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Abstract

In recent years research on human activity recognition
using wearable sensors has enabled to achieve impressive
results on real-world data. However, the most successful
activity recognition algorithms require substantial amounts
of labeled training data. The generation of this data is not
only tedious and error prone but also limits the applicabil-
ity and scalability of today’s approaches. This paper ex-
plores and systematically analyzes two different techniques
to significantly reduce the required amount of labeled train-
ing data. The first technique is based on semi-supervised
learning and uses self-training and co-training. The sec-
ond technique is inspired by active learning. In this ap-
proach the system actively asks which data the user should
label. With both techniques, the required amount of training
data can be reduced significantly while obtaining similar
and sometimes even better performance than standard su-
pervised techniques. The experiments are conducted using
one of the largest and richest currently available datasets.

1. Introduction

Activity recognition is an important and active research
area of wearable computing due to its potential to enable
novel context-aware applications for elderly care, educa-
tion, sports, and entertainment. Different types of sensors
have been proposed for this purpose ranging from motion
sensors such as accelerometers [2, 16] over RFID tag read-
ers [25] and switch sensors [19] to combinations of different
sensor modalities [17, 22, 23].
Most approaches for human activity recognition are

based on state-of-the-art machine learning techniques. An
important difference between approaches is whether they
rely on supervised training or whether they enable the
use of unsupervised learning techniques. A wide range
of supervised classification approaches have been applied
for the recognition of both “simple” activities (e.g., sit-
ting, standing, lying, and walking [10, 11]) and more com-
plex or composed activities (e.g., Activities of Daily Liv-

ing [2, 19, 25], wood workshop activities [23], and main-
tenance tasks [17]). These techniques can be categorized
as either generative algorithms that model class-conditional
distributions [2, 23] or discriminative algorithms that focus
on learning the class decision boundaries [11, 16].
The main drawback of supervised methods is the neces-

sity of a significant amount of labeled data for learning ac-
tivity models. Labeling data for activity recognition sys-
tems is a challenging problem for at least two reasons. First,
most of the annotation techniques are time-consuming and
error-prone. And second, to obtain reliable annotations one
has essentially two choices. Either one may rely on invasive
sensors such as cameras and microphones [12] which are of-
ten not acceptable due to privacy reasons. Or, one uses an-
notation techniques such as experience sampling [19] which
is tedious or disrupting for users in particular for annotation
of short term activities.
Another line of research avoids the labeling efforts by

unsupervised discovery of structure in activity data [6, 9,
14]. Also, it is possible to define prior models for activities
by manually specifying common sense features of activities
[22] or automatically extracting this information from the
web [25]. However, while the learned structure results in
interesting representations of the data one still requires at
least a few labels to achieve reliable classification results.
In many practical classification problems, data labeling

is expensive, but a large number of unlabeled data can be
easily obtained. For this reason, semi-supervised learning
has been proposed as an alternative in machine learning re-
search [4]. The ultimate goal of semi-supervised learning
is to combine the advantages of supervised and unsuper-
vised approaches by learning from both labeled and unla-
beled data. Since many human activities of interest are per-
formed on a daily basis, it is relatively easy to produce large
quantities of unlabeled activity data. Thus, semi-supervised
learning naturally lends itself to activity recognition.
The primary goal of this paper is to explore and com-

pare two different types of techniques that require far less
labeled training data than traditional supervised techniques.
First, we apply and analyze the merits of two of the most
fundamental semi-supervised learning techniques, namely
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self-training and co-training. And second, we also explore
another way to reduce the required amount of labeled train-
ing data. This second approach is based on active learn-
ing [15] with the explicit goal to focus labeling effort on
the most profitable, e.g. informative, instances of activi-
ties. There exists relatively little work [5, 13, 18] explor-
ing semi-supervised techniques for human activity recog-
nition. However, these approaches do neither address nor
analyze the potential of active learning for the recognition
of physical activities. Additionally, the evaluation of the
proposed approaches was performed on relatively simplis-
tic datasets consisting mostly of activities such as sitting,
standing, walking, and running. On the other hand, the fo-
cus of active learning approaches [1, 8] is on the recognition
of user’s desktop activities for predicting interruptibility of
a user. Wemake a first step towards active learning for phys-
ical activity recognition.
The main contributions of the paper are as follows. First,

we present a comparative evaluation of the applicability of
self-training [4] and co-training [3] for data from motion
sensors. Unlike in [5], where an ensemble method based on
one set of features has been proposed, we show that it is pos-
sible to apply co-training for recognition of activities when
using two independent sources of information, namely on-
body accelerometers and infra-red motion sensors. Sec-
ond, we suggest two functions to actively probe users for
labels that enable active learning. The wrapper nature of
the proposed semi-supervised algorithms and active sam-
pling functions makes them independent of both classifiers
and sensor modalities being used. Additionally, their low
computational costs are very beneficial for enabling wear-
able computing scenarios. Third, we enhance the efficiency
of the proposed activity recognition system by utilizing a
multi-class boosting procedure, namely joint boosting [21].
Additionally, the typical researchers’ bias on the evaluation
is avoided by using a publicly available dataset [12] that
was neither recorded nor annotated by the authors of the
paper. By using only a limited amount of labeled training
data, we achieve performance comparable to and sometimes
even better than fully supervised learning approaches on a
challenging and realistic dataset.
The rest of the paper is organized as follows. In Section

2 we introduce the dataset and sensors used in the experi-
ment as well as our evaluation procedure. Section 3 presents
the initial supervised analysis of the dataset followed by our
semi-supervised and active learning approaches in Section
4 and Section 5, respectively. Finally, in Section 6 we sum-
marize our results and give an outlook on future work.

2. Experimental Setup

In this section, we present the goals of our experiment,
motivate the choice of the used dataset and describe the

evaluation procedure. In the field of activity recognition, the
state-of-the-art has advanced significantly in recent years
and a wide range of sophisticated approaches and sensors
has been developed. An important drawback of the major-
ity of the current activity recognition systems is the lack of a
standardized evaluation procedure that would enable a uni-
fied way of comparison of different approaches. Thus, in
this work we follow a different approach.
We obtained access to the subset of the PLCouple1

dataset [12] recorded at the PlaceLab [7], a highly instru-
mented home environment, where a couple moved in and
lived there for 10 weeks, continuing as normal a routine
as possible. An audio-visual recording system was used
for capturing the ground truth and an expert annotated 104
hours of the male’s activities, comprising data collected on
15 separate days. In our experiment we use a publicly avail-
able subset of 68 hours of annotated data collected on 9 sep-
arate days. Despite a substantial amount of data collected
and annotated, there is still a lack of data for many fine-
grained activities, which led to 9 activities to be studied in
[12]. Here we focus on the same set of activities: actively
watching tv or movies, dishwashing, eating, grooming, hy-
giene, meal preparation, reading paper/book/magazine, us-
ing computer, and using phone.
In our experiment, we use the data from two differ-

ent types of motion sensors [20], namely body-worn ac-
celerometers and infra-red sensors. In [12], these two sen-
sor modalities outperformed other sensors (i.e., RFID and
environmental built-in sensors). The male subject wore 3
3D accelerometers on the dominant wrist, the dominant hip,
and the non-dominant thigh. Ten infra-red sensors were in-
stalled around the apartment to detect motion in each room.
Unlike in [12] where the mean value of the acceleration

signal and binary occurrences of the infra-red readings were
used as features, we extract the following features to ex-
ploit the full richness of information in the data: 1) From
the raw acceleration signal we compute mean, variance,
energy, spectral entropy, area under curve, pairwise cor-
relation between the three axes, and the first ten FFT coeffi-
cients, which sums up to 48 features per acceleration sensor
channel. 2) For each of the ten infra-red sensors we calcu-
late the number of their activations as features. As in [12],
each feature is computed over a sliding window of 30 sec-
onds shifted in increments of 15 seconds. We experimented
with different window lengths as well, but that did not sig-
nificantly change performance.
As suggested in [12], we use 9-fold leave-one-day-out

cross validation on the data to avoid over-fitting. In each
cross validation round of supervised learning, we train the
algorithms on 8 days of data. In case of semi-supervised
and active learning, only a subset of 2 days of data is used
as an initial labeled training set. The algorithms are always
tested on the left out day’s data.
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ploit the full richness of information in the data: 1) From
the raw acceleration signal we compute mean, variance,
energy, spectral entropy, area under curve, pairwise cor-
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cients, which sums up to 48 features per acceleration sensor
channel. 2) For each of the ten infra-red sensors we calcu-
late the number of their activations as features. As in [12],
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onds shifted in increments of 15 seconds. We experimented
with different window lengths as well, but that did not sig-
nificantly change performance.
As suggested in [12], we use 9-fold leave-one-day-out

cross validation on the data to avoid over-fitting. In each
cross validation round of supervised learning, we train the
algorithms on 8 days of data. In case of semi-supervised
and active learning, only a subset of 2 days of data is used
as an initial labeled training set. The algorithms are always
tested on the left out day’s data.

3. Supervised Approach

As we use the publicly available subset of the PLCou-
ple1 dataset, we first reproduce the experiments from [12]
based on two supervised machine learning algorithms (i.e.,
naive Bayes and decision tree). Additionally, we compare
their performance to the joint boosting classifier [21]. These
results are used as a baseline for comparison with semi-
supervised and active learning approaches in Section 4 and
Section 5, respectively.
Naive Bayes is a simple yet effective generative classi-

fier that has been used in the field of activity recognition
(e.g., [10], [16]). Even though it assumes that the compo-
nents of a feature vector are independent of each other, it
often outperforms more sophisticated classifiers. For our
experiments we use the unimodal Gaussian model for ac-
celeration data. For infra-red data we use the multinomial
model when using the number of the activations as a feature
and the multi-variate Bernoulli model for binary features.
Decision tree learning is based on inductive inference

and it has also been successfully used for activity recog-
nition (e.g., [2], [16]). We use the C4.5 variant of a decision
tree algorithm found in the Weka Machine Learning Algo-
rithms Toolkit [24].
Joint boosting [21] is a multi-class variant of traditional

boosting approaches in which multiple weak learners are
combined into a single strong classifier. Each weak learner
is a decision or regression stump on a single component
of a feature vector. Joint boosting is especially appealing
because it finds the features that can be shared across the
classes, which results in a faster classifier that needs less
features than standard approaches. At each boosting round
different subsets of classes are examined for fitting a weak
learner to distinguish that subset of classes from the other
classes. The subset that maximally reduces the error on the
weighted training set for all the classes is chosen. The best
weak learner is then shared among the classes in that subset.
More details about the algorithm can be found in [21].
As the dataset contains partly overlapping activities that

are not mutually exclusive, we use, as in [12], the area un-
der the Receiver Operating Characteristic (ROC) curve, av-
eraged over 9 cross validation rounds, as a figure of merit.
The ROC curve plots the true positive rate vs. the false pos-
itive rate, and it provides an overall measure of goodness
at all possible thresholds of a classifier. For naive Bayes
and decision tree we apply a “one vs. the rest of the world”
approach, as in [12], by using a binary classifier for each
activity. The main drawback of that approach is that it does
not deal well with highly unbalanced datasets. The overall
duration of activities in the dataset strongly varies among
the activities, reflecting the natural distribution of activi-
ties in real life. Thus, the balancing of the training set had
to be done, as in [12], by uniformly sampling the exam-

ples from the “rest of the world” class to match the number
of examples in the class, i.e., activity of interest. Interest-
ingly, joint boosting, being a multi-class classifier, lends it-
self to joint training on all classes by finding features that
can be shared across the classes. As a consequence, it is
even able to deal properly with multi-label data of overlap-
ping activities (i.e., activities that were performed in parallel
which resulted in multiple labels for a single sample). We
transformed multi-label samples to single-label samples as
follows: Each multi-label sample consisting of n labels is
replicated n times, and the i-th copy is assigned the i-th
label. During the classification we accept all classes with
classification scores higher than a certain threshold.
In [12] movement data measured by two accelerometers,

worn on the dominant wrist and on the dominant hip, were
used. We performed the experiments with both two and
three accelerometers since the addition of sensors often im-
proves recognition performance.

3.1. Results

In the following we report the recognition results based
on the supervised algorithms. We experimented with both
binary features and the number of the activations of infra-
red sensors. Due to space constraints, we only report the
best results per classifier, i.e. performance of naive Bayes
and decision tree for binary features and performance of
joint boosting when using the number of activations as a
feature. We perform the experiments with different num-
bers of joint boosting rounds. The best performance is
achieved after 50 iterations for acceleration data and after
10 iterations for infra-red data. Since the acceleration fea-
ture vector has 144 components it requires more boosting
rounds to find the best features to be shared among the ac-
tivities. The infra-red feature vector has only 10 compo-
nents and weak learners from additional rounds could not
contribute to the better performance.
Figures 1(a) and 1(b) show results per activity and aver-

age recognition performance for acceleration and infra-red
sensors, respectively. A few trends stand out. First, one can
observe that joint boosting yields better results for 7 out of
9 activities when using acceleration data. On average, joint
boosting improves the results by 11.3% compared to naive
Bayes and by 8.2% compared to the decision tree classi-
fier. Second, the addition of the third accelerometer does
not improve the results significantly, presumably because
the placement of the sensor at the non-dominant thigh is
not discriminative for the majority of the activities studied.
Third, naive Bayes on average performs slightly better for
infra-red sensors. As stated in [12], the presence of a sec-
ond subject in the apartment whose activities were not an-
notated definitely introduced noise in the infra-red sensor
data. Thus, naive Bayes, as a generative model, is able to
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(a) Per-activity and average results for accelera-
tion data

(b) Per-activity and average results for infra-red
data

Figure 1. Leave-one-day-out cross validation results for supervised classifiers (naive Bayes - NB,
decision tree - DT, and joint boosting - JB)

deal better with the noisy data compared to the joint boost-
ing and decision tree classifiers. Even though, we use only
the publicly available subset of the PLCouple1 dataset, the
decision tree results are nearly the same as reported in [12].
As previously mentioned, the dataset contains a certain

amount of overlapping activities. The multi-label data con-
stitutes about 10% of the whole dataset. Table 1 summarizes
the classification results of the joint boosting classifier when
leaving out the multi-label part of the dataset. The results
are consistent with the multi-label case (i.e., joint boosting
again performs better on acceleration data). Additionally,
the table shows accuracy of the classification, i.e., the num-
ber of true positives divided by the number of all samples
to be classified. One can observe that accuracy is relatively
low (53.6% for acceleration data and 41.6% for infra-red
data), but that should be seen in the light of realism of the
used dataset which additionally includes many other activ-
ities that were considered as an unknown class during the
classification procedure. In order to thoroughly explore the
potential of semi-supervised and active learning in activity
recognition we decided to use a clean dataset (i.e., without
multi-label samples) in the remainder of the paper. The re-
sults in Table 1 are used as a baseline for comparison with
semi-supervised and active learning approaches. As a figure
of merit we use accuracy, which we consider more intuitive
and which is more often used than the area under the ROC
curve in the field of activity recognition.

4. Semi-Supervised Approaches

In this section we introduce the two semi-supervised ap-
proaches, self-training and co-training, which we use in our
experiments for learning from both labeled and unlabeled

Sensor Accuracy Average ROC Area
Acceleration 53.6% 79.3%
Infra-red 41.6% 68.6%

Table 1. Leave-one-day-out cross validation
results for joint boosting classifier on single-
label subset of the dataset

training data. Typically, in semi-supervised settings, it is
assumed that in addition to the small set of labeled training
data there is also a substantial amount of unlabeled train-
ing data available. This allows reducing the effort of su-
pervision to a minimum, while still preserving competitive
recognition performance.
Self-training [4] is a wrapper-algorithm that repeatedly

uses a supervised learning method in the following manner.
A supervised classifier is first trained with a small amount
of labeled data. The classifier is then used to classify the un-
labeled data. In each iteration, a part of the unlabeled data is
labeled according to a current decision function. Typically,
the most confident predictions are added to the labeled train-
ing set. The classifier is then re-trained and the self-training
procedure is repeated.
Co-training [3] follows the iterative training procedure

of self-training. At the same time, it aims to improve self-
training by augmenting the training process with an addi-
tional source of information. Thus, we initially use accel-
eration and infra-red feature sets for training two separate
classifiers. Classifiers then teach one another by augment-
ing each other’s training sets with their most confident pre-
dictions. The classifiers are then re-trained with the refined
labeled training sets and the process is iteratively repeated.
Co-training is based on the two assumptions that are ful-
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uses a supervised learning method in the following manner.
A supervised classifier is first trained with a small amount
of labeled data. The classifier is then used to classify the un-
labeled data. In each iteration, a part of the unlabeled data is
labeled according to a current decision function. Typically,
the most confident predictions are added to the labeled train-
ing set. The classifier is then re-trained and the self-training
procedure is repeated.
Co-training [3] follows the iterative training procedure

of self-training. At the same time, it aims to improve self-
training by augmenting the training process with an addi-
tional source of information. Thus, we initially use accel-
eration and infra-red feature sets for training two separate
classifiers. Classifiers then teach one another by augment-
ing each other’s training sets with their most confident pre-
dictions. The classifiers are then re-trained with the refined
labeled training sets and the process is iteratively repeated.
Co-training is based on the two assumptions that are ful-

filled in our multi-sensor approach. First, it assumes that
features can be split into two disjoint sets that are sufficient
for learning in the supervised setting so that one can trust
the predictions based on both sets. Second, the two sets of
features need to be independent given the class, so that one
classifier’s high confident data points are independent and
identically distributed samples for the other classifier.
In [5] it has been argued that co-training is not applica-

ble to activity recognition due to the strong independence
assumption. In this paper, we show that co-training is an
excellent method for activity recognition approaches that
aim at improving recognition results by fusing different sen-
sor modalities. In the following experiments we use accel-
eration and infra-red data for co-training and compare its
performance with self-training. Since joint boosting shows
superiority compared to the naive Bayes and decision tree
classifiers, we use it as the supervised part of the self-
training and co-training procedure.
The experiments are designed to investigate the trade-off

between labeling efforts and recognition performance. The
goal of the experiments is to decrease the amount of neces-
sary labeled training data to a minimum. For that purpose,
we use the following evaluation procedure. Leave-one-day-
out cross validation is again performed by using one day
of data for testing and the remaining eight days of data for
training. The distribution of activities varies significantly
for different days. Since we want to find the lower bound-
ary for the size of labeled training data we use a minimum
amount of data to have at least one representative for each
of the activities of interest. In case of the used PLCouple1
dataset, that means that we can use six days of data as unla-
beled training set and the remaining two days of data as an
initial set for subsampling to get the reduced set of labeled
training data. The experiments consist of five different con-
figurations in which we gradually decrease the amount of
labeled training data from 12.5%, over 6.3%, 2.5%, 1.3% to
0.3% of 8 days of training data.1 In order to thoroughly an-
alyze the classifiers’ performance we perform multiple ran-
dom subsampling rounds. The reported results are averaged
over 9 cross-validation and 5 random subsampling rounds.

4.1. Results

An important parameter of self-training and co-training
algorithms is the number of iterations. By conducting ex-
periments with different numbers of iterations we observed
that by performing more than 100 iterations the newly la-

1These five configurations are constructed based on randomly sampled
50%, 25%, 10%, 5%, and finally only 1% of data from the selected two
days. In each cross-validation round another two days of data are used for
subsampling of labeled training set. As the amount of annotated data per
day varies, these five configurations on average sums up to 12.5%, 6.3%,
2.5%, 1.3%, and 0.3% of the complete set of labeled and unlabeled training
data.

(a) Leave-one-day-out cross validation results
based on acceleration data

(b) Leave-one-day-out cross validation results
based on infra-red data

Figure 2. Comparative performance of self-
training, co-training and supervised learning
for different amounts of labeled training data

beled samples do not bring any additional discriminative in-
formation, and at a certain point the labeling accuracy even
starts to decrease. For comparison of self-training and co-
training, in the following, we report on the average recogni-
tion accuracy achieved after 100 iterations.
We also observed that for our multi-class problem it is

crucial to maintain the underlying distribution of activities.
In each iteration we accept 50 most confident predictions,
but the number of accepted samples per activity needs to be
matched to the initial distribution of activities in the train-
ing set. We performed experiments with fewer accepted
samples per iteration, but in that case the learning phase is
slower, because more iterations are required to achieve high
performance. Additionally, in order to get more represen-
tative samples for the labeling process, as suggested in [3],
we carried out random sampling of unlabeled training data
and performed the labeling on that subset of data, but that
did not improve the results.
Figures 2(a) and 2(b) show the mean and 95% confi-

dence intervals of the classification accuracy of self-training
(red bars) and co-training (green bars) when using different
amounts of labeled training data for acceleration and infra-
red sensors, respectively. The plots also show the compar-
ison to the supervised approach (blue bars) when using the
same decreased number of labeled training data, as well as
the expected upper boundary (pink line) when using 100%
of training data for supervised learning. From the plots one
can clearly observe a superiority of co-training compared
to self-training, e.g., when using 2.5% labeled training data
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Amount of labeled
training data 100% 12.5% 6.3% 2.5% 1.3% 0.3%

Number of labels 9613 1203 604 244 124 29

Table 2. Average number of labels used for
different experiment configurations

the performance of co-training is 12% higher than the per-
formance of self-training on infra-red data. For accelera-
tion data, accuracy increases by 9% when using the same
amount of labeled training data, i.e., 2.5%. The perfor-
mance of self-training on both sensor modalities, i.e., accel-
eration and infra-red does not differ significantly. For accel-
eration data there is a consistent improvement compared to
the supervised approach with the same reduced amount of
labeled training data. For infra-red data, after self-training
the performance is sometimes degraded (when using 0.3%
labeled training data), which highly depends on the quality
of the initial labeled training subset of data. The experi-
ments in Section 3 show that joint boosting performs better
on acceleration data than on infra-red data. Therefore, the
full strength of co-training is clear when looking at the ben-
efit that infra-red data gain from co-training. The perfor-
mance is boosted by more accurate acceleration predictions
during co-training. In most of the configurations, it outper-
forms even the supervised approach when using 100% la-
beled training data. For the configuration when we use 2.5%
labeled training data, the performance of co-training is 4%
higher than in the supervised case of 100% labeled training
data. Co-training of acceleration data never achieves the
performance of the supervised case of 100% labeled train-
ing data, but the strength of the algorithm is still visible
compared to the supervised case when using the same re-
duced amount of labeled training data as for co-training. In
the case of 2.5% labeled training data, the increase of per-
formance is 3% for self-training and 14.6% for co-training.
Surprisingly, by using more labeled training data perfor-
mance of co-training starts to decrease, presumably because
of the noise in infra-red data that is more inherent in larger
random subsets of data.
All the above mentioned results clearly show the poten-

tial of semi-supervised approaches to minimize the labeling
efforts. As can be observed from Table 2, the number of
labels averaged over 9 cross validation rounds is extremely
reduced compared to the average of 9613 labels when us-
ing 100% labeled training data for supervised approach pre-
sented in Section 3. In the configuration when we use 2.5%
labeled training data, as can be seen from Figures 2(a) and
2(b), the achieved results are impressive, considering that
only 244 labels are used. In that case, 6 activity models are
learned with less than 5 labels per activity. When further
decreasing the number of labeled training samples, some of

the activities are learned from a single label. In the extreme
case, when using 0.3% labeled training data, i.e. only 29
labels, 6 out of 9 activities are learned from a single labeled
sample per activity. In that case the achieved performance
is relatively low due to the very few labels, but by carefully
chosing the data to be labeled the performance can still be
significantly improved. Therefore, in the next section we
utilize active learning for activity recognition.

5. Active Learning Approach

Active learning aims at detecting the most informative
unlabeled samples and queries a user to label them. In the
context of activity recognition, one can legitimately imagine
an online algorithm, similar to the stream-based setting in
[8], that asks the user to annotate his current activity when
it is considered necessary for improving the performance of
recognition.
We employ a multi-sensor approach for active learning

to select important samples to be labeled. The approach is
based on a pool-based setting, i.e., we use a small set of la-
beled data and a large set of unlabeled data for training. The
active learning algorithm searches for samples from the un-
labeled training data to be labeled by a user. Two active
sampling functions are evaluated here. The first function
is based on the assumption that the most informative sam-
ples are those the classifiers are least confident about. The
second function is based on the assumption that when the
two classifiers have a high degree of disagreement about a
certain sample, the sample should be labeled by a user.
More formally, let h1

c(xi) and h2
c(xi) be the two classi-

fiers’ confidence scores that sample xi belongs to the class
c based on two different sets of features. The first active
sampling function asks for the label of the sample sj with
the lowest prediction score, i.e.,:

sj = argmin
xi

(max
c

hj
c(xi)), j = 1, 2 (1)

The second active sampling function first finds the conflicts
S in the classifiers’ predictions:

S = {xi|ĉ1(xi) �= ĉ2(xi)} (2)

where ĉ1(xi) and ĉ2(xi) are predicted classes:

ĉj(xi) = argmax
c

hj
c(xi), j = 1, 2 (3)

and then chooses for labeling the sample in the set S with
the highest confidence score:

argmax
xi∈S

(max
j

hj
c(xi)), j = 1, 2 (4)

We evaluate the proposed active sampling functions
based on the iterative training procedure. Again, we use 9-
fold leave-one-day-out cross validation and 5 random sub-
sampling rounds. We start with only a few labeled samples,
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Amount of labeled
training data 100% 12.5% 6.3% 2.5% 1.3% 0.3%

Number of labels 9613 1203 604 244 124 29

Table 2. Average number of labels used for
different experiment configurations

the performance of co-training is 12% higher than the per-
formance of self-training on infra-red data. For accelera-
tion data, accuracy increases by 9% when using the same
amount of labeled training data, i.e., 2.5%. The perfor-
mance of self-training on both sensor modalities, i.e., accel-
eration and infra-red does not differ significantly. For accel-
eration data there is a consistent improvement compared to
the supervised approach with the same reduced amount of
labeled training data. For infra-red data, after self-training
the performance is sometimes degraded (when using 0.3%
labeled training data), which highly depends on the quality
of the initial labeled training subset of data. The experi-
ments in Section 3 show that joint boosting performs better
on acceleration data than on infra-red data. Therefore, the
full strength of co-training is clear when looking at the ben-
efit that infra-red data gain from co-training. The perfor-
mance is boosted by more accurate acceleration predictions
during co-training. In most of the configurations, it outper-
forms even the supervised approach when using 100% la-
beled training data. For the configuration when we use 2.5%
labeled training data, the performance of co-training is 4%
higher than in the supervised case of 100% labeled training
data. Co-training of acceleration data never achieves the
performance of the supervised case of 100% labeled train-
ing data, but the strength of the algorithm is still visible
compared to the supervised case when using the same re-
duced amount of labeled training data as for co-training. In
the case of 2.5% labeled training data, the increase of per-
formance is 3% for self-training and 14.6% for co-training.
Surprisingly, by using more labeled training data perfor-
mance of co-training starts to decrease, presumably because
of the noise in infra-red data that is more inherent in larger
random subsets of data.
All the above mentioned results clearly show the poten-

tial of semi-supervised approaches to minimize the labeling
efforts. As can be observed from Table 2, the number of
labels averaged over 9 cross validation rounds is extremely
reduced compared to the average of 9613 labels when us-
ing 100% labeled training data for supervised approach pre-
sented in Section 3. In the configuration when we use 2.5%
labeled training data, as can be seen from Figures 2(a) and
2(b), the achieved results are impressive, considering that
only 244 labels are used. In that case, 6 activity models are
learned with less than 5 labels per activity. When further
decreasing the number of labeled training samples, some of

the activities are learned from a single label. In the extreme
case, when using 0.3% labeled training data, i.e. only 29
labels, 6 out of 9 activities are learned from a single labeled
sample per activity. In that case the achieved performance
is relatively low due to the very few labels, but by carefully
chosing the data to be labeled the performance can still be
significantly improved. Therefore, in the next section we
utilize active learning for activity recognition.

5. Active Learning Approach

Active learning aims at detecting the most informative
unlabeled samples and queries a user to label them. In the
context of activity recognition, one can legitimately imagine
an online algorithm, similar to the stream-based setting in
[8], that asks the user to annotate his current activity when
it is considered necessary for improving the performance of
recognition.
We employ a multi-sensor approach for active learning

to select important samples to be labeled. The approach is
based on a pool-based setting, i.e., we use a small set of la-
beled data and a large set of unlabeled data for training. The
active learning algorithm searches for samples from the un-
labeled training data to be labeled by a user. Two active
sampling functions are evaluated here. The first function
is based on the assumption that the most informative sam-
ples are those the classifiers are least confident about. The
second function is based on the assumption that when the
two classifiers have a high degree of disagreement about a
certain sample, the sample should be labeled by a user.
More formally, let h1

c(xi) and h2
c(xi) be the two classi-

fiers’ confidence scores that sample xi belongs to the class
c based on two different sets of features. The first active
sampling function asks for the label of the sample sj with
the lowest prediction score, i.e.,:

sj = argmin
xi

(max
c

hj
c(xi)), j = 1, 2 (1)

The second active sampling function first finds the conflicts
S in the classifiers’ predictions:

S = {xi|ĉ1(xi) �= ĉ2(xi)} (2)

where ĉ1(xi) and ĉ2(xi) are predicted classes:

ĉj(xi) = argmax
c

hj
c(xi), j = 1, 2 (3)

and then chooses for labeling the sample in the set S with
the highest confidence score:

argmax
xi∈S

(max
j

hj
c(xi)), j = 1, 2 (4)

We evaluate the proposed active sampling functions
based on the iterative training procedure. Again, we use 9-
fold leave-one-day-out cross validation and 5 random sub-
sampling rounds. We start with only a few labeled samples,

Acceleration Infra-red Combined
Active - Active - Active - Active - Active - Active -

Labeled Supervised low scores conflicts Supervised low scores conflicts Supervised low scores conflicts
1.3% 24.4% ± 5.7% 44.5% ± 1.6% 47.1% ± 3.0% 32.8% ± 7.5% 34.5% ± 3.8% 29.5% ± 3.2% 28.2% ± 3.4% 50.9% ± 1.8% 51.4% ± 3.4%
2.5% 26.9% ± 2.9% 52.9% ± 1.9% 51.4% ± 3.4% 30.5% ± 3.9% 39.8% ± 6.2% 38.0% ± 3.2% 32.3% ± 5.2% 59.7% ± 1.0% 57.0% ± 4.4%
6.3% 35.9% ± 4.3% 55.3% ± 2.4% 53.8% ± 3.1% 30.1% ± 3.8% 42.2% ± 1.8% 23.7% ± 4.4% 39.8% ± 4.3% 63.2% ± 1.6% 57.5% ± 2.0%
12.5% 38.9% ± 7.0% 60.6% ± 2.3% 55.8% ± 2.0% 24.5% ± 1.3% 42.3% ± 2.1% 32.2% ± 5.7% 35.8% ± 3.3% 64.2 ± 1.9% 63.5% ± 1.6%

Table 3. Comparison of recognition accuracy ± 95% confidence interval using 2 different active learn-
ing sampling functions and supervised learning for acceleration, infra-red, and combined classifier

i.e., with 0.3% labeled training data from the previous sec-
tion. Joint boosting classifiers on acceleration and infra-red
data are then trained and applied to the pool of unlabeled
training data. The most informative samples are chosen for
labeling by one of the two proposed active sampling func-
tions and added to the labeled training set. The classifiers
are then re-trained, and the procedure continues until the
size of the labeled training data reaches the size of the four
configurations from the previous section, i.e., 1.3%, 2.5%,
6.3%, and 12.5% of 8 days of training data.
In each iteration, the first active sampling function

(Equation 1) finds two samples for labeling, the one that
is predicted with the lowest confidence level based on the
acceleration classifier, and the one that has the lowest score
based on the infra-red classifier. These two samples are then
labeled and added to the labeled training set. The second
active sampling function (Equation 4) searches the predic-
tion space for conflicts, i.e., samples that are classified dif-
ferently by classifiers based on acceleration and infra-red
data, and chooses for labeling the one that the classifiers
predicted with the highest confidence level. That sample is
then labeled and added to the set of labeled training data.

5.1. Results

Table 3 shows the classification results for acceleration
and infra-red data, as well as for the classifier combined on
these two sensor modalities, after the active sampling label-
ing process. We compare the results for different amounts
of data sampled with the two previously introduced ac-
tive sampling functions. Additionally, the results are com-
pared with the supervised approach when using the same
amount of non-actively (i.e. randomly) sampled labeled
training data. Both active sampling functions outperform
the supervised learning approach. On average, the first ac-
tive sampling function for acceleration data based on the
low confidence predictions’ scores yields 20.6% better ac-
curacy, and the second active sampling function based on
conflicts in classifiers’ predictions achieves 21.5% better
acccuracy compared to the supervised case with the same
amount of labeled training data. In the case of infra-red data
the performance increase is less significant, but still notice-

able. Again, we assume that this is due to the noise in the
infra-red data introduced by the second subject, which joint
boosting can not deal with properly. The active sampling
function based on the low predictions’ scores after label-
ing 6.3% and 12.5% of training data achieves an accuracy
of 42.2% and 42.3%, respectively, which is slightly better
compared even to the supervised learning by using 100% of
labeled infra-red training data when accuracy is 41.6%.
One must be aware of the potential risk that active learn-

ing might focus on the samples that are hard to be learned.
It happens occasionally that accuracy decreases by adding
more actively sampled labels. For example, when using the
active sampling function based on the conflicts for infra-red
data accuracy is 38% when 2.5% data is labeled. By con-
tinuing the active labeling and reaching 6.3% labeled data,
accuracy decreases to 23.7%.
In order to explore the full potential of the multi-sensor

approach, in Table 3 we also show the performance of the
combined classifier, based on the multiplied outputs from
the acceleration and infra-red classifiers. That way, we
achieve an accuracy of 64.2% when the active sampling
function based on the low prediction scores is used and
63.5% when using the active sampling function based on
the classifiers’ prediction conflicts. In Table 3, the best re-
sults for acceleration, infra-red and combined classifier are
highlighted and the active sampling function based on the
low prediction scores consistenly performs better, presum-
ably because the active sampling function based on conflicts
in classifier’s prediction often chooses for labeling the sam-
ples close to the decision boundaries.
When comparing the three approaches used in this paper,

one can conclude that the most promising approach is the
combined classifier on the actively learned data. Table 4
ranks the best results for sensor modalities separately.

6. Conclusions and Future Work

This paper demonstrated the feasibility of semi-
supervised and active learning for reducing the level of su-
pervision in activity recognition.
The two evaluated semi-supervised techniques, self-

training and co-training, were found to be capable of learn-
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Acceleration Infra-red
Active - low scores 60.6% Co-training 45.9%
Active - conflicts 55.8% Active - low scores 42.3%
Supervised 53.6% Supervised 41.6%
Co-training 40.7% Active - conflicts 38.0%
Self-training 40.6% Self-training 34.4%

Table 4. Comparison of the best recognition
accuracy for all the approaches used

ing activity models from a very limited amount of labeled
training data. As intuitively assumed, experimental results
showed that co-training outperforms self-training by aug-
menting the training process with additional information
from complementary sensor modalities. Additionally, in
some cases it can achieve higher recognition accuracy than
the fully supervised approaches.
The proposed active learning method is based on a pool-

based setting where in addition to a small set of labeled
training data, there is also a large number of unlabeled train-
ing instances available. From the unlabeled pool of data, the
algorithm selects the most informative samples to be labeled
by user. We introduced two active sampling functions based
on the classifiers’ lowest confidence level and on disagree-
ments between the classifiers’ predictions. Again, exper-
imental results suggest that it is possible to achieve com-
parable, or sometimes even higher accuracy than the fully
supervised approaches with less labeling efforts.
In the future, we plan to investigate a hybrid approach

that would in the initial phase actively ask for labels of the
most profitable samples. In the second phase, co-training
could highly benefit from actively learned labels.
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