
Fair Dice: A Tilt and Motion-Aware Cube with a Conscience

Kristof Van Laerhoven and Hans-Werner Gellersen

Lancaster University

{kristof, hwg}@comp.lancs.ac.uk

Abstract

As an example of digital augmentation of a tiny

object, a small cube-sized die is presented that

perceives and records what face it rolls on. It is thus

able to detect bias and compensate for unfair

behaviour due to its physical imperfections. On a

deeper level, this case study demonstrates the

integration of energy-efficient sensor fusion, and a

wireless interface to adaptive classification heuristics.

1. Introduction

"The chance element in thousands of indoor games

is introduced by a variety of simple random-number

generators. The most popular of such devices, ever

since the time of ancient Egypt, have been cubical

dice." (Martin Gardner, Mathematical Magic Show).

Which begs the question: How fair are these dice?

Does each face appear with equal probability when it is

tossed? And how can one find out whether particular

dice are fair or not?

Dice are thrown to provide uniformly distributed

random numbers. Fair dice need to be symmetrically

shaped and have a centre of gravity in the exact

middle. The methodology that dice manufacturers

apply to achieve fair dice, is based on making near-

perfect smooth and symmetrical cubes of a

homogeneous material. However, even with these

measures in place, no single die is perfect.

2. Unfair dice

Intentionally unfair dice are called "loaded" or

"crooked" dice: they are altered to produce skewed or

predictable results, for cheating or entertainment. Some

have round and sharp edges and slightly-off square

faces, others have weights added to one side.

More sophisticated versions of the latter type

include "tappers", which have a drop of mercury load

in the center of the cube that is activated by tapping the

die, and variable loaded dice, which are hollow with a

small weight and a wax-like weight, allowing the

cheater to change the die’s centre of gravity by

breathing on it or holding it in hand. Inserting a magnet

into the die and embedding a coil of wire in the game

table is a more modern version of a variable die.

Dice that are produced using a substandard material

that wears down over the years, or that have been

polished insufficiently or cheaply, also risk being or

becoming unfair.

Even if the dice themselves are very close to fair,

environmental features and circumstances might still

make the dice throw unfair: Composer Jeremiah

Clarke, for instance, mentioned in his suicide note that

his coin flip to pick the suicide method landed edge

first in the mud (which he took as gunpowder) [2].

3. Fair dice

This paper proposes to tackle the problem of unfair

dice by giving them a “conscience”: they are digitally

augmented to: (1) detect throws, (2) recognise on

which side they landed, and (3) keep a history of their

previous throws. After an appropriate number of

samples are taken, our augmented die can alter its

outcome to produce an unbiased result. This paper’s

Figure 1. A cube does all sensing and processing

internally, and then reports the results wirelessly.

5!

P(5) =

!

11
60

die transmits its result via a wireless link to a screen. In

a more advanced version, this could mean that the cube

could adjust an internal weight just like the variable

loaded dice, so that no external components are

required to display results.

Before covering the application of an augmented

die, we start with how ideal dice should behave.

4. Probabilities

“Dice represent an intriguing example of the

interplay between randomness, chance, and physical

law.” (Ivars Peterson's MathTrek [3]).

Ideally, a die should give a fair chance to any of its

six sides: the probability of any side landing on a

particular face should equal to 1/6. This is for a single

die, or a single roll, though. For a double roll, the total

of both rolls is distributed in a triangular curve, for

three rolls and more, the distribution looks more like

the bell-shaped normal distribution (as dictated by the

central limit theorem). Figure 2 shows the distributions

for an increasing number of dice being rolled.

The objective of this paper is to build a filter on top

of our physically imperfect, and therefore unfair, dice.

The filter is built in a microcontroller inside the cube,

and will monitor the result of the dice rolls, and adjust

them if unfair results are noticed. Or in other words: if

the behaviour of the die deviates from the expected

behaviour of a fair die, its results will be adjusted. The

expected behaviour of rolling dice is illustrated in a

nutshell in Figure 2; for 1 die it is simply a uniform

distribution, for multiple dice, the combined outcome

should look more and more like a normal distribution.

Figure 2. The distributions for the sums of i rolled
dice, with i from 1 to 4. Rolling multiple fair dice
result in more likely ‘middle’ values: the chance of
rolling 14 with 4 dice is 0.2207 for instance.

Cristie et al [1] introduced a few parameters to

evaluate fairness in dice. Bias is defined as:

b(j) = n p(j) – 1,

for which fair dice have zero bias on all sides. For

instance, if a six sided die was so heavily loaded that

the six came up half the time (instead of 1/6 of the

time) we would say that b(6) = 2.

For dice which have six rectangular faces, the

lengths of the sides (defined as d1:6, d2:5 and d3:4)

should be equal. The flatness of one of these sides, for

example the d1:6 side, is defined as:

f1:6 =
(d2:5 + d3:4 - 2 d1:6)

/(d2:5 + d3:4)

If a 20x20x20mm die has 2 mm sawed off the "1" face,

then the resulting die has a flatness of f1:6 = 0.1.

Loading is defined as adding mass to one face so as

to move the centre of mass away from the geometric

centre. An example is drilling a hole in the "2" face,

which brings the centre of mass closer to the "5" face.

If CM(j) is the true location of centre of mass towards

face j, and d the length of all sides, then the loading of

side j is:

L(j) = 2 CM(j) / d

L(j) is defined so that L(j)=0 for fair dice and L(j)=1

for the limiting case where the centre of mass is shifted

all the way to the j face.

5. Implementation

We implemented the fair die on a lightweight

wireless sensor node, embedded in a transparent plastic

casing (see Figure 1) and molded in epoxy (Figure X).

The main module of the hardware consists of a BSN

node [5], an embedded sensor platform that was

developed at Imperial College London for research into

body sensor networks, and programmed with

Berkeley’s TinyOS. A motion- and tilt-specific sensor

module, called the Porcupine, delivers the sensing,

while a minimised battery board holds a 3 Volts coin

cell for power. Figure 3 shows a close-up of all three

board, stack-connected to each other.

The BSN nodes’ main responsibility is the

communication of results and the operation of the dice

as nodes in a network. For the proposed application,

this means the broadcasting of the roll’s outcome, and

the interface for initial training (discussed later in

section 7). The BSN features an 8MIPS Texas

Instruments MSP430 ultra low power processor, with a

Zigbee ready RF link (Chipcon CC242, 2.4GHz,

250kbps, with hardware MAC encryption, range 50m),

and 512Kbytes of EEPROM storage memory.

Figure 3. A close-up of the three boards stack-

connected to each other. The top (“Porcupine”)

does the sensing, the middle board (BSN node)

the communication, the bottom holds the battery.

Figure 4. An illustration of the 8 states of tilt that

the combination of 4 switches can detect in one

plane. Although the tilt switches are bigger and

produce less accurate and robust output, they

require far less resources than accelerometers.

The Porcupine is a low-power tilt- and motion-

sensing board that fuses data from tilt switches and

accelerometers, and is able to power down some of its

components when they are not necessary. It has a

Microchip PIC 16F628A “nanoWatt” microcontroller,

9 ball switches, and 1 Analog Devices ADXL202JE

accelerometer module. Although its size is larger than

similar sensor boards, its main advantage is that it does

its task using a minimal amount of energy.

6. Recognition of rolls and faces

In a previous paper, we used a set of accelerometers

in three axes to obtain a cube’s tilt and motion relative

to gravity [4]. The cube did the processing of sensor

data locally, and sent out a message over radio only

when its state had changed (for example, if it was

turned to another side).

One of the major obstacles with this first prototype

was the power consumption: even with the radio

sending the messages only occasionally, the rest of the

hardware consumed quite a bit of energy. The

processing of streaming sensor data went on

continuously, meaning that energy was spent even if

the cube was not used for long periods. Experiments

showed that inducing a sleep mode on the

microcontroller at detection of stationary sensor signals

would result in a far less responsive system. In a best-

case scenario, this system would typically last a few

months on 2 AAA batteries, but a lot shorter on

smaller coin-cell batteries.

The sensor module of the prototype presented in

this paper, called ‘Porcupine’, is a lot more complex

than the one of the previous cube prototype; it contains

only one dual-axis accelerometer, but 9 tilt switches

that combined give a crude sense of tilt.

6.1. Robust and cheap tilt information

Figure 4 shows how the combined data from 4

switches results in a sense of orientation in one plane.

Only 5 additional switches are necessary for the other

two perpendicular planes.

The use of the tilt switches has two advantages:

• Energy consumption: They require less power:

with the heavy pull-up resistors, they draw only

a few microAmperes, compared to a few

hundred microAmperes for the accelerometer.

• Processing: Their output is binary, and thus

easier and faster to process, especially when

combining multiple switches. The

microcontroller also doesn't need to run at a

fast speed for reading the switches' states or

doing analysis.

The microcontroller is able to run at a low speed of

48KHz, and still sampling the tilt switches around

400Hz (including processing). Power consumption of

the whole module is in this mode is a low 140

microAmperes.

 The mechanical nature of tilt switches introduces

several problems, however, that result in occasional

errors. Since classifiers on the tilt switch data rely on

hamming distance, only one failing switch can easily

result in misclassification.

 From the analysis of several recorded datasets,

where the die was placed on each of its 6 faces (see

Figure 5), a few conclusions are made:

Figure 5. One of the datasets, with sensor

samples from the 2 accelerometers (top plots)

and the 9 tilt switches (scaled with off-set in the

bottom part), per face.

The tilt switches’ data for each face recorded only

between 4 and 11 sets of unique vectors. This favours

lazy classifiers that just store the switches’ prototype

vectors per face and match new data with these

prototypes to estimate the current face (i.e., the current

top-side of the die). Only a few duplicates of these

prototype vectors were found between faces.

The accelerometer data is very similar for faces 1

and 3; and any recognition algorithm is expected to

perform poorly for those. This follows from the fact

that only two axes are covered. This is not critical,

however, since the switches’ data is still very different

between faces 1 and 3.

The combination of less reliable tilt switch data and

accurate but resource-intensive acceleration data

therefore results in a sensor module that produces

enough information to distinguish the faces of a die

reliably, at an acceptable cost (in processing and

energy consumption).

6.2. Estimating faces

By default, the ‘Porcupine’ sensing module will

send the tilt information from the switches, and the last

accelerometer information. The latter is not necessarily

recent, as the accelerometer is switched off and the

module reverts into a low-power mode if there are no

fluctuations detected in the sensor signals. As soon as

the die is moved (for instance when it is picked up, or

when it is rolled), the accelerometers are powered up

and accelerometer data are analysed at a higher

processing speed.

For estimating which of the 6 faces is pointing

upwards, two algorithms are embedded into the die;

one for tilt switch data, and one for accelerometer data.

Distance-weighted k nearest neighbours is used for

the tilt switches. Experiments have shown that if k is

given a high value of 20, recognition rates are reached

around 94.9% for all datasets. Using a minimum

distance classifier (with the hamming distance, as all

vectors have binary components), recognition

performance was slightly less (93.5%).

As in a previous version of the cube [4],

multivariate Gaussians were used to model

accelerometer data per face. The parameters for the

model (mean and covariance matrix) are taken from

training samples, and estimation of the current face is

done by finding the model that is maximised for new

inputs.

Figure 6 shows six trained Gaussian models for the

six faces; Figure 7 shows the classification

performances over a test dataset with accompanying

confidence matrices. The results show that overall the

performance is very stable for the accelerometer data

(multivariate Gaussians), unless the face is 1 or 3. The

data from the tilt switches perform better overall, but is

less robust as there are a few errors in the classification

for almost every face.

Figure 6. Plots of the multivariate Gaussian

models for each of the die!s six faces. The left plot

shows combined surfaces, the right plot marks the

decision areas. Note 1 and 3!s overlap.

Figure 7. The classification performances over a

test dataset with accompanying confidence

matrices for (top to bottom): minimum distance,

distance-weighted K nearest neighbours, and

multivariate Gaussians.

7. Adjusting the behaviour of the dice

One of the key features of our dice is that they are

arbitrarily re-trainable, which allows us to embed the

hardware in other types of dice (with a different

number of faces, for example). Training is done via a

wireless node that can communicate with the BSN

node inside the dice (typically another BSN node,

Figure 1 shows both).

The wireless node can be attached via USB to a

phone, PDA or computer as a base station, and this

node can be accessed via RS232. The training of a face

consists of sending a number over to the base station,

which in turn sends it wirelessly to the dice.

When dice classify their sensor data as a different

face than previously recognised, a wireless packet is

broadcast to any base station in the area, specifying:

• most likely class, estimated by the switch data

via a KNN classifier

• confidence value, returned by the switch data

via a KNN classifier

• most likely class, estimated by accelerometer

data via Gaussian models

• confidence value, returned by accelerometer

data via Gaussian models

• the combined most likely class

Additional information can be queried from the

dice by sending special commands, such as raw sensor

data requests or internal parameters. Any application

can thus access this data via the base station. It is

important to stress though, that this is a mere interface

to the dice, which are themselves responsible for

sensing and calculating everything.

The source code (in NESC) for the wireless nodes

is the same for the BSN nodes acting as base stations,

and the BSN nodes inside the dice. When a Porcupine

sensor board is connected to the BSN node, its internal

mode switches from base station (acting as an interface

between dice and a computer) to die (reading

Porcupine data, classifying the data, and logging the

die’s behaviour). It is also possible to (re-)program the

BSN nodes wirelessly inside the dice.

8. Physical properties of dice

The first version of the augmented die was a

transparent plastic case, encapsulating the hardware in

a near-perfect cube. It became quickly apparent

though, that this configuration is not ideal to use in

regular board games. This case is prone to cracks when

tossed, and – being hollow apart from the wireless

sensing node inside – it rolls very irregularly and has

the tendency to slide on the surface.

Figure 8. The hardware encapsulated in a

epoxide polymer, which makes the cube!s weight

more distributed, heavier, more homogeneous,

and more similar to the dice that people are

familiar with in board games.

The current version uses the same hardware, but

one that was submerged in a mix of epoxy resin and

hardener, and molded in a cubic shape. Figure 8 shows

the original hardware boards, and the two halves that

make up a heavier, and more robust cubic die, in which

the hardware is permanently fixed. The weight and

durability of this cube facilitates using it as a die in

usability tests.

This epoxy polymer version is molded in two halves

that connect to each other (as seen in Figure 8, top-

right: one of the two halves): one has the Porcupine

sensor board embedded into it, the other contains the

battery and BSN node. The microcontrollers on both

boards are still re-programmable, and the battery (a 3V

CR2032 coin cell battery of 220 milliAmperes) can be

replaced through a slit in one of the sides.

9. Initial experiment

As a first short evaluation of our design, and as a

test of the reliability of the cube as an augmented die, it

was tossed 120 times, as a die in a board game would

be tossed. This included trying to ignore the fact that

delicate electronics are embedded inside, and trying to

let the die roll as much as possible.

Figure 9 shows the die that was rolled in the

experiment, with its sides labelled to enable cross-

comparison of the output according to the die, and the

actual outcome of the roll. After each roll, the

evaluator marked the face which the die landed on,

which was concatenated after the classification output

from the die itself, forming one row in a recorded log

that was kept for the duration of the experiment.

Figure 9. Labels were attached to the cube in the

experiment to allow cross-checking between the

real outcome (“face 2” in this case) and the one

classified by the die.

Figure 10. Logged probabilities over 120 trials of

tossing the die. The outcome of all 120 tosses

was correctly recognized by the sensor node

embedded in the die.

The log of all outcomes is also kept in the die itself,

so it can calculate its own bias, too. The labels were

put on the die in a "clockwise die" arrangement,

meaning the faces 1, 2, and 3 are organised from one

side in a clockwise manner. The sum of opposite faces

is, like in most dice, always seven.

The results (times a face was rolled for 1, 2, 3, 4, 5,

and 6) are stored in the 6-dimensional vector:

[21 14 16 24 21 24],

which gives the following probabilities per face (1

to 6):

P(1:6) = [0.1750 0.1167 0.1333 0.2000 0.1750 0.2000]

Although the experiment is statistically very small

in size (to evaluate whether the die is biased, many

more rolls are required), it is promising that the

outcomes estimated by the die were 100% correctly

recognised.

10. Conclusions and future work

This paper is concerned with the design of an

autonomous cube that detects when it is tossed, and

that is able to sense the side on which it has landed,

without requiring external components. This ‘smart’

die is completely re-trainable over wireless

communications, and was kept as compact (30mm
3
)

and robust as possible. It is able to retain a history of

its past rolls, thus allowing it to find its own bias (i.e.,

how fair it is).

Further research has already commenced, and will

include evaluation and improvement on the recognition

of ‘fair’ rolls (i.e., a die toss which lets the die roll

several times), the combining of several dice, and the

altering by the die of its own behaviour after finding

out its own bias. More extensive evaluations are

planned to use this type of dice in real-world situations

such as indoor board games.

11. Acknowledgements

The research in this paper was partially funded by

CommonSense (EPSRC, UK), and UbiMon (DTI,

UK). We would like to thank especially our UbiMon

partners at Imperial College, London, for making their

BSN platform available for this research.

12. References

[1] Christie, D., Glasheen, R., Hamilton, C., Imoto, M.,

Matthews, P., Moffat, J., Monajemi, T., Murray, D. B.,

Nelson, J., and Sturm, A., “Experimentally obtained statistics

of dice rolls”, poster at the 6th Experimental Chaos

Conference, July 22-26, 2001, Potsdam, Germany.

[2] Pegg, E. Jr., “Math Games: Fair Dice”, The Mathematical

Association of America, May 16, 2005. http://www.

maa.org/editorial/mathgames/mathgames_05_16_05.html

[3] Peterson, I., “MathTrek: Unfair Dice” The Mathematical

Association of America, October 26, 1998.

http://www.maa.org/mathland/mathtrek_10_26_98.html

[4] Van Laerhoven, K., Villar, N., Schmidt, A., Kortuem, G.,

and Gellersen, H.-W.. "Using an Autonomous Cube for Basic

Navigation and Input". In Proceedings of ICMI/PUI 2003.

ISBN: 1-58113-621-8; ACM Press. Vancouver, Canada.

2003, pp. 203-211.

[5] Lo, B. and Yang, G. Z., "Key Technical Challenges and

Current Implementations of Body Sensor Networks", IEE

Proceedings of the 2nd International Workshop on Body

Sensor Networks (BSN 2005), pp. 1-5, April 2005.

