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Abstract Activity studies range from detecting key indicators such as steps, active
minutes, or sedentary bouts, to the recognition of physical activities such as specific
fitness exercises. Such types of activity recognition rely on large amounts of data
from multiple persons, especially with deep learning. However, current benchmark
datasets rarely have more than a dozen participants. Once wearable devices are
phased out, closed algorithms that operate on the sensor data are hard to reproduce
and devices supply raw data. We present an open-source and cost-e�ective framework
that is able to capture daily activities and routines, and which uses publicly available
algorithms, while avoiding any device-specific implementations. In a feasibility
study, we were able to test our system in production mode. For this purpose, we
distributed the Bangle.js smartwatch as well as our app to 12 study participants, who
started the watches at a time of individual choice every day. The collected data was
then transferred to the server at the end of each day.

1 Introduction

Many types of studies focus on capturing activity data from human study participants.
We can distinguish these types of studies based on the measurement devices and
sensors used, the carrying position of the sensors and the domain of the data.
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The types of devices used go hand in hand with the sensor technology used. For
example, sensors worn on the wrist o�er the possibility of recording the heart rate
via PPG sensors, the skin temperature with a thermometer and the movements
with an accelerometer, gyroscope and magnetometer. Studies in which smartphones
are mainly used to record the data do not usually o�er this supplementary sensor
technology. Since the devices are not worn directly on the skin, the data is often
limited to basic IMU-Sensors. In contrast, the carrying position of the sensors goes
hand in hand with the specific domain of the recorded data. Sensor technology
used for medical datasets are often worn on di�erent body positions than sensor
technology used for the purpose of activity recognition. As previous studies have
shown, for many activities, it is often su�cient to wear the sensors only at key
positions such as the wrist [23], [29]. In the medical environment, however, more
complex sensors and di�erent wearing positions are often required [20], [1].

Fig. 1 Our system relies on an open-source smartwatch [37] with custom firmware, smartphone
apps, and a server-side database to collect all data centrally. For participants without smartphone or
in studies where users need to inspect their data or manually forward their data, a web-based suite
(bottom) retrieves the data through WebBLE. The raw sensor data is frequently streamed from the
smartwatch either to a nearby computer via web-based control panel, or via the user’s smartphone
to a dedicated server.

Empirical studies for which activity plays a crucial role use indicators such as steps
taken, sedentary periods, activity counts, or detected physical exercises, which often
originate from closed-source algorithms. This tends to lock studies to particular
devices and makes the use of other devices or comparisons di�cult. In contrast,
sensors such as accelerometers or inertial measurement units are already widely
integrated in many wearables, and tend to produce calibrated sensor data in units
such as mg. Restricting studies to particular commercial wearables that also record
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raw inertial data has the e�ect that large-scale studies are only possible if the project
has a high budget that allows the purchase of commercial hardware and software. In
this paper we present the ActiVatE_prevention system, which is based exclusively
on open-source components, logs raw inertial data, and also o�ers subjects a similar
wearing comfort as commercially manufactured products. We argue that it therefore
lends itself well to the capturing of multiple users simultaneously for activity studies,
while being an open source, replicable, and low-cost approach.

2 Related Work

Plenty of studies that log wearable inertial data to capture the activity of a user
have been proposed throughout the past two decades. In human activity recognition
research, for instance, recently published survey papers, such as Chen et al., table
1, [7] or Demrozi et al., table 6, [8], show that the same datasets, e.g. WISDM [3],
OPPORTUNITY [31], PAMAP2 [30] or DSADS [2], are used for many machine
learning papers published in recent years. These datasets are limited regarding their
nature, in respect to scope, quality, continuity and reliability. We extended these lists
of compared datasets by adding the SHL [13] and the RealWorld (HAR) [33] dataset.
Taken the numbers into account that were given by the publications, we calculate a
median of about 13 activities and 12 subjects for activities of daily living. Datasets
that have a significantly higher number of activities or subjects are often recorded
using smartphones. However, a smartphone does not provide the same level of control
to record data as our open source operating system, since the underlying operating
system is in control of when exactly an instruction is executed by the CPU. Most
of the published datasets were recorded using more than one sensor attached to the
body. These sensors were prototypes developed in a lab and therefore not optimized
to being inconspicuous and comfortable to wear. Furthermore, study participants
were always conscious of being recorded, thus (unintentionally) changing activity
patterns which leads to the recorded data being biased [36].

However, in order to develop machine learning algorithms that are reliable and
robust with everyday situations and data recorded in the wild, large and standardized
datasets are needed. Several research projects and publications have highlighted the
challenges and needs for robust and systematic collection of activity. The ActiServ
project [4] presents a smartphone-based software architecture to infer activities
from local sensor data and specifically designed for everyday use, enabling flexible
placement of the device and requiring minimal e�ort from the user. The AWARE
[12] framework is developed as an open source framework which uses smartphone
integrated sensors to record human activity data. It is available for Android and iOS
and comes with a server application that uses the rapid preprocessing pipeline for
machine learning [35] to preprocess incoming data streams. The SPHERE Sensor
Platform [34] is a multi-sensor fusion approach, which is deployed for healthcare
supervision in residential housing. IMU-Wristbands as well as environment sensors
and 3D Kinect cameras are used to supervise behaviors such as sleep, physical
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activity, eating, domestic chores and social contact. The system has been deployed in
about 100 households. On a smaller scale, Mairittha et al. [28] present a mobile app
for crowdsourcing labeled activity data from smartphone integrated sensors. They
recorded 1,749 labeled subsets of activity data. This application is neither available
on the app stores nor on known repository platforms. E-care@home [22] is an open
source collection of software modules for data collection, labeling and reasoning
tasks, such as activity recognition or person counting in a smart home environment
and is meant to be used for large-scale data acquisition in a home environment.
The solution is partly open-source and available to download from their GitLab
repository [25]. Several sensor nodes are placed in a smart home and used to record
data.

Wear OS from Google [15] was released under this name in March 2018 and
also o�ers developers the possibility access raw sensor data. Methods for activity
recognition of di�erent sports can also be integrated via the Google FIT API [14].
For using this service, however, one is tied to Google and their contract terms.

In current publications of data collection frameworks and algorithms, the main
focus has been on video and image data based activity recognition, [6], [26], [16]
or [17]. Similar open-source systems do not yet exist for IMU data, since most
frameworks are either smartphone based or the needed wearables are lab made
prototypes that cannot be purchased easily online.

IMUTube [24], an algorithm that is capable of generating artificial IMU data from
humans in videos. Such large and publicly available datasets do not yet exist in the
area of IMU-based activity recognition.

Extensive datasets with sensor based human activity data have been di�cult to
record due to the need to use specific hardware with sensors that are often di�cult to
start, uncomfortable to wear, or data sharing is limited for inexperienced volunteers.
Therefore, researchers started to use data augmentation techniques on inertial sensor
data to create synthetic data [11] or [10]. These techniques increase the size of the
dataset, but are limited if we want to increase quality and variability [18]. With
the pervasiveness of inertial sensors embedded in commercial smartwatches, it has
become easy to deploy applications that use inertial data locally, but longer recordings
of these data in a common format (for instance, using particular sensitivities and
sampling rates) remain di�cult.

3 Our Proposed Approach

The design of our open source system is shown in Figures 2 and 3. The operating
system is installed once on the Bangle.js via Web-BLE and the apps are downloadable
via the Apple AppStore and the Google Play Store. The app forwards the data from
the smartwatch to the central server. The user interface of the app is kept simple,
the users can only select their daily activity goals and retrieve their daily activity
statistics.
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Fig. 2 Open source client-server architecture for recording human activity data. The data is recorded
by the Bangle.js smartwatch and is sent to the server daily with our app. Anonymized participant
information is sent to the server via a reverse proxy that implements SSL + Basic Authentication
This reverse proxy communicates via a REST-Api with the Postgres SQL database. The system is
designed in accordance with the SEMMA data process model [32]. (1) Sampling, (2) Explore (3)
Modify (4) Model (5) Asses. The model itself can be seen as a cycle.

The sequence diagram (Figure 3) depicts the communication in between the
architecture elements. We recorded the execution time for every communication
step, which is added to the diagram. On average, it takes 185 seconds to send one
file (approx. 200KB and 1 hour of data) from the watch via BLE to the smart device.
Afterú 45 minutes, the complete daily data is sent from the smartwatch to the server.

Smartwatch. To date, there are few open-source smartwatch designs that al-
low algorithms for detecting activities, from basic ones such as steps, sedentary
bouts, and active minutes, to recognition of particular exercise repetitions, to be
transparently implemented on a device with integrated inertial sensors. We used the
Bangle.js [37] as an a�ordable (around 50 $) low-power system that is equipped
with a Nordic 64MHz nRF52832 ARM Cortex-M4 processor, inertial sensors, a
PPG sensor, su�cient internal memory, and an internal BLE module. Our firmware
on this open-source platform is capable of storing the sensors’ raw data over a full
day, and integrate recognition algorithms – currently for steps, active minutes, and
exercise intensities – locally on the watch. Users are expected to start the data upload
process once a day, either through the web-based platform, or automatically through
their smartphone or tablet app.

Since the logging of activity data requires sampling rates from 10Hz up to as
high as 100Hz, depending on the activity, the recording of raw inertial data is
rarely implemented in a way where local recordings are routinely synchronized and
uploaded to a server. The local storage for a day’s worth of inertial data and the
energy footprint for sending this data tends to be substantial [5]. Instead, the early
pre-processing of inertial data in the aforementioned detected features (steps, active
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Fig. 3 The operating system is installed from our webtool via Web-BLE on the Bangle.js. This
needs to be executed once. The communication between Bangle.js and the app occurs on a daily
basis. The procedure needs ú 45 minutes for a full day of recording (14 hours of active time) and
ú 185 seconds for sending one file from the watch to the smartphone. The upload to the server is
executed when all files are transferred to the smartphone.

mintes, etc) takes place on the wearable devices and usually solely these aggregated
values are stored.

Detected activity-related concepts such as Active Minutes [19] have been deployed
locally on the Bangle.js smartwatch and are uploaded together with the raw sensor
data to the server through the smartphone app (or via the browser-based tool suite)
on a daily basis. We designed to fully use the watch’s 4Mb flash memory to losslessly
compress 16 bit, 12.5 Hz inertial data at +/-8g, along with other data such as the skin
temperature and heart rate.

iOS and Android App. The Activate client is implemented using Flutter. There-
fore, we are able to design and implement clients for the two major operating systems,
iOS and Android, at once. However, minor code changes are necessary to solve op-
erating system specific issues, especially with regards to the BLE connection.

The interface consists of three main views and is displayed in German language.
It was designed to encourage diabetes patients to perform more physical activities in
their daily lives. Beyond the recording of raw inertial data, it is planned for the near
future to expand this open source app to be able to annotate and detect an arbitrary
number of activities as well.

When the app starts, the participant is taken to the home screen, (1) in Figure 4.
Here, the user interface visualizes an overview of the day’s accumulated number of
steps taken and active minutes. When pressing the green button, the study participant
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Fig. 4 The smartphone’s user
interface: (1) Home Screen,
(2) Setting daily activity goals,
e.g. Daily Steps (Tägliche
Schritte) and daily Active
Minutes (Aktive Minuten),
(3) Graphical overview of
daily activities: Daily Steps
(Tägliche Schritte), Active
Minutes (Aktive Minuten),
devided into three intensities
- low, moderate and vigorous
(niedrige, mittlere, hohe
Intensität).

saves the data on the server and sets the starting time for the following measurement
(typically the next day). During the first start of the app, an anonymized user account
is created and saved in a Postgres SQL database.

On the second screen in Figure 4, the user can set their personal goals for the
day within its limits. Screen (3) in Figure 4 gives a graphical overview of the daily
metrics and shows, beside the total number of steps and active minutes, also the
active minutes sorted by their intensities.

Server. The server communicates with the client via two channels, Figure 2.
Private information about the study participants, such as gender or age, and the
confirmation of the consent form are sent via SSL and Basic Authentication to a
reverse proxy which then sends the information to the database via localhost. The
information is stored in an anonymous form. The recorded activity data, as well as
daily steps and active minutes, are sent via SSH to the server and stored in binary
files with delta compression. The activity data can then be processed and modelled
by machine learning algorithms.

Browser-based data analysis. The smartphone or tablet app and server software
described above can be complemented with a local analysis and annotation tool that
can be used by the study participants. This requires users to simply visit a website that
can connect to the watch through WebBLE and download the watch’s data locally
on the computer for further inspection or manual upload to our central study server,
through users’ own computers without the need to install software.

4 Performance Analysis

Since our software is distributed between apps that are available as a web-based
software suit or downloadable in Apple’s App Store and Android’s Play Store, the
deployment of our system is straightforward. We gave the Bangle.js smartwatches to
12 geographically-distributed study participants and recorded compliance, comfort
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rating, and reliability performance measures for our presented approach to illustrate
the feasibility of our approach, and report our findings below.

We analyzed recordings from participants over a window of five days and decided
to let them choose how many hours they recorded by letting them start and stop the
smartwatch with the app at a time of their choice. This is important because of the
age group and the profession of the subject, which entails certain active and inactive,
as well as sleep and wake cycles [9].

During the feasibility study we focused on detecting basic activity concepts such
as steps as well as the active minutes divided into the three subclasses, low, moderate
and vigorous intensity. The participants wore the smartwatch for an average of 12
hours per day. In total we collected approx. 29 MB (12*202KB*12 participants)
of raw compressed data. Basic activity classes are already recognized on the watch
without machine learning. However, since the Bangle.js has Tensorflow-Lite already
implemented on the hardware, there is an opportunity to deploy a pre-trained neural
network or machine learning classifier on the watch in the future. A recent article
[27] demonstrates how to implement this for gesture recognition.

We can demonstrate by means of our experiment that the system we have designed
can be used for data recordings in the wild without the subject being biased by the
technology worn, since the smartwatch is a commercially designed product and looks
and feels like a normal watch. Due to the 4 Mb memory limitation of Bangle.js, we
limit the inertial measurements to a 12.5 Hz sampling rate so that a full 24-hour
day can still be recorded in one cycle. We consider this sampling rate acceptable,
since activity detection is still possible at such a low sampling rate. Furthermore,
the signal can be interpolated as part of the machine learning preprocessing or the
sampling rate can be increased at the cost of shorter recordings (a 100 Hz recorded
data set corresponds to about 3 hours).

Occasionally, data uploads are hampered because of problems with a reliable
Internet connection and the Bluetooth connection between Bangle.js and app in par-
ticular. The communication flow as depicted in figure 3 has therefore been developed
for stability and has built-in recovery mechanisms that guarantee that individual files
are uploaded reliably. The current version is therefore characterized by a high relia-
bility and accessibility, but also relatively long upload times (around 45 minutes on
average for a full day’s data set). However, this seems acceptable, as the download
process has been integrated with charging the smartphone and Bangle.js smartwatch
in the nightly "charging cycle".

Bangle.js Wearing Comfort. In addition to the feasibility study of our open
source architecture’s ability to accommodate data over multiple users and in a dis-
tributed manner, we decided to investigate Bangle.js in terms of its comfort of use.
We consider this to be important, since the success of a study is directly dependent on
the acceptance of a device. We use the Comfort Rating Scale (CRS), a questionnaire-
based method proposed by Knight et al. [21], as a well-known and state-of-the-art
method to evaluate the wearing comfort of wearable devices in particular.

The Bangle.js smartwatch was rated (as Figure 5 shows) overall as comfortable
to wear without restricting its users. However, users can feel the device on their wrist
due to its larger size (5 x 5 x 1.7 cm case) and weight. The device is heavier and
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Fig. 5 CRS result means and standard deviation. Emotion: 2.04, 0.56; Attachment: 5.68, 2.39;
Harm: 3.18, 1.84; Perceived Change: 2, 1.49; Movement: 2.86, 2.75; Anxiety: 1.04, 0.39.

more bulky than most commercial wrist-worn products, which may lead to slightly
negative wearing comfort and perhaps more di�cult acceptance in larger future
studies. We consider this an acceptable trade-o�, as only one person in the study
reported that the watch had a strong negative emotional impact on them, and that
they would have liked to take it o�.

5 Conclusions

The use of low-cost and open-source systems is essential for future machine learning
applications. Only through the development and use of such systems it will be
possible to generate the required amount of data to train a neural network to be
used in a real-world context in a generalized way. Many publications show new and
exciting methods in dealing with human activity data, however, these methods are
always evaluated on the same datasets mentioned before. This creates a bias in our
scientific domain, which can only be eliminated by publicly available, understandable
and reusable implementations for data collection.

The already available open-source platforms and systems presented in chapter
2 are either smartphone-based or smart-home based solutions. Smartwatch-based
solutions are mostly prototypes, which are not meant to be distributed in scale and
not open-source. Due to its open-source architecture, the use of the Bangle.js wrist-
watch combines the advantages of a product while having an open architecture that
is fully documented. Our custom operating system as well as the client-server archi-
tecture can serve as a starting point that can later be modified or further developed
accordingly. Due to the low purchase price, the device can be used in projects with
a smaller budget or in need of a larger group of users. In contrast to a self-developed
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prototype, where the wearing comfort is often not the main interest, the Bangle.js
was confirmed to o�ers a high acceptance by study participants in our study using
the comfort rating scale (CRS). We argue that this aspect also contributes to the long-
term success of a scientific study and the scope, quality, continuity and reliability of
the produced dataset.

Commercial products tend to not open the algorithms used, and do not give
researchers the same insights in recorded data as a fully open-source implementation
does. Therefore, we made the source code of the smartphone app as well as the
smartwatch operating system available for download and inspection under the MIT
licence, to encourage other researchers to replicate and improve on our approach:
https://github.com/ahoelzemann/activateFlutter,
https://github.com/kristofvl/BangleApps/blob/master/apps/activate/app.js
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