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Abstract

We present a study which evaluates the use of simple low-
power sensors for a long-term, coarse-grained detection of
sleep postures. In contrast to the information-rich but com-
plex recording methods used in sleep studies, we follow a
paradigm closer to that of actigraphy by using a wrist-worn
device that continuously logs and processes data from the
user. Experiments show that it is feasible to detect nightly
sleep periods with a combination of light and simple motion
and posture sensors, and to detect within these segments
what basic sleeping postures the user assumes. These find-
ings can be of value in several domains, such as monitor-
ing of sleep apnea disorders, and support the feasibility of a
continuous home-monitoring of sleeping trends where users
wear the sensor device uninterruptedly for weeks to months
in a row.

1. Introduction

Sleep is a natural and vital part of our daily lives, known
to have a big effect on our memory [16], immune system,
and metabolism [3], yet most people know very little about
their particular sleeping habits. Even though the exact rea-
sons for our sleep remain a mystery, it is known that many
of the body’s major organ and regulatory systems continue
to work, with some parts of the brain actually increasing
their activity dramatically. Sleep in mammals appears to
be required for basic survival: Rats deprived of sleep die
within two to three weeks, a similar time frame to death
due to starvation [5].

Research into sleep focuses on a plethora of bio-physical
signals, commonly called polysomnography (or PSG). A
common setup to detect sleeping patterns, contains a set of
8 electrodes to the face of the patient, for EEG and EMG.
An electrocardiogram (ECG) is recorded via two electrodes
placed on the right side of the chest and on the left-lower
side of the thorax. Around the chest and the abdomen, res-
piratory detectors are placed, and two EMG sensors are at-

Figure 1. Users wear a watch-like sensor on the wrist,
which records light, movements and orientation data, to
detect the sleeping posture, amount of motion, and the
night sleep segment. The sensor can be worn non-stop
for weeks.

tached to each leg to measure the limb movement. A snor-
ing detector is placed on the left cheek and a breathing tube
right before the nostrils. All these sensors are wired, and
take time getting used to. Patients often need to stay more
than one night at sleeping labs for this reason.

This paper proposes an inherently wearable solution
which allows a coarse but long-term perspective on the
user’s sleep. It does not intend to deliver a medical instru-
ment for precise diagnostic purposes, but rather focuses on
giving the user an insight into his or her sleeping patterns,
at a low cost (especially in terms of deployment and usage,
but also due to the system’s cheap components).

The aim is to have descriptors that characterize the
wearer’s sleep during the night (Figure 1), with cheap low-
power sensors. Central to this work are sleep postures,
which are known to be an important parameter commonly
applied in the detection of obstructive sleep apnea, but also
utilized in general sleep studies [11, 2, 13, 14, 17, 8]. The
time segment when the user is in bed, sleeping postures,
and amount of motion during sleep are proposed as such
cues for detection of sleep and sleep characteristics.



2. Related Work

There are dozens of commercial products and healthcare
sensors that aim at providing the user with a similar type of
low-fidelity information as put forward in this paper. What
follows are several prolific examples, contrasted with our
approach.

Actigraphy describes the measurement and logging of
activity, and applications using actigraphy include sleep
analysis. An actigraph consists usually of an accelerome-
ter and a memory unit to store recorded sensor data and is
often worn at the wrist or hip. Data can be recorded up to
several years (depending on the type and frequency of read-
ings) and uploaded via an interface to a host computer.

An example of a long-term actigraphy unit is the Acti-
watch [12], which is used to measure sleep quality of indi-
viduals suffering from sleeping disorders and monitor cir-
cadian rhythms. The different types of Actiwatches can be
equipped with light sensors or a real time clock for time
stamping. The current versions’ memories go up to 64Kb
and the battery lifetime is 180 days. The information that is
stored contains solely the level of activity.

The SenseWear Body Monitoring System [1] is targeting
activity and sleep detection applications. It records accel-
eration in 2 axes, skin temperature, heat flux and galvanic
skin response. The platform consist of an armband worn
on the upper arm collecting the sensor data, a watch-like
display unit on the wrist to display real-time feedback and
software for analyzing uploaded data on a host computer.
The SenseWear system senses and records far more than
the prototype in this paper, but is also larger and less well
suited for long-term logging of data.

The aXbo [6] is an example of a sleep phase alarm clock
which senses body movements and builds up a model for
the sleep phases, so that it can wake up the user during an
optimal sleeping phase. The sensing unit is worn at the wrist
and data is sent wireless to the aXbo nightstand unit. The
aXbo unit can be used with a rechargeable battery for seven
days and has a USB interface. Only limited information
about the hardware and the algorithm running on it is public
however, which rules out a comparison to our Porcupine
unit and approach.

Other solutions include non-wearable deployments, such
as the Dream Recorder software on OSX [4] which can use
the built-in camera from an Apple MacBook to detect mo-
tion via pictures during the night, and the microphone to
detect snoring.

Most of these state-of-the-art approaches either record
the activity level on an energy efficient device that is worn
continuously, or record more precise data on a device that
is built to be active for one night. Our approach combines
elements of these two: a long-term logging of motion and
posture, using imprecise, but energy-efficient sensors.

Figure 2. The Porcupine wearable platform measures
32x37x15mm, and was configured to log data from 2
light sensors and 9 tilt switches to a 1GB SD card for
this paper’s experiments. In this mode it can run contin-
uously for almost 2 weeks on a light-weight 3.7V battery.

3. Hardware Description

A substantial part of this work relies on a sensing plat-
form that is wearable and efficient enough to do sustained
logging of data by using a set of light-weight sensors. The
following describes the developed hardware and, key to this
work, the proposed sensing method for postures.

The Porcupine [9] (Figure 2) was developed as a proto-
type device for the logging of human physical activities. It
was built to be a small, cheap, yet robust device that would
be worn by subjects for long periods of time, in order to
acquire highly realistic data in mobile settings.

The components of the Porcupine were chosen for both
their small footprint and low energy consumption:

Light Sensors. Two sensitive photodiodes in perpendic-
ular directions detect ambient light.

Tilt Switches. A set of 9 mechanical ball tilt switches,
placed at 45 ◦ between each other, provides a coarse degree
of tilt and movement.

Temperature Sensor. A high-resolution thermistor is
placed on the bottom side of the board.

3D Accelerometer. The ADXL330 is a commonly used
three-dimensional MEMS acceleration sensor.

PIC microcontroller. The 18F4550 is a low-power mi-
crocontroller, with USB connection and the ability to switch
between operating speeds with internal RC oscillators. This
enables it to go into an efficient power mode for different
modalities, e.g., slow when processing the tilt switches, and
fast when processing the accelerometers’ data1.

Realtime Clock. A Clock and Calendar IC can keep the
correct date and time so that the data can be time-stamped.

1Note that for this paper, the Porcupines had their accelerometer and
temperature sensors turned off, and ran in a low-power 32kHz sensing
mode.
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SD card slot. The Porcupine has an SD card slot so that
plenty of storage can be used (≤ 4 GB).

There is also an LED and a button present on the board
for basic debugging and user interaction, as well as a USB
connector and a charging circuitry, so that the attached bat-
tery can be recharged from USB. The 5-pin programming
connector can be re-used for extra modules. Both hardware
design and embedded software are publicly accessible via
http://porcupine2.sf.net.

This paper uses tilt switches to record both motion
and posture, by combining them in a cluster where 9 tilt
switches are placed together. By placing them at 45 ◦ angles
between each other, a coarse-grained 3d posture sensor is
assembled. Figure 3 shows the basic principle in one plane
using 4 tilt switches. By adding tilt switches for the other
two orthogonal planes, a total of 9 switches is required.

The cluster of tilt switches provides very low-resolution
information compared to the accelerometer – which has
some similarities in design but provides a more exact and
fine-grained output. However, the prime advantage of using
this sensing method is that it requires less battery power to
run for extended periods, and it additionally provides out-
put that is much simpler and faster to process. In previous
studies and experiments [9], it was shown that the Porcu-
pine typically runs up to 10 times longer when using the tilt
switches instead of the accelerometers.

The tilt switches are read at 130 Hz in this paper’s exper-
iments, and their nominal position and hamming distance
are stored as features at approximately 3Hz in memory. The
two light sensors are sampled once every 50 seconds, ac-
companied by a time stamp from the realtime clock. All
other components are turned off in software.

The experiments in this paper will study the feasibility
of inferring the sleeping posture of the user, just by reading
the states of these nine switches. This assumes that the wrist
position is distinct for different postures, and that the output
of the cluster of tilt switches is accurate enough to capture
these distinctions.

4. Night Segmentation

As we propose to have the logging device worn by its
user during the day and night, a first challenge is the detec-
tion of the nightly sleep intervals within the data when the
user went to bed and woke up again. Although this can be
done by the user, by for instance pressing a button on the
Porcupine before and after sleeping, this would be tedious
and could introduce errors.

Here we explore similar techniques to some from the re-
lated work section, by combining time, motion and read-
ings from ambient light sensors. An additional benefit of
acquiring these night segments is that they provide direct
information on the user’s circadian rhythm.

Figure 3. A sketch of the tilt switches’ principle: a single
tilt switch outputs a 0 when the conductive ball inside
its cylindrical case hits two terminals at the bottom (i.e.,
’closes the switch’) or a 1 otherwise.

In an experiment, data was recorded from 11 subjects,
between 26 and 61 years old, of which 7 male and 4 female,
with none of them knowingly suffering from a sleeping dis-
order. The subjects were asked to wear the Porcupine sensor
on their dominant wrist for at least 24 hours, though most
wore it for a longer period. Some of the subjects annotated
the times of their going to sleep and awakening by pressing
the button on the Porcupine, but most recalled these times
after the recording. For this they had a tool to their disposal,
which uploaded the data to their PC and visualized the past
24-hour period in a set of time series plots.

It is important to note that time by itself did not provide
much information for estimating the night segment. The
11 subjects had different lifestyles, some started their night
early (around 10pm) and others late (around 3am). Time in
combination with the presence of light and motion did well
for estimating the waking up event, while a combination
with light achieved the best performance for the bed-time
event.

Since the light sensors are chosen and positioned to be
sensitive to ambient light, it is not surprising that this type
of sensor was found to be the most effective for detecting
the start of the night segments. Even though the datasets
were taken during winter, with all subjects regularly wear-
ing long-sleeved clothing, drops in the light sensors’ values
allowed accurate detection of bed-time. Even though many
datasets displayed significant periods of darkness during the
day (due to the Porcupines being covered or the users being
in a dark environment such as a movie theatre), every night
started with the light sensors’ data going from brightness to
an extensive period of darkness. The waking up time was
harder to detect, and relied on mainly motion and light. The
importance of the light data might be biased here by the
winter season, since most subjects were forced to turn on
the light immediately after waking up.
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Figure 4. Four examples of data for which the nightly
sleep segments have been marked. Note that the
method is robust against small light changes (top), low
light levels (bottom), as well as high amounts of motion
and dimmed light before the bed-time event (middle).

Several types of algorithms, including HMMs and
Bayesian nets, were tried out to accurately detect these
bed-time and waking up events, using leave-one-out cross-
validation over all data sets. The best results were obtained
from a combination of two simple rules: One which marked
’bed-time’ by a falling edge signal for both light sensors fol-
lowed by a sustained average below 10% for a window of
6 hours, and one which marked ’wake-up’ by a rising edge
in light and motion, preceded by the same window. The
methods performed with near-100% accuracy for all but one
dataset, where the ambient light was consistently low.

In summary, it is feasible to segment the night period,
from when the wearer goes to bed till the waking up time,
with data from mainly the light sensors, tilt switches and the
on-board realtime clock. Figure 4 shows some examples.

5. Preliminary Study: Sleeping Lab Data

After the detection of the night segment, it is possible to
analyze its data further to reveal more fine-grained informa-
tion. As a preliminary study, rich PSG data from a sleeping
lab is compared with data from the Porcupine’s tilt switches
to investigate the feasibility of sleep phase or sleep stage
detection.

One of the most common types of sleep pattern informa-
tion, using PSG, is to represent the night as a series of sleep-
ing stages. It is known that methods relying on traditional

Figure 5. Close-up of PSG sensors, wired to equipments
next to the bed. Porcupines are worn on both wrists.

actigraphy, such as the ones discussed in the related work
section, cannot compete with the reliability of PSG. Accu-
racies of up to 75% are reported for the approaches that use
body motion, given that the subject is ”an adult between 15
and 55 years old, without sleep disorders” [4].

Several cues could be detected from the subject’s mo-
tions during the sleep. The Rapid Eye Movements, or REM,
period occurs periodically and in conjunction with a number
of other physiological changes: Brain waves exhibit a fast,
low voltage activity, heart- and pulse rates tend to speed up,
and there is rarely any body motion present in this phase.
REM is especially known as the period when vivid dreams
occur, and are a key phase in characterizing a subject’s
sleep. REM is usually followed by several stages, called
deep sleep, where sleep is the most restorative. Knowledge
about the typical duration of the REM stage, its 90 minute
cycle that reoccurs during sleep, and the lack of body mo-
tion during REM sleep, can be used to model the probability
that the user is in the REM stage.

In order to investigate the feasibility of detecting these
sleep stages with our own sensors, a preliminary one-
subject study was undertaken in an academic sleeping lab.
The ground truth in this experiment was taken from the ac-
tual sleeping lab PSG data (see Figures 5 and 6). From this
data, the sleep stages were extracted and used as annotations
for the information recorded by two Porcupine sensors, one
attached at each wrist. A tool called Harmonie-S [15] was
used by medical staff to analyze the PSG data, offering syn-
chronization between the sleep lab’s night vision video and
the body data. The lab’s video footage was used for annotat-
ing detailed sleeping postures, since the lab’s chest sensor
provides the basic postures only.
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Figure 6. PSG data from the sleeping lab recordings.
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Figure 7. The top two plots show the presence of motion
during the night (for each wrist), while the annotations
from the sleeping lab’s PSG data are plotted below.

Figure 7 shows the plot from the two wrist-worn Porcu-
pines, annotated by the various sleep stages that were ex-
tracted from the raw PSG data. Both the motion plots and
the annotations show a large amount of ’awake’ stages dur-
ing the night, mainly to be attributed to the unfamiliar en-
vironment. As a consequence, there occurred only a small
amount of REM and deep sleep stages.

From visual inspection of the data however, it is not clear
that several of the rules of thumb for detecting candidate pe-
riods of REM and non-REM sleep with motion are valid for
our data. First of all, as can be seen in the second and third
REM stages in Figure 7, motion does occur even though in
normal sleep, by passing through sleep stages 1 to 4 and af-
ter that reaching REM, the muscle tone is decreasing and
movement should cease to occur. Cues for the relaxing of
the body were observed, but both the PSG and the Porcu-
pine data included motion during several REM stages. Due
to the high amount of awake stages in our data, any timing
information on cycles that we could use as a prior for de-
tecting likely next REM stages was not present in the data.

For these reasons, no attempt was made to detect of sleep
stages or phases from the motion data. The most likely ex-
planation is that this study’s data is limited and taken un-
der unusual circumstances (in a sleeping lab rather than at
home).

6. Body Postures: Experiment Setup

From several studies involving patients with sleeping
disorders [11, 2, 13, 14, 17, 8], a set of basic sleeping pos-
ture categories was extracted for a next experiment. These
categories are commonly applied in the detection of ob-
structive sleep apnea, but are also mentioned in general
sleep studies as an important parameter.

The following types are the basic sleep postures consid-
ered in this experiment, with the latter two categorized fur-
ther to reflect finer-grained body postures, to come to four
basic and eight extended sleep body postures:

• ’Left lateral’ and ’Right lateral’. The left lateral pos-
ture has the left shoulder down, while the right lateral
posture has the right shoulder down. In anatomical ter-
minology: the left lateral posture has the ventral side
left and dorsal side right, while the right lateral posture
has the ventral side right and the dorsal side left.

• ’Supine’. The supine posture has the subject lying
down with the face up, or the dorsal side being down,
and the ventral side being up. When the body is
slightly tilted towards one side, for instance when sup-
ported by an arm or leg, we use the combined ’Left
supine’ or ’Right supine’.

• ’Prone’. The prone posture is defined by lying with the
face down, or the dorsal side being up, and the ventral
side down. When the body is slightly tilted towards
one side, for instance when supported by arm or leg,
we use the combined ’Left prone’ or ”Right prone’.

These categories are used as the target classes and an-
notations of the data sets: from video footage, these sleep
posture categories are identified by the subject and used to
label the synchronized data from the Porcupine, via the time
stamps in both data streams. The objective of the experi-
ment is to compare the sensor data recorded during the dif-
ferent sleeping postures. This allows an evaluation of how
well the tilt switches’ data can distinguish between body
postures.

In most studies mentioned in the review in [10], the sen-
sor for sleep posture was strapped to the abdomen or chest.
Note that, as the porcupine was worn around the dominant
wrist instead of the abdomen/chest, this is not a trivial task.
However, the size and wrist placement of the Porcupine ar-
guably do offer a more comfortable setup (see [10]).

Figure 8 shows the home setup. An inexpensive webcam
was modified by removing its infrared filter and replacing it
with strips of photo negatives. In our experiments, the anno-
tation of data was done manually (recording start and stop
times for all sleep postures) using visual inspection of these
15 fps infrared camera recordings. A separate IR LED array
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Figure 8. The IR LED array (left) and modified webcam
(right) for ground truth recording at home.

was positioned a few meters away from the subject so that
most of the bed area would be illuminated by infrared light,
and subsequently picked up by the camera in total darkness.

The data set contains annotated sleep posture data from 9
nights, monitoring regular sleep from 4 subjects (2-3 nights
each), one female and three males, ranging in age from 20
to 50, with no known sleeping disorders. The strenuous task
of browsing through the infrared video and annotating the
body postures’ start and stop times proved to be very time-
consuming, which is the primary reason for the reduced set
of data for this experiment.

7. Body Postures Experiment

The data from the Porcupines in the experiments were
uploaded and converted to a comma-seperated text file, after
which they were analyzed and visualized by Matlab scripts.
This section reports on our findings for using the proposed
Porcupine data body posture detection, after the segmenta-
tion of the night period.

One of the recorded nights, taken from approximately
2 am till 9 am, is depicted in Figure 10. It shows the
Porcupine’s light data in the top plot, the on-board calcu-
lated hamming distances of the Porcupine’s tilt switches
in the plot below that, and the tilt switch states below that
(with each tilt switch a separate time plot). The lower plots
show the annotations from the video data, and video frames
from each posture. Correlation can be seen between periods
when the subject remained in the same posture and the an-
notations. The light sensor values can be seen to fluctuate
to moderate levels during the night due to the IR-light emit-
ted from the IR beacon. The subjects for this experiment
were asked to press the Porcupine’s button before going to
sleep and when getting up, these events were encoded in the
motion plot as the spikes with a value of 15.

Figure 9 shows all unique tilt switch patterns on the
left, with their occurrences for all postures combined in the
stacked bar plot in the middle. The right plot shows the
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Figure 9. left: visualization of all tilt switch patterns
present in a dataset (black squares for 1, white ones for
0), middle: per tilt switch pattern, the number of occur-
rences for all associated postures as a stacked bar plot,
right: the same occurrences in a matrix. The last row in
this plot shows for instance that the pattern ’000100000’
occurred 7898 times for posture a - left lateral and 202
times for posture b - supine.

number of samples per tilt switch pattern that were counted
per body posture. For instance, row 11 depicts the pat-
tern ’111101100’ which occurred during four postures (vi-
sualised by left lateral: 1366 times, supine: 11060 times,
left supine: 1817, and right lateral: 5 times). This figure
also shows that there is no one-to-one mapping between tilt
patterns and body postures, but that there are typically mul-
tiple tilt switch patterns possible per body posture. This is
not surprising, since the placement at the wrist measures
the upper arm’s posture instead of the torso’s posture, and
since slight motions can easily result in different tilt switch
patterns.

In order to reflect how well the tilt switch data support
the model of a posture in a measure, we use cluster preci-
sion [7] by treating the different possible tilt patterns as the
cluster centroids: We first define the ratio for different body
postures j for each tilt switch pattern i as the number of
samples that are labelled as posture j, divided by the total
number of labeled samples with the tilt switch pattern i:

pi,j =
|Ci,j |∑
j |Ci,j |

(1)

In this notation, Ci,j stands for the set of tilt switch
patterns i labelled with posture j. The tilt switch pat-
tern i would in this paper be a 9-bit binary string such as
’001110101’ or ’110010111’. The body posture j would be
as earlier defined, attached to a label such as ’left lateral’,
’prone’ or ’right supine’.
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Figure 5.1: one night worth of data

Figure 10. Time series and snapshots from one of the datasets, taken from approximately 2am till 9am. The colored
bars in the bottom plot are the annotations from the video. Below the plots are frames from the video footage for
each of the body postures (in order of appearance) used as ground truth.

Table 1. The precision values for all body postures from
Figure 9.

ext. posture Pj basic posture Pj

left lateral 0.7185 left lateral 0.7553
supine 0.8584

left supine 0.5424 supine 0.8862
right supine 0.8523
right lateral 0.7622 right lateral 0.7845

Finally, we obtain the cluster precision measure Pj for
every body posture j by summing these distributions pi,j

above weighted by the number of tilt switch patterns i la-
belled as j, and normalized over the total number of patterns
i labelled as j:

Pj =
∑

i pi,j |Ci,j |∑
i |Ci,j |

(2)

This results in a value that reflects how much the samples
from different postures overlap: if there is no overlap in tilt
switch data between postures, perfect classification can be
achieved by a simple lookup table and the measure for the
dataset would be 1; in worst-case scenarios, such as when
the data would overlap for all postures, the measure would
go to zero as the number of postures increases.

Table 1 shows the results for body postures in the dataset
from Figure 9. Most body postures have high precision val-
ues, indicating that they are characterized well by their data.
Two postures, however, have precisely the same tilt switch
pattern, namely ’right lateral’ and ’right supine’. Similarly,
there is a large overlap between ’left supine’ and ’supine’.
By considering in this particular dataset the basic body pos-
tures only, the precision would rise above 0.75 for all body
postures.

By combining all cluster precision values in a dataset, it
is finally possible to calculate two values for that dataset:
one overall cluster precision over the basic body postures,
and one overall cluster precision over all body postures in-
troduced in that same section. For both values, a sum is
taken over all Pj , weighted by the number of samples per
posture j.

Table 2 displays these results per dataset, showing that
restricting to the basic postures provides overall more dis-
tinct tilt switch patterns. The results remain close to those
when combining all datasets per subject. This results on av-
erage in 80% for basic postures and 73% for extended pos-
tures. We have not calculated the precisions across all sub-
jects, however, but expect that these results will be worse
due to left-handed and right-handed wearing positions, as
well as person-specific postures.
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Table 2. Overall precision values for sleep postures from
tilt switch data.

Date and subject Basic postures Extended postures
06/12/2007, 1 0.9490 0.8303
14/12/2007, 1 0.9274 0.7262
16/12/2007, 1 0.8012 0.7468
18/12/2007, 2 0.8667 0.8787
19/12/2007, 2 0.6042 0.5207
21/12/2007, 3 0.6665 0.5552
22/12/2007, 3 0.9418 0.9334
27/12/2007, 4 0.7316 0.7100
28/12/2007, 4 0.7894 0.8032

8. Conclusions and Future Work

This paper investigated and presented techniques to per-
form night segmentation and sleep posture detection, with
a light-weight monitoring device which can thus assist in
monitoring sleeping trends. Simple energy-efficient sensors
make it possible to wear the wrist-worn sensor and record
motion data over weeks continuously.

It was observed in a first study that it is relatively easy
to estimate the night segments in continuous data. From a
sleeping lab study, we concluded that investigating the de-
tection of sleep phases by monitoring motion alone would
require much more extensive PSG data to be conclusive.
This paper’s main study focused on adding body posture
recognition during the sleep, on top of the motion and light
readings, using video from a cheap infrared setup for estab-
lishing ground truth in the evaluation. The results from this
last study are promising: the basic body postures result in
very different tilt switch patterns, as measured using preci-
sions averaging around 80%.

The experiment concludes that sufficiently accurate es-
timation of basic sleep postures can be done by a single
power-efficient wrist-worn sensor. Together with light and
motion, we propose body postures as a low-cost modality
for sleeping characteristics, with a wide potential use in for
instance sleep apnea and spinal conditions. This sensing
can be done over long intervals (weeks to months), enabling
other applications that analyze sleeping trends to easily ac-
cess and explore this information.

More long-term studies are required to investigate how
this information over long spans of time can be represented,
and how users would provide training data. Additionally
we are studying other modalities we might incorporate in
the current sensor setup. The Porcupine platform is being
revised continuously to make it smaller and more energy
efficient by adjusting both hardware components and pro-
cessing algorithms in the Porcupine’s microcontroller. The
current version for instance uses microSD cards for mem-
ory, reducing the size and weight significantly.
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