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Abstract

Much research has been conducted that uses sensor-
based modules with dedicated software to automatically
distinguish the user’s situation or context. The best
results were obtained when powerful sensors (such as
cameras or GPS systems) and/or sensor-specific
algorithms (like sound analysis) were applied. A
somewhat new approach is to replace the one smart
sensor by many simple sensors. We argue that neural
networks are ideal algorithms to analyze the data
coming from these sensors and describe how we came to
one specific algorithm that gives good results, by giving
an overview of several requirements. Finally, wearable
implementations are given to show the feasibility and
benefits of this approach and its implications.    

1. Introduction

One of the elements one can always find in definitions
of wearable computers is the presence of one or more
sensors to act as a second input. As the MIT’s wearable
computing FAQ states: “In addition to user-inputs, a
wearable should have sensors for the physical
environment. Such sensors might include wireless
communications, GPS, cameras, or microphones.” [16].
This approach is in the fields of human-computer
interaction, ubiquitous computing and wearable
computing also known as context awareness [3].

Context awareness deals with granting a device
sensors so that it can autonomously detect what state
(internal or external) the user is in. This would provide a
valuable service to the device, which it can use in taking
certain decisions without any user interaction. There are
two distinct methods for distinguishing the context,
depending on the amount and complexity of the sensors.

The first approach is a well-established one where one
sensor (or a set of a few sensors) is combined with an
algorithm that is usually specific to that particular sensor.
Research on wearable cameras with computer vision

algorithms [17,20], microphones with sound-specific
preprocessing [2], or beacon-based systems [12] for
example give excellent results.

The alternative approach is based on a large number of
small and simple sensors. This direction was taken in
research at MERL [8], Philips [5], and in the TEA project
[4,19], but is still rather new and unexplored. The
combination of many simple sensors that individually give
information on just a small aspect of the context, results in
a total picture that might be richer than the one-smart-
sensor approach. The distinction between both
approaches is depicted in Figure 1.
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Many simple sensors:

Figure 1. Diagram of the two approaches.

Most of the benefits of the latter approach were
mentioned in previous research (see for instance [8]):

• Cheap. The small simple sensors require generally
less resources and cost less than for instance
cameras and GPS systems. An extremely large
amount of simple sensors could of course
invalidate this.

• Robust. Since the sensors we use are small, they
can smoothly be distributed over a larger area
which makes the sensing system less prone to
errors. In case a sensor gets blocked or damaged,
other sensors will still capture context-relevant
information due to the redundancy in the sensors.
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• Distributed. The size also allows the sensors to be
integrated into clothing much easier.    

• Flexible. The richness and complexity of the
identifiable contexts is directly linked to the
amount, position and kind of sensors. Adding,
moving, or improving sensors hence increases the
performance of the system.

The real bottleneck in this method is the software
algorithm that has to combine and analyze all the data.
This paper defines the choices one has to make in finding
a suitable algorithm and clarifies our choices.

The remainder of the paper will be organized as a step-
by-step search for a suitable algorithm. After elaborating
on the many-simple-sensors approach and giving a
concrete hardware example, we will motivate that a neural
network approach will be a logical next step to analyze the
incoming data. A comparison study of the most likely
candidate algorithms will be given motivating the choice
for the self-organizing map. Some shortcomings of this
algorithm will be discussed, leading to a modification of
the self-organized map. Finally some applications illustrate
the implications of using such an algorithm.

2. Combining many simple sensors

2.1. What are simple sensors?

It is very hard to construct a formal definition to
describe a simple sensor. One can say that it needs to be
small, cheap and yet give a value that could allow
distinguishing different contexts easily without expensive
processing power. To be more specific we give the details
of a sensorboard that we build during the TEA project
(Technology for Enabling Awareness, see [4] and [19]).

Figure 2. The TEA2 sensorboard with 8 integrated
hardware sensors and 2 communication ports.

The TEA2 sensor board (Figure 2) was used much
during our experiments and in our wearable system. This
sensorboard has been tailored to slip into the back of an
enlarged battery casing which fits into the Nokia 6110-
6150 mobile phones series. The dimensions of the board
are approximately 85mm x 35mm x 0.6mm.  It is essentially a
sensor board stuffed with 8 sensors, 3 of them doubly
redundant, PIC micro-controller and serial communication.
It has been designed with low power IC’s to receive power
by a mobile phone battery outputting 3.6 volts, or a
standard 9 volts battery. The board has two
communication slots: one standard serial RS232 port to
make communication possible with a (wearable) computer
or PDA and one Nokia FBUS port for communication with
a Mobile Phone.

The sensors on the board are comprised of two
photodiodes, two microphones, a dual axis accelerometer,
a digital temperature sensor and a touch sensor. The
microphones are miniature electrolet capsules regularly
used in mobile phone applications. The accelerometer IC is
the ADXL202 from Analog Devices and the digital
temperature is the Dallas Semiconductor DS1820. These
signals are then fed either through direct digital inputs or
analog lines into a Microchip PIC16F877 microprocessor,
which runs at 20MHz. Apart from these sensors,
additional slots for other sensors are available as well.

2.2. Algorithm requirements and characteristics

Apart from having many simple sensors, other
requirements were also taken into account, mostly to make
the final system more usable:

On-the-spot training. Neural network and machine
learning approaches are not new in context aware
applications. However, the training phase, where the
algorithm actually learns the new contexts, are usually
governed by the designer of the application. Giving the
user the chance to train the system for new contexts
would result in a flexible solution. 

Cluster based learning. Every adaptive system tries to
store information to distinguish the data it is learning
better and better. As opposed to boundary -based
clustering, where the stored information is an
approximation of the boundaries between the learned
instances, cluster-based learning approximates the data
itself. In the latter it is considerably easier to add new
contexts afterwards, so this is a favored approach for our
needs.

Minimal amount of pre-processing. The strength of the
system is based on the redundancy and diversity coming
from the large number of sensors. As a consequence, it is
feasible to reduce the pre-processing per sensor. In our
approach we restrict ourselves even to using the same
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four features for every sensor: the average, standard
deviation, minimum and maximum over a sliding window.
There is thus no need for build-in knowledge of which
sensors the incoming values belong to, making the whole
system very flexible. Sensors can be added, removed or
replaced without replacing the algorithm.

Overlapping contexts. It should be possible to give
multiple labels to the same context, such that more than
one context can be active at the same time. This
requirement favors clustering-based methods.

Outputs are probabilities per context. The output of
the algorithm is a list of all learned context plus their
probability of appearing. This is a necessity in order to be
able to handle overlapping contexts.

2.3. (Artificial) Neural Networks

Neural networks are a group of algorithms that have
typically a lot of small and simple, interconnected
components (or neurons). This networking enables the
entire algorithm to perform much more powerful
computations by combining the limited processing power
of the separate components. This fits perfectly into the
multiple-simple-sensors approach, but there is another
reason to choose for neural networks as well: neural
networks generally have a better track record on noisy
data than statistical methods or expert systems.

3. Finding the right neural network

Neural network research has done a lot of work on the
real-time categorization of data coming from many sensors.
Especially in the related field of robotics, where
autonomous robots wander around and try to learn a
representative model of their environment, very similar
research has been going on for many years (see for
example [18]). The major difference is that in the robotic s’
case, the problem is not restricted to modeling the
environment, further linking the model to actuators or
actions is necessary as well. We will adopt this fields’
terminology to make our goals more concrete.

3.1. Further neural network specifications

Unsupervised training. The most popular neural
networks like the (multilayer) perceptron or networks
using radial basis functions are supervised, i.e. learning is
only possible during training. Since the user of the
wearable computer should not spend too much time in
training it, and since it makes more sense to exploit the
long-term usage of the wearable, unsupervised learning is
favored. While the user, with his wearable, goes from
context to context, the algorithm should learn

autonomously what kind of input is common and how
these inputs relate to each other.

Topology preservation. Safeguarding the relation
between inputs in the clustering space is known as
topology preservation. This means that inputs from similar
contexts will be mapped closely to each other onto the
neural network and those of different contexts will be
mapped further away from each other. Figure 3 shows an
example of the output of a topology preserving clustering
algorithm (the Kohonen self-organizing map). This
property makes it easier to inspect, debug, and visualize
the state of the algorithm and its performance.

Figure 3. Screenshot of a two-dimensional map of a
topology preserving algorithm working on sensordata.
The bar-graph in each cell depicts astored prototype for
the input, it is clear that neighboring cells are more
similar.

On-line adaptation. Each time the neural network
receives a new input, it should recalculate its internal
representation of the contexts. We have found no
justification for using batch-line training, which waits with
adaptation until more input vectors have passed, since it
requires more resources.

3.2. Comparison of clustering algorithms

A study was conducted that involved implementation
and comparison of the most common on-line clustering
algorithms in the neural networks field. It involved
measuring the clustering-performance and convergence
speed on recorded datasets, as well as required resources.
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A general list of the algorithms can be seen in Table 1, and
we direct the reader to [14] for a much more detailed report.

The different properties listed in Table 1 give an
indication on the feasibility of the algorithm’s
implementation. An algorithm with fixed network topology
is easier to implement since the amount of required storage
is known from the start. Soft competitive algorithms
generally need more processing time than hard
competitive algorithms since they update multiple
prototypes for each input signal, however this property is
needed when the algorithm has to preserve the topology
of the input space.

Table 1. General overview of the algorithms implemented
and tested for unsupervised clustering of our sensor
data: the on-line variants of: Kohonen’s self-organizing
map (SOM), the recurrent self-organizing map (RSOM),
K-means clustering, Hartigan’s sequential leader
clustering, growing K-means clustering, neural gas, and
neural gas with competitive Hebbian learning (NG+CHL).
See [7] for an in-depth overview of most of these
algorithms.
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SOM Fixed yes ++ soft ++

RSOM Fixed yes +++ soft +

K-Means Fixed no + hard +++

Leader Variable no ++++ hard +++

G K-Means Variable no ++++ hard +++

Neural Gas Variable no ++ soft +

NG+CHL Variable no +++ soft +

GNG Variable no ++++ soft +

The Kohonen self-organizing map was chosen for a
variety of reasons. As a neural network, it is fairly flexible
and robust for noisy data. In addition, it is
computationally low, and uses the same amount of storage
at all times (which makes it easier to implement for small
microprocessors and real-time applications). Finally, it is

topology-preserving, which gives it an advantage over
many other algorithms that tend to act as ‘black boxes’.

4. A Stable Self-Organizing Map

Once the choice for the Kohonen self-organizing map is
made, several shortcomings of the algorithm prevent direct
usage in real-world applications. Before the weaknesses
are reviewed, an introduction on the algorithm focuses on
the benefits.

4.1. Kohonen’s Self-Organizing Map

The Kohonen self-organizing map [11] is an algorithm
that has been used in many applications, usually for
clustering and/or visualization of high-dimensional data
onto two- or three-dimensional grids. It has two
fundamental steps to project an incoming input vector
(containing the sensorvalues, in this case) onto a certain
position in its output grid.  We will give a brief
introduction into the algorithm below, while [11] provides
much more detailed information and [6] gives a more
critical evaluation.

The first step controls to what cell (or neuron) the input
vector is projected to. The distance, usually the Euclidean,
between the input vector and the prototype vector of each
cell is measured, and the cell with the closest prototype
vector is assigned as the target cell. This cell is also often
called the winner or winning neuron. The second step
replaces the prototype vectors of the winner and its
neighbors with vectors that are (a bit) closer to the input.
The components of the prototype vectors are often
initiated as random values.

The Kohonen self -organizing map is a computationally
efficient algorithm that is located somewhere between a
multidimensional scaling algorithm and a clustering/vector
quantization algorithm. On top of that, it also inherently
tries to preserve the topology of the input space.

4.2. Stability

One of the biggest problems that the Kohonen self-
organizing map suffered from (as mentioned in [22]) was
related to the stability-plasticity dilemma [9]. It prohibited
longer-term functioning of the algorithm since it could
become unstable due to the algorithm forgetting
previously learned contexts. Figure 5a shows the
overwriting behavior of the self-organizing map and its
detrimental effects in the initial phase.
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Figure 4. The structure of the algorithm: prototypes of the
input are stored on the Kohonen self-organizing
map(KSOM) and the K-means clustering layer. Transition
probabilities are stored in the Markov Chain.

The search for a solution to this led to a guaranteed
stable algorithm by combining the self-organizing map
with the k-means-clustering algorithm, a statistical
clustering algorithm [15]. The basic concept is to refine the
representative capabilities of the self -organizing map with
those of a specific k-means clustering mechanism,
especially in the initial learning phase. Figure 4 shows a
diagram of the complete algorithm, while Figures 5a and 5b
demonstrate the superior behavior of the algorithm. The
complete algorithm and its details are published in [21].
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Figure 5 a) and b). Performance of the normal KSOM
(top) versus that of the new, stable algorithm (bottom).
The plots show success rate over time per context: The
initially good success rate of the top plot drops for the
first contexts because the prototype vectors were
overwritten by those of other contexts (from [21]).

On top of this algorithm, a Markov model can calculate the
probabilities that a transition between contexts can occur

(as proposed in [22]). Figure 6 shows part of the output of
the graphing module that runs in real-time during our
experiments on a server.

Figure 6. Partial transition graph of the Markov model; the
shorter the distance between contexts, the more likely
that context will be the next one. This model introduces a
confidence measure in transitions of contexts in the
algorithm.

Although there is still one obstacle preventing us from
finalizing the algorithm (see section 4.4), we can already
apply what we have so far to a few typical applications
where only a few simple contexts are adequate. The next
section will discuss two types of applications that were
developed some time ago and were (and still are) used for
long periods (several days up to a week). Even though
movement-related activities were easiest to distinguish,
several indoor locations with different lighting conditions
were successfully identified.

These application descriptions should not be treated as
anything more than initial usability tests. Comparison with
other systems and applications mentioned in the
introduction is very hard: recognition rates alone are not
enough to measure the performance of the algorithm, since
the behavior over time is important as well for application
purposes. Most other approaches have a predefined
training phase, after which the algorithm is not adaptive,
whereas our approach allows the user to train the system
at any time.
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4.3. Applications

The wearable system, that was used to run the
applications on, is based on a sensor board that sends the
values from several simple sensors via a serial interface to
a Compaq iPAQ handheld computer (based on the ARM
processor from Intel), which is belt-worn. The sensorboard
contains 2 accelerometers, 2 directional microphones
(without high-level processing), photodiodes, a
temperature sensor and a touch sensor, and is worn just
above the knee. A picture of the setup can be found in
Figure 7. 

The iPAQ runs the Familiar distribution of Linux, with
Blackbox as the X-windows manager. The recognition and
logging software is mainly written in C++ and cross-
compiled with gcc for Intel’s ARM platform. For the
graphic al front-end, a Python script was chosen since it
allows rapid user-interface construction (see
www.handhelds.org for extended information on any of
these software packages).

4.3.1. Context logging. The first system can learn
different, simple activities like sitting, standing, walking,
running and bicycling, on the spot by pressing a
designated button (as introduced in [22]) on the iPAQs’
touch-sensitive screen. Whenever a change is detected in
the context (for instance, when the context changes from
“standing” to “sitting”) the system logs this, together
with the current time and date. This way, a diary of daily
actions is automatically made. A short example is shown in
Table 2.

Table 2. Excerpt from a context log, where the algorithm
was trained on activities.

sitting   : Fri Jan  5 20:41:23 2001
sitting   : Fri Jan  5 20:41:31 2001
standing  : Fri Jan  5 20:41:31 2001
standing  : Fri Jan  5 20:41:43 2001
walking   : Fri Jan  5 20:41:44 2001
walking   : Fri Jan  5 20:42:31 2001
running   : Fri Jan  5 20:42:31 2001
standing  : Fri Jan  5 20:52:48 2001
walking   : Fri Jan  5 20:52:48 2001
standing  : Fri Jan  5 21:20:00 2001
sitting   : Fri Jan  5 21:20:01 2001
sitting   : Fri Jan  5 22:00:35 2001
standing  : Fri Jan  5 22:00:35 2001
standing  : Fri Jan 5 22:00:37 2001

This application was tested daily (usually from 9:00am
till 12:00am) during several weeks, and the recognition rate
indeed showed no signs of degrading during this period
(the training was done during the first day). The log-file

was reset after each time (although it could of course be
uploaded onto another computer), but the algorithm’s
state and data were saved to enable the long-term
reliability testing. Although the logging is at the moment
done locally on the iPAQ, it is preferable to send this data
at regular intervals to a server via wireless
communications, making ‘manual’ uploading needless.
Logging was only done for two hours a day, since the
iPAQ, in the configuration mentioned above, can only run
a few hours before its batteries are empty.

Figure 7. The wearable system setup is simple (two
components) and fairly unobtrusive.

4.3.2. Autonomous starting of applications. A more
complex chore is to automatically start processes or tasks
depending on the current context. An interesting finding
in our research is that if the recognition algorithm operates
with some kind of confidence measure (or energy
function) on the prediction, this value could also be used
as a parameter for the task.

Outputting context-tailored music to play more
appropriate songs, for instance, can become annoying if
some error causes abrupt transitions. Using the
confidence measure to change the volume proves to be an
easy and a workable solution. This system has already
been build on a desktop computer using system calls to
the winamp mp3 player and we are currently implementing
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a linux-variant to run on the iPAQ. Tests already proved
that it has no problems running both an mp3 player and
the recognition software.

4.4. What is missing?

The other obstacle mentioned in [22] is known in
machine learning as the curse of dimensionality [1]. The
more sensors, the more data has to be handled and stored
by the algorithm, which leads to a slow or even
unworkable algorithm as more sensors are added.  Since
the number of sensors in our experiments hasn’t reached
the critical limit yet, current versions of the algorithm are
still workable. However, to really benefit from the
multitude of sensors to distinguish more rich contexts, this
must be solved as well.

One of the more obvious and feasible solutions to this
problem might be to detect to what extent a sensor
contributes to detecting or distinguishing a context.
Storing and comparing only the relevant sensors for a
specific context would decrease the necessary resources
tremendously. Relevant feature detection, as this is
generally called in machine learning [13], has many
appearances, though, and will be the focus of our research
in the near future.

5. Future work

Apart from investigating feature relevance detection
algorithms to comply with all conditions necessary to
establish a powerful algorithm, several other issues are on
our agenda. The building of a network of sensorboards is
required to increase the number of sensors that we can
read. At the moment we are restricted to the processing
limitations of one PIC microcontroller, building a network
of these will allow us to distribute the sensors in a better
way and use larger number of sensors.

6. Conclusions

Distinguishing the different contexts a wearable
computer can encounter, by merely labeling them when
they occur is still hard to realize without setting harsh
constraints, usually on the available contexts. We believe
the approach where the combination of many simple
sensors provides enough information to categorize
complex contexts is a promising one. Furthermore,
clustering the data from multiple sensors in real-time is an
ideal application for neural network algorithms.

After an overview of common algorithms, relevant to
our problem, a stable neural network algorithm was
deduced by combining the Kohonen self-organizing map

with a sublayer of k-means clusters. This allows early
implementation of the algorithm for usage in real-world
context aware applications, although the number of
sensors, as well as the complexity of the distinguishable
contexts, is restricted.

As the dimensionality increases due to the large
number of sensors, the learning is slowed down
exponentially, but deducing the relevance of sensors
might enable the usage of more appropriate numbers of
sensors. 
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