section we have in detail presented the experiments
methodology, some figures on the sensor node images and the
Energest performance figures for our emSWAB approximation
technique that we have compared to the raw data dissemination
as well as the run-length encoding methods. In the next section
we want to draw some conclusions from these results and also
indicate directions for future work.



V. CONCLUSIONS

With the experiments and the results presented in the
previous section, we can first conclude that the modification
and optimization made SWAB runnable on a microcontroller-
based sensor node. Experiments with this implementation of
emSWAB, although currently conducted in the Cooja simula-
tor, show good performance on various different data sets.

The comparison of emSWAB’s Energest performance fig-
ures to the figures of the commonly used run-length encoding
technique have shown that emSWAB can provide a good
piecewise linear approximation of the signal that preserves
its shape and - on most of the data sets used in this study
- has a smaller footprint. The abstraction’s size is especially
crucial to a wireless sensor network as it has a direct impact
on the amount of wireless communication in the network and
therefore on the battery lifetime.

Additional computation overhead that is needed to produce
the emSWAB’s approximation is balanced out by the reduced
amount of data that needs to be transmitted wirelessly through-
out the network. This way, battery power can be preserved
much better than with RLE or just transmitting raw data.

Our approach is especially targeting data with patterns
essential to the sensor network application. This, of course,
does not hold for sensor data that is similar to for instance
that in the Sleep data set, as in this case other abstractions
such as RLE perform better, both in terms of the abstraction
size as well as the CPU load. Future work can consider further
optimizations of emSWAB and possible combinations with
other abstraction techniques, depending on the signal.

Besides the on-line adaptation of the approximation tech-
nique based on the sensor data, current power consumption,
power consumption over a time span or the (estimated) re-
maining battery power can be utilized for adaptive sensor node
behavior. For our approach, the adaptive behavior would mean
that (based on the power consumption figures) the sensor node
will automatically increase or decrease the merging threshold
to allow more coarse- or fine-grained approximation of the
sensor data. Increasing the merging threshold, thus reducing
the number of approximating segments, will result in less
data to be wirelessly transmitted and thus preserve battery
power. On the other hand, if the approximation needs to be
especially fine-grained, and enough battery power is available,
the merging threshold could be reduced allowing to capture
even fine details in the signal.

Planned experiments are targeting extended sensor network
simulations with multiple sensor nodes and corresponding in-
network communication as well as real world deployments of
wireless sensor nodes with implemented emSWAB in order to
confirm the Energest power consumption estimations and to
measure the quality of the abstraction.
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