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Abstract: Although mobile devices keep getting smaller and more powerful, their interface with the user is still based on that of the
regular desktop computer. This implies that interaction is usually tedious, while interrupting the user is not really desired in ubiquitous
computing. We propose adding an array of hardware sensors to the system that, together with machine learning techniques, make the
device aware of its context while it is being used. The goal is to make it learn the context-descriptions from its user on the spot, while
minimising user-interaction and maximising reliability.
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1. Introduction

1.1. From sensors to contexts

Some applications enhance their user interface
by adding a sensor and using the sensors’ value
in some simple rule. A typical example is
connecting a light sensor to a screen-based
device and adjusting the contrast and brightness
of the screen according to the value of the light
sensor.

Other applications can change their beha-
viour only when the user explicitly tells them
to. It is also possible to use user-defined profiles
that describe the devices’ behaviour. For
example, profiles in mobile phones can be set
to make the phone ring very loudly outside or
on the train but only vibrate in a meeting. This
approach leads to a lot of user-involvement,
however: the user first needs to program these
profiles, and then the profiles must be set in
every context (‘‘in a meeting’’, ‘‘in the
train’’ . . .).

The combination of all of the approaches
mentioned earlier leads to an automated profiles
selection: context recognition based on simple
sensors sets the behaviour of the device (see [1]
and [2]). Knowing the context usually leads to
being able to improve the application and
particularly to enhancing the interaction with
the user. This approach is far from simple,
however: how can a device, equipped with
sensors, recognise a context?

1.2. Context

The notion of context is very broad and
incorporates lots of information, not just about
the current location, but also about the current
activity, or even the inner state of the person
describing it. As a consequence, people can
describe their contexts in different ways, even if
they are in the same location doing the same
thing. Someone familiar with a building might
know a room as ‘‘classroom 402B’’, while a visitor
would probably describe it as just ‘‘a classroom’’.

In addition, the application also defines the
description of the context. Some applications
require more location-based contexts, while
others need contexts that give more information
about the user. Since contexts depend heavily on
both user and application, context awareness
should be adaptive. Furthermore, to make the
device usable the user should be able to give
minimal feedback to the learning module.

1.3. Context description

The sensors we have experimented with are
small, low-level and cheap. The hardware boards
(see [3]) that were used (Fig. 1) include light
sensors, temperature sensors, accelerometers for
movement, microphones, pressure-, IR-, touch-
and CO sensors.

The simplest method for giving a context
description would be to sum up all the values
from the sensors to a formatted description, like
for instance ‘‘movement: (87%, 29%), light:
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78%, humidity: 69%, temperature: 50% . . .’’. A
simple, rule-based architecture could be used to
enhance this description into ‘‘moving slowly in
a cold, humid, well-lit room’’.

The architecture described here works the
opposite way: the system merges the output from
the sensors and maps them to a description given
by the user. The description could then be
something like ‘‘walking in the basement’’.

2. Online Adaptive Context
Awareness

Instead of simply using the raw sensor values as
input for the next layer, small pre-processing
routines were used to enhance the future
clustering. For example, instead of just looking
at the brightness of the light, it is also possible to
look at its frequency, which results in easier
distinguishing of several types of artificial light.
Taking the standard deviation of the acceler-
ometer values can also give more qualitative
information. Other sensors like microphones and
infrared sensors have similar mini-transforma-
tions from the raw sensor data to one, usually
multiple, value(s), which are often called cues or
features.

Another advantage of the cues is that that
they are sent less frequently to the next layer.
The light sensor, for instance, is read a few
hundred times per second. The cues from this
sensor (light level and frequency) are sent every
second. Cues are very significant for a fast but
accurate context recognition system. However,
using cues results in a large input dimension,
which makes the mapping-algorithm very slow
in learning. This difficulty arises when many

irrelevant inputs are present and is usually
referred to as the curse of dimensionality (see [4]
for a definition).

2.1. Self-organisation

When a rat has learned its location in a
labyrinth, certain braincells on the hippocampal
cortex respond only when it is in a particular
location. Self-organisation of neuronal functions
seems to exist on very abstract levels (like
geographic environments) in the brain. The
Kohonen Self-Organising Map (SOM) [5] has a
similar principle: neurons (artificial, this time)
are activated topologically for tasks depending
on the sensory input. The SOM is also known to
handle noisy data relatively well, which makes it
a sensible choice for clustering the inputs.

It is possible to monitor the activation of the
neurons and plot the resulting matrix as a
landscape, where different hills ideally represent
different contexts. This might be a way of
providing the user an insight into the learning
capabilities of the system (Fig. 2).

The traditional algorithm starts by being
highly adaptive (a large learning rate and huge
neighbourhood radius) and gradually becomes
fixed. After this stage, it is not capable of
learning any more, which poses an obstacle if the
system needs to remain adaptive. This is a
problem also known as the stability-plasticity
dilemma. Therefore it is necessary to add some
supervision mechanism that controls the flex-
ibility of the SOM.

The only necessary user interaction is the
labelling of clusters produced by the SOM. This
means that when a cluster gets activated, two
possible situations can occur: (1) the cluster is
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Fig. 1. One of the sensor boards.

Fig. 2. Example of an activity-plot of a SOM.
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labelled, so classification is possible, or (2) there
is no label. In the latter case, we use a distance
weighted K-Nearest Neighbours algorithm to
search for the closest label on the Self-Organis-
ing Map. The topology preserving property of the
SOM makes it very probable that the nearest
label will indeed be the right context.

2.2. Supervision and user behaviour

The next layer is primarily intended to supervise
transitions from one context to another. It uses a
probabilistic finite state machine architecture
where each context is represented by a state, and
transitions are represented by edges between
states. The model keeps a probability measure for
each transition, so every time a transition occurs,
the supervision model can check if this really is

likely. If a transition is not really probable, the
next state is not entered yet, but a buffer
mechanism is initiated so that it does become
more likely after several tries in a row. Each
transition to a state is thus dependent on the
previous state, which makes this model a first-
order Markov model. Every state also keeps track
of how much time was spend in a particular
context, which controls the flexibility of the
SOMs: the newer a context, the more flexible
and adaptive the map should be.

The result is that after some time this model
generates a graph depicting the behaviour of a
user with relation to the contexts visited. When
the user tends to go from A to B rather than to
C, then this will be reflected in the graph’s
connection strengths. Figure 3 depicts the typical
layout of the final architecture.
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Fig. 3. Overall architecture. User interaction is only necessary after the clustering.
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3. Results and Future Work

For context awareness to be effectively user-
friendly, it is necessary that the system gets
feedback from the user whenever the user would
like to give it. These constraints are both hard
and challenging from a machine-learning point
of view. The combination of unsupervised neural
networks and a context model gives promising
results, without creating a bulky overhead on the
user-computer interaction. Simple activities like
sitting, walking and running are usually recog-
nised within tens of seconds if the acceler-
ometers are placed on the user’s leg or hip. For
locations, the light sensor has proved to be very
efficient, especially when cues such as light-
frequency are used. However, as a consequence,
this also means that recognition deteriorates as
lighting conditions change. Combination of
light sensors, GPS and/or beacons would be
very interesting in that regard.

In the future, we would like to boost the
performance by improving both sensors and cues
in both quality and quantity. The experiments
up until now used about 10 sensors, but we
expect to increase this number significantly.
Other important issues we are researching are
placement of sensors (on both devices and
clothing), the grouping of sensors for the
clustering, and redundancy of sensors to make
the system truly robust. Finally, the Kohonen

map also offers an intuitive representation to the
user of how contexts are stored and learned,
which is not obvious in machine learning,
especially in neural networks.

The framework of this paper was given by the
TEA project [3], which is sponsored by the
European Commissions ‘‘Fourth Framework’’.
Thanks go out to the people from all project-
partners: Starlab Research (Belgium), Nokia
Mobile Phones (Finland), TecO (Germany)
and Omega Generation (Italy).
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