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Abstract 
 

This paper seeks to explore an alternative and more 

embedded-oriented approach to the recognition of a 

person’s motion and pose, using sensor types that can 

easily be distributed in clothing. A large proportion of 

this type of research so far has been carried out with 

carefully positioned accelerometers, resulting in fairly 

good recognition rates. An alternative approach targets 

a more pervasive sensing vision where the clothing is 

saturated with small, embedded sensors. By increasing 

the quantity of sensors, while decreasing their individual 

information quality, a preliminary comparative study 

between the two approaches looks at the pros, cons, and 

differences in algorithm requirements. 

1. Introduction 

The most popular approach for determining a person’s 

posture, motions, and activity is to use external tracking 

methods that employ cameras, RF beacons, or similar 

sensors that monitor the body [14] or markers on the 

body [1]. This method is fairly precise, but also most 

demanding in terms of setting up the infrastructure, 

maintaining the hardware and algorithm complexity. 

 

This has especially consequences for the cost and the 

applicability of such systems: motion capture and 

tracking platforms are rarely used beyond CAD 

animation or medical purposes, where precision and 

absolute position is required. Despite a large interest in 

tracking people and their activities through distributed 

sensors, the complexity and reliance on fixed sensors in 

the environment makes it fairly impractical for daily use. 

 

Nomadic, body worn systems have, in reaction, 

extensively been researched and argued for in the last 

decade [7][16]. Having a wearable-only monitoring 

system that recognizes and records a wearer’s daily 

activities is of substantial value: for instance cross-

checking activity patterns versus ECG readings from 

implanted sensors for wearable monitoring of heart 

patients [19], automatic creation of diaries listing what 

the person was doing when and for how long [16], or 

activity-driven temperature regulation for ‘smart’ 

clothing [10]. In general, activity is a valuable 

component in context aware systems. 

 

From early research prototypes, strapped accelerometers 

have been used to monitor the motion and orientation of 

‘points of interest’ on the body and to correlate this to 

activities. Only recently, ‘smart textiles’-focused research 

in wearable computing (e.g., [20]) has offered an 

alternative vision featuring miniature sensors that are 

distributed and integrated in clothing, using weaving 

structure or the very fibers in the textile as sensors. 

 

This paper argues that embedding and distributing 

sensors in clothing could be more practical than using 

strapped-on sensors, and assumes that scores of sensors 

providing simply binary information could be 

incorporated and interfaced in clothing. We aim to 

investigate how the data from such binary, but highly 

distributed sensors would perform in an activity 

recognition scenario. 

2. A Comparison in Hardware 

The two sensor types that were used in this study are 

accelerometers (or acceleration sensors) and ball switches 

(a.k.a. tilt switches). This section introduces both, and 

compares the requirements and consequences of choosing 

either sensor as far as the cost in hardware resources is 

concerned.  

2.1. The Accelerometer  

Aside from automotive applications (e.g., shock and 

impact detection for airbag deployment), accelerometers 

can be found in portable and wearable input devices, as 

well as in a large proportion of wearable sensing 

research. This sensor can be thought of as a ball that is 

attached to two springs on opposite sides, and which is 

placed in a cylinder to limit its movement in two 



directions, as depicted in Figure 1a. The output of the 

accelerometer is in this metaphor the ball’s position 

within the cylinder: shaking the cylinder to the left and 

right will move the ball’s position, but tilting it will do so 

as well (to a lesser extent). These two effects are referred 

to as dynamic and static acceleration respectively.   

2.2. The Ball Switch  

The ball switch or tilt switch has historically been 

popular in pinball and arcade machines as a simple way 

to prevent players from cheating; the sensor contains a 

conductive roller ball that closes a switch inside a hollow 

cylinder when the machine is tilted over a certain 

threshold (see Figure 1b). The information that this 

binary sensor provides in terms of orientation and motion 

is very minimal, but combining several ball switches may 

boost this sensor’s output. Many variations on this type of 

sensor exist, using gas, mercury or having a slightly 

different switch mechanism (e.g., a mechanical ‘toggle’). 

 

 

2.3. Specific Implementations and Comparison  

The scope of this paper is not wide enough to perform an 

absolute assessment into various types of accelerometers 

and binary tilt sensors. Instead, we offer two prototype 

sensor-platforms that should be sufficiently characteristic 

to indicate where the two correspond and differ. 

2.3.1. Accelerometers: The Spine 

The Spine is a progression of a 30-accelerometer outfit 

constructed earlier [17], and uses the same sensor 

modules. The new PIC microcontroller (an 18F452 from 

Microchip) is pin-compatible with the previous 16F877, 

but operates at twice the clock speed (40Mhz) and has 

more memory. The number of sensors has been reduced 

to 20 to allow a faster and more reliable throughput of 

sensor data. The 2D acceleration sensors (ADXL202JE 

from Analog Devices) are placed at approximately 10 cm 

distances from each other, making a total length of the 

spine around one meter, sufficient to strap to an average 

arm or leg. The core unit is able to read all accelerometer 

values at least 50 times per second via the serial port, 

which should be more than enough for our purposes; 

higher speeds can be obtained by changing the serial 

output modus (i.e., in binary) or the individual 

accelerometers. The origin of the name should become 

obvious looking at the two spines in Figure 2 below. 

 

 
Figure 2. Two Spines with their main units open to reveal 

battery and processing board, straps in the background.  

2.3.2. Ball Switches: The Porcupine 

The ball switch is mainly used independently to reveal 

whether the object it is attached to is tilted over a certain 

angle or not. As a switch, it can easily be implemented in 

circuits to wake up a processor whenever it changes its 

state, and it needs only a tiny proportion of the 

accelerometer’s power. Size-wise, the classic ball switch 

is large compared to most accelerometers, but it requires 

less additional components and could potentially be 

shrunk to a size below that of the accelerometer.  

 

 
Figure 3. One of the first prototypes of the Porcupine, 

showing how each of the nine ball switches is positioned.  

 

The prototype that was built for this paper’s experiment 

contains nine ball switches that have been placed in 45 

degree increments of each other in three perpendicular 

planes (see Figure 3): in the first plane (X), four ball 

switches are enough to cover 45 degree increments in all 

directions (see Figure 4), the second plane (Y) needs only 
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Figure 1. The abstract diagrams for the respective 

models of a) an accelerometer and b) a ball switch. 
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three additional ones, and the third plane (Z) only two 

(as the planes overlap). The result is a collection of tilt 

switches that provide coarse-grained orientation; it is 

harder to determine whether they are any good at the 

detection of motion from just the hardware description – 

this will be part of the investigation in the algorithms 

section.  

 

 
 

The Porcupine (Figure 3, left) is driven by a 

microcontroller board (running a PIC16F876 from 

Microchip) with serial and RF communication (BIM2 

from Radiometrix) capabilities. In the experiment, the 

Porcupines were connected to a serial bus running at 

115200 baud, through which all sensor data was 

communicated since mid-air packet collisions limited the 

wireless output in earlier trials. One acted as master, 

polling for 3-byte
1
 data packets from each of the other 

nine Porcupines, and forwarding it wirelessly to an RF 

base station in the immediate area of the experiments.  

2.3.3. Measurements and Summary 

A basic comparison between 1 Spine (20 accelerometers) 

and 10 Porcupines (90 ball switches) is summarized in 

Table 1. Advantages of the ball switches lie in their 

simplicity: they are easy to interface with low-cost 

microcontrollers and do not need A/D conversions, their 

power requirements are much lower, and the speeds at 

which their states can be read on microcontroller level 

are faster. Moreover, they are often used to ‘wake up’ 

microcontrollers in a ‘sleeping’ mode where it only 

requires a fraction of its normal power. Accelerometers 

on the other hand, have a higher resolution for 

                                                
1
 The nine output bits were encoded in twos complement 

to keep the eventual packet balanced, a necessity in RF 

communication to guarantee a ‘DC free’ transmission. 

orientation and their signals produce direct motion 

patterns. Reproducing these numbers can be done with 

the online building descriptions provided at [15] and 

[13]. 

 
Table 1. Basic implementation characteristics and 

comparison between sensors from Spine and Porcupine.  

Sensing Platform: 
Spine 

20 accelerometers 

10 Porcupines 
90 ball switches  

Maximal current 40 mA 22 mA 

.. for one sensor 400 uA 1 uA 

Battery type 9V NiMH 2x 1.5V AA  

Battery lifetime 4.3 hours 2-3 days 

Time to read all ~2 ms ~2 ms 

Cost (per sensor) 8 USD 0.2 USD 

Size (per sensor) 50 mm
3
 83 mm

3
 

Extra components 20 C, 10 R 90 R 

 

Both prototype sensing platforms were created 

specifically for this study, but have since then been used 

for other studies as well [19]. Although it is not this 

paper’s goal to investigate how both methods perform in 

terms of implementation, it is interesting to point out that 

a combination of ball switches might be competitive with 

accelerometers, especially regarding power consumption.  

3. A Comparison in Algorithms 

In machine learning terms, this paper’s main ambition is 

to balance and analyze the information from a set of 

scalar sensors and that from a larger set of binary 

sensors. This will be studied in particular in a scenario of 

body-centric activity recognition by motion- and 

orientation sensors.  

3.1. Experiment Setup 

Data from both sensing platforms was logged for a 

variety of activities. As the experiments are meant to be 

part of only an indicative study, specifically designed 

scripts were followed (i.e., no real-life monitoring was 

done) and only basic activities were considered. Four of 

the activities were static: Lying, Kneeling, Sitting, 

Standing, and the other six: Walking, Running, 

Climbing Stairs, Descending Stairs, Bicycling and 

Jumping, had typical short patterns of movement.  

 

These activities were chosen because of (1) their presence 

in related work (e.g., [4][7][9][16]) and (2) their 

repetitive nature. The former motivation hints at the 

proposed scenario where these types of activities might 

be valuable, whereas the latter aims towards a particular 

design of algorithms, where prototypical data to be 

0000 1000 1100 1110 

1111 0111 

Figure 4. How a combination of four tilt switches can 

give a coarse (45 degree) indication of tilt in one plane; 

the switch outputs are depicted below the graphs. 
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classified is expected to be temporally simple and 

repetitive, but complex in dimension (multiple sensors 

contributing to the classification). All sensors were 

strapped to the legs of the test subjects, primarily because 

the size of the utilised prototypes did not allow any 

embedding into clothes; we argue that this has little 

effect for these early studies. 

 

  

Figure 5. Test subjects were asked to perform certain 

basic activities from a set script, such as climbing stairs 

or bicycling - scenes from the Spines’ data logging.  

 

To create a generic dataset (i.e., one that can also be used 

for future experiments), test subjects were asked to wear 

the two platforms, and follow the experiment’s script 

several times per platform in order to have sufficient data 

(especially for the Porcupines’ switches). Figure 5 

illustrates how the data was captured, using two Spines 

in a strapped-on setup similar to previous studies. Figure 

6 shows similar scenes using Porcupines. 

 

  

Figure 6. The activities were chosen so that their data 

was either practically static (e.g., standing), or contained 

repetitive patterns (e.g., walking) - scenes from the 

Porcupines’ data logging.  

The next sections will explore whether the logged sensor 

data contains enough information to distinguish these 

activities and, if so, how easy it is to extract them using 

algorithms.  

3.2. Algorithm Overview 

The algorithms in this section will be grouped per type, 

and more attention will be given to algorithms that might 

possibly perform better for the high-dimensional binary 

data that the Porcupines’ ball switches produce.  

 

Before going into specific algorithm descriptions, 

though, it is already possible to describe some issues and 

characteristics we can expect regarding the ball switches’ 

data. Ball switches first of all tend to show ‘bouncing’ 

behaviour when they are about to tilt: although a 

Porcupine may be perfectly still, some of the switches 

could still alternate between the zero- and one states, 

providing possibly serious noise. This problem extends to 

any binary sensor: noise has a more damaging effect on a 

per sensor basis. Figure 7 shows example data from one 

Porcupine to illustrate this. 

A second issue is the lack of characteristic peaks or other 

features that can easily be extracted from the Porcupine 

data. Figure 8 shows a typical set of acceleration time 

series from ‘climbing stairs’, which is almost trivial to 

classify when certain characteristic peaks are extracted 

for this activity. This type of pre-processing is less 

obvious with binary data. Take the clustering of sensor 

data for instance: calculating an average position 

between binary objects is rarely done. Rather than 

calculating centroids, a bit string that minimizes the sum 

of the distance to all objects, called medoid, is used.  
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Figure 7. Example data from a knee-worn Porcupine: 

output values (Y axes) versus samples (X axis,~50 Hz). 

Notice the noise during the sitting and standing contexts.  
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Figure 8. Example data from the right-leg Spine for 

climbing stairs: output values (Y axes) versus samples (X 

axis,~50 Hz) for all sensors (Z axis). Note the 

characteristic ‘step-up’ peaks for the first sensors (S1). 

3.2.1. Topographic Mapping-based classification 

For accelerometer-based platforms such as the Spine 

discussed in this paper, previous research has been 

focused on testing machine learning strategies on their 

data. The proposed algorithms include Gaussian 

modelling [7], Support Vector Machines [11], Bayesian 

Classifiers [8], and Kohonen Self-Organising Maps [16], 

to name but a few. The preparation and choice of features 

is often a significant part of these studies.  

 

We will confine the accelerometer side of the comparison 

to an algorithm based on that discussed in [16], using a 

hierarchical topographic mapping approach (the 

Kohonen Self-Organising Map) with basic statistics and 

peak set descriptors as features. This method has shown 

its merit before, and will serve as a typical algorithm 

developed for a potentially large amount of accelerometer 

data.   

3.2.2. Spiking Neural Nets, Pulsed Neural Nets 

Spiking [6] or pulsed [12] neural networks are using one 

of the most recent, and more biologically plausible, 

models of artificial neurons, working with action 

potentials, or spikes, and their timings, rather than scalar 

values. Whereas earlier artificial neurons (often based on 

the traditional McCulloch-Pitts model) combine 

continuous inputs in a weighted sum and activation 

function, spiking neurons use a so-called leaky integrator 

that decreases with time, and increases when it receives a 

pulse (see Figure 9 for an illustration). 

It is our hypothesis that for the last six dynamic activities 

(those with recurring motion patterns) the temporal 

patterns of the switching itself and the knowledge of 

which ball switch was triggered are enough to 

characterise the activities – if the distribution and data 

acquisition of the ball switches are sufficient. This 

scheme, where a spike is created each time a binary 

sensor’s state switches, connects seamlessly to a spiking 

neural network’s architecture.  

 

Figure 9. Typical leaky-integrate-and-fire behaviour of a 

spiking neuron: the action potential increases each time a 

spike arrives, and ‘fires’ when a certain threshold is met. 

The time series plot the growing potential p over time for 

the two inputs below the graph (spiking 3 times in total). 

In particular, we have used an unsupervised learning rule 

for these neurons that modifies the weights that connect 

the inputs to neurons in a single output layer, slightly 

similar to the Topographic Self-Organising Map 

implementation in 2.3.1.  

3.2.3. Boosting, AdaBoost 

Boosting is a type of learning strategy that fits very well 

with data coming from a distributed sensing system: It 

concentrates on combining weak classifiers to come to a 

classification scheme that usually has a better 

performance than each of the classifiers individually. 

Instead of trying to design a learning algorithm that is 

accurate over the entire classification space, the focus is 

more on finding weak ‘rule of thumb’ type of algorithms 

that need only to be better than random.  

 

We applied a multiclass generalisation of AdaBoost, one 

of the most popular implementations for boosting [5] that 

is traditionally restricted to binary classification, by 

training for each activity separately. The boosting 

approach is appealing in our case since we can distribute 

the weak classifiers locally (i.e., on the Porcupines), and 

have them send their classification hypotheses, rather 

than the sensor data, to a central post. We therefore chose 

10 classifiers that estimated the overall activity from the 

9 local ball switches only. In brief, our AdaBoost 

implementation assigns and updates weights to each 

classifier per activity, and the final verdict is gotten 

through a vote amongst the weighted results. 

p

tt1,1 t1,2 

t2,1



3.3. Results 

The logged data was manually annotated in two passes: 

one for marking the data that would be applicable for 

providing the ground truth, and a second time for 

extracting ground truth data that would be used for 

training the classifiers. The latter set was about 25 

percent of the initial ground truth set. 

 

The first results are from accelerometer data analysed by 

the method described in 2.3.1. The results are plotted in 

the first confusion matrix in Figure 10. It is not 

surprising to see that the classifier performs well on all 

activities, given the amount of pre-processing (especially 

the peak extraction) that evolved from previous research. 

The merit of these features becomes clearer when 

characteristic peak sequences for particular sensors are 

plotted against each other for the more complicated 

activities (see Figure 11): though close, they are 

distinctive enough to end up in different clusters, and 

thus in different classes.  
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Figure 10. Confusion matrices for the Spine (left) and 

Porcupine (right) datasets. The cells show the amount of 

positives per activity (with the true positives diagonally), 

the classification rates show the rate of true positives 

over all activities.  
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Figure 11. Peak characterisation for one accelerometer 

(L2): the numbers underneath the graphs represent the 

total area, the length, and the areas of the individual 

peaks of the last two detected peak sets. None were 

detected for bicycling in this case. The underlined areas 

mark the last two candidate peak sets. 

The results from the proposed spiking neural network 

(see Figure 10, second confusion matrix) show potential 

for improvement, but they are reminiscent of early work 

on accelerometer-based platforms. Keeping in mind that 

no special features were calculated, and that the raw 

switches were fused straight into the algorithm, we 

believe that this approach could have benefits in on-line 

and embedded algorithms. Especially for the static poses, 

it performs adequately, given the amount of noise present 

for individual ball switches (e.g., as in Figures 7 and 12). 

 

After a more thorough inspection of the data, however, it 

was noticed that no particular characteristic spike trains 

were generated: deciding factors seemed rather to be 

down to simple variance in the on-off switching. This 

indicates that even between our dataset’s more complex 

activities, such as climbing or descending the stairs, 

different ball switches were triggered, or they were 

triggered at distinct enough speeds for most of the time.  

 

To make this more apparent, a second test with the same 

topographic map algorithm as for the accelerometers was 

performed, but with just the average and variance over 

the last 30 samples as features. Remarkably, the results 

were comparable to those from the spiking neural net. 

The results from the AdaBoost approach were also in line 

with these observations, with an overall classification 

rate of 62%, using the binary variant of distance-

weighted k nearest neighbours as classifiers. The features 

used were as close as possible to the average (the state 

most frequently occurring, 0 or 1, during the past 100 

values) and the variance (a counter of all the 1s of the 

past 100 values) per sensor. 

 

The time complexities and algorithm requirements for 

both approaches were not really investigated here. It is 

obvious that the performance of the algorithms is 

sufficiently affordable for the high-dimensional binary 

data in terms of time-complexity and memory 

requirements: one sample in both cases takes 90 bits for 

the ball switches, while it requires at least 400 bits for the 

accelerometers. Since the individual channels that need 

to be fused contain low-resolution data, algorithms need 

less memory and time: the algorithms that worked on the 

accelerometer datasets required significantly more time, 

mainly due to the pre-processing.  

 

One key disadvantage for the balls switches’ approach 

that became obvious during the analysis of the 

experimental data was the lack of visualisation. Just 

having binary states makes inspection and manual post-

annotation of datasets a challenging task (as for example 

in Figure 12).  



 

4. Applications and Outlook 

The main objective of this work was to investigate the 

consequences of taking distribution of ‘dumb’ sensors a 

step further. It is in that sense important to stress that one 

should not over-interpret this study as an advocacy for 

the use of ball switches in activity recognition. Likewise, 

binary sensors may indeed have practical applications in 

integrated fabric sensing, but our core motivation for 

choosing binary sensors was the consequences their data 

have for sensor fusion algorithms. 

Future plans do include extended hardware prototypes 

that combine low-power microcontrollers with miniature 

ball switches, reducing the overall size of the Porcupines, 

and enabling embedding in clothing and scaled-up 

distributed networks; a next version is set to be almost a 

tenth smaller than the current prototype. Simultaneously, 

microcontroller implementations for the discussed 

algorithms are underway as well.   

Given that both types of sensors are similar in concept, it 

could be argued that the ball switches could have been 

simulated from accelerometer data. This is not entirely 

certain, however, and simulation of the ball switches 

would have weakened effectively any data comparison. 

The most interesting outcome of the experiments was the 

apparent lack of need for complex pre-processing or 

algorithms for the Porcupines’ dataset. Although it was 

hypothesised that feature information could be hidden in 

patterns of the switch signals, no evidence for this was 

found in our dataset; a higher sampling rate or different 

types of ball switches might be required to confirm this.  

 

It also has to be stressed that this first dataset is too small 

to be dependable. In order to generalise from this study, 

more and longer-term datasets need to be recorded. It is 

in this regard also interesting to speculate how well 

algorithms and such a large distribution of binary sensors 

would cope with problems such as concept drift, where 

the activities would slowly change with relation to the 

sensors (due to tiredness, shifting clothes, etc.): a wide 

distribution might be an advantage in this case.  

 

There are a number of other ways to advance this study. 

We are exploring scalability issues for classification 

algorithms and cross-usage of training data over multiple 

people (i.e., generalisation concerns). Widening the study 

to other classification problems, such as explicit gesture 

recognition or activity prediction, would be a further area 

of future work. The datasets that this research has been 

(and will be) generating are available for download via 

the CommonSense website [3].  F
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5. Conclusions 

Our aim was to study an approach towards activity 

recognition inspired by the ‘smart clothing’ paradigm, 

i.e., under the assumption that the sensors are high in 

number and heavily distributed throughout the fabric, yet 

individually providing only a tiny chunk of information. 

Compared to the more classic methods of placing sensors 

where they are absolutely needed, we argue that this 

approach would be more suitable for scenarios where 

strapped sensors might be obtrusive, or where optimal 

sensor location is hard to discover beforehand (e.g., in 

skirts or dresses).  

Two experimental prototypes were introduced to 

demonstrate and compare the traditional and proposed 

approaches. Although the experiments do not constitute 

any actual proof of theory, they do indicate that 

distributing sensors - even while heavily neglecting their 

accuracy - could be valuable and that more, distinctive, 

research is needed in algorithms for simple sensor fusion.  
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