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Abstract. Forget processing power, memory, or the size of computers for a 

moment: Sensors, and the data they provide, are as important as any of these 

factors in realising ubiquitous and pervasive computing. Sensors have already 

become influential components in newer applications, but their data needs to be 

used more intelligently if we want to unlock their true potential. This requires 

improved ways to design and integrate sensors in computer systems, and 

interpret their signals. 

1   Introduction 

Most dictionaries agree on the fact that sensors are devices that are capable of 

detecting and responding to physical stimuli such as movement, light or heat. The 

more perceptive reader will observe that this definition is not very specific: 

Identifying the sensors in a system is often fairly straightforward, but trying to track 

down examples of the first human-made sensors with this definition for instance is 

much harder. Similarly, the difficulty in exactly identifying the parts in a system that 

belong to one sensor, underlines the vagueness of what a sensor really constitutes. 

This introduction will begin with challenging a few preconceptions one might have 

about sensors and the process of sensing and measuring, before moving on to stress 

the importance of sensors in the future of computing.  

1.1   What Does a Sensor Look Like? 

Show an engineer a photodiode, and chances are that he or she will identify it as a 

(light) sensor, or at least would not object to someone else calling it a sensor. Saying 

that a bird in a cage is a sensor might seem a lot more challenging, but given the 

definition above it would be possible to treat it as such: 19th century miners would 

carry along ‘cages’ with them to detect the presence of carbon monoxide or methane, 

deadly mine gases which humans cannot detect until it is too late. The canary in the 

cage, on the other hand, is more sensitive to these gases and drops dead minutes 

before humans will. Few will challenge the idea of a thermometer being a sensor, but 

convincing people that their pet canary is really a sophisticated toxic gases sensor is 

usually a bit harder. 



Using a wide enough interpretation, almost anything fits in the definition of a 

sensor: In fact, even humans can be considered as sensors.  

1.2   The Eye of the Beholder  

The observation of, and response to, the state of the sensor plays a crucial role as 

well. The shape and colour of clouds, the way insects fly, or the arrangement of a 

Galileo’s thermometer1 may be interpreted as just pleasant things to look at by some 

people, but are tell-tale signs for weather forecasting to others. Instruments to 

measure the outside temperature during a cold winter, or devices to alert miners when 

dangerous gasses are present, are useless until they are observed properly by someone 

who monitors the sensor’s output and takes actions accordingly.  

1.3   One-way Bridge from Real to Digital 

The sensor can also be regarded as a way to capture information from the real 

world and reflect it in the virtual or digital world. It is the ideal mechanism to 

integrate new information into an application, and sensing methods for many 

applications are evolving from a typical scenario where the human provides all input 

to the application, to one where this becomes more and more automated.  

Healthcare monitoring applications, for example, used to rely on information that 

the doctors would manually enter in the system after doing the measurements 

themselves. Nowadays, this process has advanced to a stage where medical sensing 

devices are constantly observing the patient’s state.  

To focus on this automated sensing, the remainder of this extended abstract will 

restrict its use of the word sensor to the devices that detect physical phenomena 

without the help of a human. 

1.4   Taking the Human Out of the Loop  

Historically, sensors were primarily there to directly suit the user, and the user 

would be very involved in the process of sensing (e.g., tapping on a needle based 

barometer), interpreting the sensed (e.g., reading the amount of water in a rain meter), 

and taking action based on what was sensed (e.g., slowing down the car after noticing 

you are going too fast on the speedometer). Recent trends, however, -and ubiquitous 

computing is part of this as well- seem to minimise this human factor, and sometimes 

even remove it altogether from the process. Being able to build devices that interpret 

sensor data and act on it without disturbing the user, means that sensors would enable 

all these ubiquitous computing elements to live without strict user supervision, 

making them truly unnoticeable.  

                                                             
1 Galileo's thermometer is made of suspended weights in a sealed glass cylinder containing a 

clear liquid. If this liquid changes temperature, it changes density and the suspended weights 

rise and fall. The weights’ positions can thus be interpreted as a temperature measurement. 



1.5   The Impact of Sensors  

Sensors are increasingly being integrated and embedded in user interfaces to give 

the user a more intuitive, more sensitive, or more appropriate way to interact with 

computers. At the same time, sensors are also being used as replacements for user 

interactions altogether, in cases where the sensing is trivial, or where mistakes are 

limited and not critical. The sensors are therefore crucial components in the visions of 

ubiquitous and pervasive computing, and advancing research into sensors and how 

one can take advantage of their data is valuable even beyond these fields. 

A few challenges summarize the key areas: ‘Embedding and Interfacing Sensors’ 

considers the practical issues of adding and networking a sensor component to an 

object or application, ‘Learning from Sensed Data’ points out the difficulty of 

replacing the human perception with algorithms, and ‘Sensor Fusion’ lists some 

prospects and problems when trying to combine sensors’ output. 

2    Embedding and Interfacing Sensors 

Knowing the right sensor and algorithm that process the sensed data is not enough 

to guarantee the system will work; this section will begin with another requirement.   

2.1   Considering the Physical Properties of Sensors  

The location and orientation of a sensor can play a vital role. To show what the 

impact can be of where and how a sensor is attached, consider this scenario in the area 

of body-worn motion sensors: A student wants to build a wearable system that 

monitors his posture and activities throughout the day, and as an easy start he sets out 

to just detect at what times in the day he is sitting down, and at what times he is 

standing upright. Knowing a bit about sensors, he believes that an orientation sensor 

just above the knee would be sufficient: it would give a relatively horizontal reading 

when sitting down, and the sensor would give a vertical reading when standing 

upright. Figure 1 illustrates the reasoning behind this. 

                 

Fig. 1. Example of how to easily detect whether the user is sitting down or standing upright by 

attaching an orientation sensor to the upper leg.  It seems to be a sound approach...  



Figure 2 shows how the weaknesses of this approach become obvious when 

following the student trying his system out: To wind down after the efforts of building 

his wearable sensor, he visits his local pub. Standing at the bar, he habitually places 

his foot on a higher position, which results in the sensor being oriented almost 

horizontally and logging the student, mistakenly, as ‘sitting down’ (Figure 2a). 

 

 

Fig. 2. A few examples of how the system from Figure 1 fails to correctly recognize ‘sitting 

down’ and ‘standing upright’ throughout the student’s evening.  

Similar mistakes can also happen the other way around: the student might be 

sitting on an elevated surface, leaving his leg dangling downwards far enough for the 

system to register this as ‘standing upright’ (Figure 2b). Even worse, poses that are 

neither ‘sitting down’ nor ‘standing upright’ could also be wrongly detected as one or 

the other: lying down (Figure 2c) for instance has the upper leg in a horizontal 

position, making the system register ‘sitting down’.   

It is important to stress here that these errors happen regardless of the quality of the 

sensor or the algorithms that treat the sensed data: increasing the sensor’s sensitivity 

or using better machine learning techniques will not help.  

This scenario shows not only how crucial the location, the orientation, and the 

position of sensors are, it also points at the importance of combining sensors. Adding 

a sensor on the other leg would improve the system dramatically (though errors can 

still occur). This leads to another challenge: how to transport the data from multiple, 

distributed sensors. 

2.2   Networking Sensors  

The sensed data needs in many cases to be processed elsewhere or merged with 

other sensed data from different locations. The first practical issue becomes then to 

transport and perhaps send the data over a network. Also, having multiple sensors is 

often just the first problem; some applications require sensor nodes in a network to be 

insertable or removable in an ad-hoc fashion, or they require the nodes to do both 

sensing and routing of neighbouring nodes’ data. 

Many common standards exist for these cases, with especially body-wide wireless 

networks gaining a lot of popularity over the last years (think for instance of the IEEE 

802.15 standards, Bluetooth and ZigBee). There exist many good overviews of these 

Log: 

a: 10pm: sitting down 

b: 12pm: standing upright 

c: 2am: sitting down 
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types of networks (see for instance [13] or [14]), but a different, non-wireless method 

of networking will be discussed next, to widen the spectrum of sensor networking 

possibilities.  

 

 

Fig. 3. The components of Pin&Play: top: the node with pin connector, bottom-left: the surface 

structure (using conductive textile), and bottom-right: an application using clothing as the 

surface and temperature measuring pins that have been attached ad hoc to the clothing [12] [9].  

Pin&Play is based on the vision that layered surfaces can be used as a network for 

objects, such as sensor nodes, that become attached to these surfaces. It is very similar 

to the Pushpin initiative from Lifton and Paradiso [6], but has a simpler, bus-type 

structure with a master-slave type of architecture. Even tiny devices can be attached 

by means of pin adaptors and a surface with layers of conductive sheets (see Figure 

3), to gain power and networking capabilities with the freedom of being plugged in 

any place or in any orientation. 

This network is far more appealing from an engineering point of view, since it 

doesn’t require the network nodes to have batteries or wireless communication 

modules. Everything is handled via a ‘master’ that provides the power to the entire 

network and regulates network traffic, the nodes just need to be pinned in the surface 

to switch them on and introduce them into the network. The use of off-the-shelf 

components and a well-supported network protocol resulted in robust and small 

prototypes that are cheap, easy to (re)produce and yet more than powerful enough for 

many applications (see Figure 3). The network can handle hundreds of devices in a 

small, though two dimensional, space, which is especially attractive in the 

augmentation of small and mobile sensing applications. The main disadvantage for 

use of this networking technology in sensor networks, however, is the low bandwidth 



(at best 16300 bits per second). The network has in its current state also no way of 

finding out where a node is in the network, unlike many wireless solutions. 

Pin&Play is nevertheless a great alternative to traditional wired and wireless 

networks, especially for dense topologies and applications where nodes rest on a 

common surface and where sensors’ simplicity and size are more important than their 

transmitting speed (e.g., [11]).  

3    Learning from Sensed Data 

Many applications in ubiquitous and pervasive computing do not use the sensors’ 

output directly. Instead, they classify the sensed information into concepts that are 

more useful to the application. These mappings between the raw sensor data and 

classes of interest can be straightforward (e.g., thermometer values that get classified 

in ‘warm’ and ‘cold’, or a passive infrared detector’s values that are transformed to 

‘motion’ and ‘no motion’). These mappings are for many applications a lot more 

complicated, however; think for instance of a microphone for which its audio signal 

can be transformed into syllables or words in speech recognition, or a camera for 

which its images can be mapped to objects in image analysis. This more complex 

mapping of sensor data to high-level concepts has notably in the field of human-

computer interaction frequently been marked as context awareness, where 

information from sensors is used and classified to give a description of the user’s 

context. 

The more complex classification algorithms usually work by building an internal 

world model that is shaped by typical examples in a so-called training phase. This is 

similar to finding typical properties in a few representative pictures of the number 

seven for a character recognition algorithm, to make it afterwards able to recognize all 

new instances of seven. 

 

Fig. 4. Diagram of incremental learning: both user and system observe the same world, which 

is modeled and abstracted by the system and annotated by the user.  



An interesting and highly flexible type of classification of sensor data goes a step 

further: incremental learning keeps the system’s world model flexible, so that new 

contexts can be taught to the system at any time. It works by ‘showing’ the new 

context to the system repeatedly, similar to the way speech recognition can be 

optimised by letting the user repeat a few phrases. Figure 4 shows a diagram of such a 

system where both user and system perceive the world, using respectively senses and 

sensors, and where the system maintains a flexible internal world model that the user 

is then able to annotate with her concepts. 

4    Sensor Fusion 

The traditional sensing system usually has one or a few sensors, and is combined 

with an algorithm that is specific to that architecture. There exists an alternative 

architecture, however, which is more distributed in nature: it is based on a large 

number of small and simple 

sensors. This direction was taken 

in research at MERL [5], Philips 

[4], the TEA project [3], or more 

recently MIT [1] and [7], but is 

still rather new and unexplored. 

The combination of many simple 

sensors that individually give 

information on just a small aspect 

of the context, results in a total 

picture that might be richer than 

the one-smart-sensor approach. 

The distinction between both 

approaches is depicted in Figure 

5.  

4.1   Many Sensors 

Most of the benefits of using multiple sensors were mentioned in previous research 

(see for instance [5]): 

• Cheap. The small simple sensors require generally less resources and cost less 

than for instance cameras and GPS systems. An extremely large amount of 

simple sensors could of course invalidate this. 

• Robust. Since the sensors we use are small, they can smoothly be distributed 

over a larger area, which makes the sensing system less prone to errors. In case 

a sensor gets blocked or damaged, other sensors will still capture context-

relevant information due to the redundancy in the sensors. 

• Distributed. The size also allows the sensors to be integrated into clothing 

much easier, and the high number allows them to increase the sensed area.  

One smart sensor:

Many simple sensors:

Fig. 5. Two sensor architecture approaches. 

 



• Flexible. The richness and complexity of the identifiable contexts is directly 

linked to the amount, position and kind of sensors. Adding, moving, or 

improving sensors hence increases the performance of the system.  

4.2   Simpler Sensors 

The real bottleneck in this method is the software algorithm that has to combine 

and analyze all the data. Research described in [8] defines the choices one has to 

make in finding a suitable algorithm and argues for using neural networks to first 

cluster the sensed data. 

 

     

Fig. 6. Experiments of [10] with networks containing a large amount of motion sensors: the left 

two using 40 accelerometers, the right two using 90 tilt switches.  

There is unfortunately a theoretical limit to the number of sensors one can fuse 

together: the adaptive algorithms become slower and less effective as sensors get 

added, due to the Curse of Dimensionality [2]. Figure 6 shows snapshots of 

experiments with wearable sensor suits using motion sensors that are distributed on 

the legs, while the wearer performs certain activities of interest (such as walking, 

sitting down, running, climbing stairs, etc.). One suit uses 40 accelerometers attached 

(giving a 10 bit value each), whereas the other uses 90 much simpler tilt switches (1 

bit each). These experiments have shown that even simple binary sensors are able to 

detect complex postures, as long as a sufficient amount of them is distributed. This is 

important because these simpler sensors require far less resources. 

5   Summary 

This extended abstract argues that sensors are key components in the vision of 

ubiquitous computing. The traditional sensor is defined vaguely already, but the new 

breed of sensors and sensing applications will require even more investigation. 

Placing and designing sensors optimally and organising them in networks, creating 

algorithms that are able to learn what is being sensed, and combining sensed data, are 

issues that will require more attention.  
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