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Abstract 
 

As an example of digital augmentation of a tiny 

object, a small cube-sized die is presented that 

perceives and records what face it rolls on. It is thus 

able to detect bias and compensate for unfair 

behaviour due to its physical imperfections. On a 

deeper level, this case study demonstrates the 

integration of energy-efficient sensor fusion, and a 

wireless interface to adaptive classification heuristics.  

 

1. Introduction 
 

"The chance element in thousands of indoor games 

is introduced by a variety of simple random-number 

generators. The most popular of such devices, ever 

since the time of ancient Egypt, have been cubical 

dice." (Martin Gardner, Mathematical Magic Show). 

Which begs the question: How fair are these dice? 

Does each face appear with equal probability when it is 

tossed? And how can one find out whether particular 

dice are fair or not?  

Dice are thrown to provide uniformly distributed 

random numbers. Fair dice need to be symmetrically 

shaped and have a centre of gravity in the exact 

middle. The methodology that dice manufacturers 

apply to achieve fair dice, is based on making near-

perfect smooth and symmetrical cubes of a 

homogeneous material. However, even with these 

measures in place, no single die is perfect. 

 

2. Unfair dice 
 

Intentionally unfair dice are called "loaded" or 

"crooked" dice: they are altered to produce skewed or 

predictable results, for cheating or entertainment. Some 

have round and sharp edges and slightly-off square 

faces, others have weights added to one side.  

More sophisticated versions of the latter type 

include "tappers", which have a drop of mercury load 

in the center of the cube that is activated by tapping the 

die, and variable loaded dice, which are hollow with a 

small weight and a wax-like weight, allowing the 

cheater to change the die’s centre of gravity by 

breathing on it or holding it in hand. Inserting a magnet 

into the die and embedding a coil of wire in the game 

table is a more modern version of a variable die.  

Dice that are produced using a substandard material 

that wears down over the years, or that have been 

polished insufficiently or cheaply, also risk being or 

becoming unfair.  

Even if the dice themselves are very close to fair, 

environmental features and circumstances might still 

make the dice throw unfair: Composer Jeremiah 

Clarke, for instance, mentioned in his suicide note that 

his coin flip to pick the suicide method landed edge 

first in the mud (which he took as gunpowder) [2]. 

 

3. Fair dice 
 

This paper proposes to tackle the problem of unfair 

dice by giving them a “conscience”: they are digitally 

augmented to: (1) detect throws, (2) recognise on 

which side they landed, and (3) keep a history of their 

previous throws. After an appropriate number of 

samples are taken, our augmented die can alter its 

outcome to produce an unbiased result. This paper’s 

Figure 1. A cube does all sensing and processing 

internally, and then reports the results wirelessly. 
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die transmits its result via a wireless link to a screen. In 

a more advanced version, this could mean that the cube 

could adjust an internal weight just like the variable 

loaded dice, so that no external components are 

required to display results.  

Before covering the application of an augmented 

die, we start with how ideal dice should behave.  

 

4. Probabilities  
 

“Dice represent an intriguing example of the 

interplay between randomness, chance, and physical 

law.” (Ivars Peterson's MathTrek [3]). 

Ideally, a die should give a fair chance to any of its 

six sides: the probability of any side landing on a 

particular face should equal to 1/6. This is for a single 

die, or a single roll, though. For a double roll, the total 

of both rolls is distributed in a triangular curve, for 

three rolls and more, the distribution looks more like 

the bell-shaped normal distribution (as dictated by the 

central limit theorem). Figure 2 shows the distributions 

for an increasing number of dice being rolled. 

The objective of this paper is to build a filter on top 

of our physically imperfect, and therefore unfair, dice. 

The filter is built in a microcontroller inside the cube, 

and will monitor the result of the dice rolls, and adjust 

them if unfair results are noticed. Or in other words: if 

the behaviour of the die deviates from the expected 

behaviour of a fair die, its results will be adjusted. The 

expected behaviour of rolling dice is illustrated in a 

nutshell in Figure 2; for 1 die it is simply a uniform 

distribution, for multiple dice, the combined outcome 

should look more and more like a normal distribution. 

 

 

Figure 2. The distributions for the sums of i rolled 
dice, with i from 1 to 4. Rolling multiple fair dice 
result in more likely ‘middle’ values: the chance of 
rolling 14 with 4 dice is 0.2207 for instance. 

 

Cristie et al [1] introduced a few parameters to 

evaluate fairness in dice. Bias is defined as:  

b(j) = n p(j) – 1, 

for which fair dice have zero bias on all sides. For 

instance, if a six sided die was so heavily loaded that 

the six came up half the time (instead of 1/6 of the 

time) we would say that b(6) = 2. 

For dice which have six rectangular faces, the 

lengths of the sides (defined as d1:6, d2:5 and d3:4) 

should be equal. The flatness of one of these sides, for 

example the d1:6 side, is defined as: 

f1:6 = 
(d2:5 + d3:4 - 2 d1:6)

/(d2:5 + d3:4) 

If a 20x20x20mm die has 2 mm sawed off the "1" face, 

then the resulting die has a flatness of f1:6 = 0.1. 

Loading is defined as adding mass to one face so as 

to move the centre of mass away from the geometric 

centre. An example is drilling a hole in the "2" face, 

which brings the centre of mass closer to the "5" face. 

If CM(j) is the true location of centre of mass towards 

face j, and d the length of all sides, then the loading of 

side j is: 

L(j) = 2 CM(j) / d 

L(j) is defined so that L(j)=0 for fair dice and L(j)=1 

for the limiting case where the centre of mass is shifted 

all the way to the j face. 

 

5. Implementation 
 

We implemented the fair die on a lightweight 

wireless sensor node, embedded in a transparent plastic 

casing (see Figure 1) and molded in epoxy (Figure X). 

The main module of the hardware consists of a BSN 

node [5], an embedded sensor platform that was 

developed at Imperial College London for research into 

body sensor networks, and programmed with 

Berkeley’s TinyOS. A motion- and tilt-specific sensor 

module, called the Porcupine, delivers the sensing, 

while a minimised battery board holds a 3 Volts coin 

cell for power. Figure 3 shows a close-up of all three 

board, stack-connected to each other. 

The BSN nodes’ main responsibility is the 

communication of results and the operation of the dice 

as nodes in a network. For the proposed application, 

this means the broadcasting of the roll’s outcome, and 

the interface for initial training (discussed later in 

section 7). The BSN features an 8MIPS Texas 

Instruments MSP430 ultra low power processor, with a 

Zigbee ready RF link (Chipcon CC242, 2.4GHz, 

250kbps, with hardware MAC encryption, range 50m), 

and 512Kbytes of EEPROM storage memory. 

 



 

Figure 3. A close-up of the three boards stack-

connected to each other. The top (“Porcupine”) 

does the sensing, the middle board (BSN node) 

the communication, the bottom holds the battery. 

 

 
Figure 4. An illustration of the 8 states of tilt that 

the combination of 4 switches can detect in one 

plane. Although the tilt switches are bigger and 

produce less accurate and robust output, they 

require far less resources than accelerometers. 
 

The Porcupine is a low-power tilt- and motion- 

sensing board that fuses data from tilt switches and 

accelerometers, and is able to power down some of its 

components when they are not necessary. It has a 

Microchip PIC 16F628A “nanoWatt” microcontroller, 

9 ball switches, and 1 Analog Devices ADXL202JE 

accelerometer module. Although its size is larger than 

similar sensor boards, its main advantage is that it does 

its task using a minimal amount of energy. 

 

6. Recognition of rolls and faces 
 

In a previous paper, we used a set of accelerometers 

in three axes to obtain a cube’s tilt and motion relative 

to gravity [4]. The cube did the processing of sensor 

data locally, and sent out a message over radio only 

when its state had changed (for example, if it was 

turned to another side).  

One of the major obstacles with this first prototype 

was the power consumption: even with the radio 

sending the messages only occasionally, the rest of the 

hardware consumed quite a bit of energy. The 

processing of streaming sensor data went on 

continuously, meaning that energy was spent even if 

the cube was not used for long periods. Experiments 

showed that inducing a sleep mode on the 

microcontroller at detection of stationary sensor signals 

would result in a far less responsive system. In a best-

case scenario, this system would typically last a few 

months on 2 AAA batteries, but a lot shorter on 

smaller coin-cell batteries. 

The sensor module of the prototype presented in 

this paper, called ‘Porcupine’, is a lot more complex 

than the one of the previous cube prototype; it contains 

only one dual-axis accelerometer, but 9 tilt switches 

that combined give a crude sense of tilt. 

 

 

6.1. Robust and cheap tilt information 
 

Figure 4 shows how the combined data from 4 

switches results in a sense of orientation in one plane. 

Only 5 additional switches are necessary for the other 

two perpendicular planes.  

The use of the tilt switches has two advantages: 

• Energy consumption: They require less power: 

with the heavy pull-up resistors, they draw only 

a few microAmperes, compared to a few 

hundred microAmperes for the accelerometer. 

• Processing: Their output is binary, and thus 

easier and faster to process, especially when 

combining multiple switches. The 

microcontroller also doesn't need to run at a 

fast speed for reading the switches' states or 

doing analysis.  

The microcontroller is able to run at a low speed of 

48KHz, and still sampling the tilt switches around 

400Hz (including processing). Power consumption of 

the whole module is in this mode is a low 140 

microAmperes. 

 The mechanical nature of tilt switches introduces 

several problems, however, that result in occasional 

errors. Since classifiers on the tilt switch data rely on 

hamming distance, only one failing switch can easily 

result in misclassification.  

 From the analysis of several recorded datasets, 

where the die was placed on each of its 6 faces (see 

Figure 5), a few conclusions are made:  



 

 
Figure 5. One of the datasets, with sensor 

samples from the 2 accelerometers (top plots) 

and the 9 tilt switches (scaled with off-set in the 

bottom part), per face. 
 

The tilt switches’ data for each face recorded only 

between 4 and 11 sets of unique vectors. This favours 

lazy classifiers that just store the switches’ prototype 

vectors per face and match new data with these 

prototypes to estimate the current face (i.e., the current 

top-side of the die). Only a few duplicates of these 

prototype vectors were found between faces. 

The accelerometer data is very similar for faces 1 

and 3; and any recognition algorithm is expected to 

perform poorly for those. This follows from the fact 

that only two axes are covered. This is not critical, 

however, since the switches’ data is still very different 

between faces 1 and 3. 

The combination of less reliable tilt switch data and 

accurate but resource-intensive acceleration data 

therefore results in a sensor module that produces 

enough information to distinguish the faces of a die 

reliably, at an acceptable cost (in processing and 

energy consumption). 

 

6.2. Estimating faces 
 

By default, the ‘Porcupine’ sensing module will 

send the tilt information from the switches, and the last 

accelerometer information. The latter is not necessarily 

recent, as the accelerometer is switched off and the 

module reverts into a low-power mode if there are no 

fluctuations detected in the sensor signals. As soon as 

the die is moved (for instance when it is picked up, or 

when it is rolled), the accelerometers are powered up 

and accelerometer data are analysed at a higher 

processing speed.  

For estimating which of the 6 faces is pointing 

upwards, two algorithms are embedded into the die; 

one for tilt switch data, and one for accelerometer data. 

Distance-weighted k nearest neighbours is used for 

the tilt switches. Experiments have shown that if k is 

given a high value of 20, recognition rates are reached 

around 94.9% for all datasets. Using a minimum 

distance classifier (with the hamming distance, as all 

vectors have binary components), recognition 

performance was slightly less (93.5%).  

As in a previous version of the cube [4], 

multivariate Gaussians were used to model 

accelerometer data per face. The parameters for the 

model (mean and covariance matrix) are taken from 

training samples, and estimation of the current face is 

done by finding the model that is maximised for new 

inputs.  

Figure 6 shows six trained Gaussian models for the 

six faces; Figure 7 shows the classification 

performances over a test dataset with accompanying 

confidence matrices. The results show that overall the 

performance is very stable for the accelerometer data 

(multivariate Gaussians), unless the face is 1 or 3. The 

data from the tilt switches perform better overall, but is 

less robust as there are a few errors in the classification 

for almost every face.  

 
Figure 6. Plots of the multivariate Gaussian 

models for each of the die!s six faces. The left plot 

shows combined surfaces, the right plot marks the 

decision areas. Note 1 and 3!s overlap. 

 

 
Figure 7. The classification performances over a 

test dataset with accompanying confidence 

matrices for (top to bottom): minimum distance, 

distance-weighted K nearest neighbours, and 

multivariate Gaussians.  



7. Adjusting the behaviour of the dice 
 

One of the key features of our dice is that they are 

arbitrarily re-trainable, which allows us to embed the 

hardware in other types of dice (with a different 

number of faces, for example). Training is done via a 

wireless node that can communicate with the BSN 

node inside the dice (typically another BSN node, 

Figure 1 shows both). 

The wireless node can be attached via USB to a 

phone, PDA or computer as a base station, and this 

node can be accessed via RS232. The training of a face 

consists of sending a number over to the base station, 

which in turn sends it wirelessly to the dice.  

When dice classify their sensor data as a different 

face than previously recognised, a wireless packet is 

broadcast to any base station in the area, specifying: 

• most likely class, estimated by the switch data 

via a KNN classifier 

• confidence value, returned by the switch data 

via a KNN classifier 

• most likely class, estimated by accelerometer 

data via Gaussian models 

• confidence value, returned by accelerometer 

data via Gaussian models 

• the combined most likely class 

Additional information can be queried from the 

dice by sending special commands, such as raw sensor 

data requests or internal parameters. Any application 

can thus access this data via the base station. It is 

important to stress though, that this is a mere interface 

to the dice, which are themselves responsible for 

sensing and calculating everything.  

The source code (in NESC) for the wireless nodes 

is the same for the BSN nodes acting as base stations, 

and the BSN nodes inside the dice. When a Porcupine 

sensor board is connected to the BSN node, its internal 

mode switches from base station (acting as an interface 

between dice and a computer) to die (reading 

Porcupine data, classifying the data, and logging the 

die’s behaviour). It is also possible to (re-)program the 

BSN nodes wirelessly inside the dice. 

  

8. Physical properties of dice 
 

The first version of the augmented die was a 

transparent plastic case, encapsulating the hardware in 

a near-perfect cube. It became quickly apparent 

though, that this configuration is not ideal to use in 

regular board games. This case is prone to cracks when 

tossed, and – being hollow apart from the wireless 

sensing node inside – it rolls very irregularly and has 

the tendency to slide on the surface. 

 

Figure 8. The hardware encapsulated in a 

epoxide polymer, which makes the cube!s weight 

more distributed, heavier, more homogeneous, 

and more similar to the dice that people are 

familiar with in board games. 

 

The current version uses the same hardware, but 

one that was submerged in a mix of epoxy resin and 

hardener, and molded in a cubic shape. Figure 8 shows 

the original hardware boards, and the two halves that 

make up a heavier, and more robust cubic die, in which 

the hardware is permanently fixed. The weight and 

durability of this cube facilitates using it as a die in 

usability tests. 

This epoxy polymer version is molded in two halves 

that connect to each other (as seen in Figure 8, top-

right: one of the two halves): one has the Porcupine 

sensor board embedded into it, the other contains the 

battery and BSN node. The microcontrollers on both 

boards are still re-programmable, and the battery (a 3V 

CR2032 coin cell battery of 220 milliAmperes) can be 

replaced through a slit in one of the sides.    

  

9. Initial experiment 
 

As a first short evaluation of our design, and as a 

test of the reliability of the cube as an augmented die, it 

was tossed 120 times, as a die in a board game would 

be tossed. This included trying to ignore the fact that 

delicate electronics are embedded inside, and trying to 

let the die roll as much as possible. 

Figure 9 shows the die that was rolled in the 

experiment, with its sides labelled to enable cross-

comparison of the output according to the die, and the 

actual outcome of the roll. After each roll, the 

evaluator marked the face which the die landed on, 

which was concatenated after the classification output 

from the die itself, forming one row in a recorded log 

that was kept for the duration of the experiment. 



 

Figure 9. Labels were attached to the cube in the 

experiment to allow cross-checking between the 

real outcome (“face 2” in this case) and the one 

classified by the die. 

 

 

Figure 10. Logged probabilities over 120 trials of 

tossing the die. The outcome of all 120 tosses 

was correctly recognized by the sensor node 

embedded in the die. 

 

The log of all outcomes is also kept in the die itself, 

so it can calculate its own bias, too. The labels were 

put on the die in a "clockwise die" arrangement, 

meaning the faces 1, 2, and 3 are organised from one 

side in a clockwise manner. The sum of opposite faces 

is, like in most dice, always seven. 

The results (times a face was rolled for 1, 2, 3, 4, 5, 

and 6) are stored in the 6-dimensional vector:  

[21 14 16 24 21 24], 

which gives the following probabilities per face (1 

to 6):  

P(1:6) = [0.1750 0.1167 0.1333 0.2000 0.1750 0.2000] 

Although the experiment is statistically very small 

in size (to evaluate whether the die is biased, many 

more rolls are required), it is promising that the 

outcomes estimated by the die were 100% correctly 

recognised.  

10. Conclusions and future work 
 

This paper is concerned with the design of an 

autonomous cube that detects when it is tossed, and 

that is able to sense the side on which it has landed, 

without requiring external components. This ‘smart’ 

die is completely re-trainable over wireless 

communications, and was kept as compact (30mm
3
) 

and robust as possible. It is able to retain a history of 

its past rolls, thus allowing it to find its own bias (i.e., 

how fair it is). 

Further research has already commenced, and will 

include evaluation and improvement on the recognition 

of ‘fair’ rolls (i.e., a die toss which lets the die roll 

several times), the combining of several dice, and the 

altering by the die of its own behaviour after finding 

out its own bias. More extensive evaluations are 

planned to use this type of dice in real-world situations 

such as indoor board games. 
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