
An Embedded and Real-Time Pupil Detection Pipeline
Ankur Raj

Ubiquitous Computing
University of Siegen
Siegen, Germany

Diwas Bhattarai
Ubiquitous Computing
University of Siegen
Siegen, Germany

Kristof Van Laerhoven
Ubiquitous Computing
University of Siegen
Siegen, Germany

ABSTRACT
Wearable pupil detection systems often separate the analysis of the
captured wearer’s eye images for wirelessly-tethered back-end sys-
tems. We argue in this paper that investigating hardware-software
co-designs would bring along opportunities to make such systems
smaller and more efficient. We introduce an open-source embedded
system for wearable, non-invasive pupil detection in real-time, on
the wearable, embedded platform itself. Our system consists of a
head-mounted eye tracker prototype, which combines two minia-
ture camera systems with Raspberry Pi-based embedded system.
Apart from the hardware design, we also contribute a pupil de-
tection pipeline that operates using edge analysis, natively on the
embedded system at 30fps and run-time of 54ms at 480x640 and
23ms at 240x320. Average cumulative error of 5.3368px is found on
the LPW dataset for a detection rate of 51.9% with our detection
pipeline. For evaluation on our hardware-specific camera frames,
we also contribute a dataset of 35000 images, from 20 participants.

KEYWORDS
Pupil Detection, Embedded Systems, EdgeAnalysis, Near EyeDataset

1 INTRODUCTION
Eye tracking applications have generated several commercial prod-
ucts [18, 37], initially for complementing user surveys or improving
designs in shopping centres, products and advertisement place-
ments [10]. In automobiles it has similarly been used to measure
drivers’ fatigue [14, 17]. Eye tracking is an especially important
modality, as it has become ubiquitous in commercial products and
serves many applications: it has been used to study users’ visual
attention [2], sleep detection and emotional state, and shows im-
mense promise in Augmented Reality (AR) and Virtual Reality (VR)
applications for foveated rendering [31], i.e., increasing the amount
of detail in images based on the user’s focus or fixation points.
It includes behavioural information like visual-attention [4, 42],
emotional state [23] as well as medical information. Eye tracking
products also increasingly become smaller and more efficient, as
they are integrated in mobile and wearable devices as an additional
biometric, for instance for unlocking a smartphone [30]. Crucial
to any eye tracking device is the pupil detection step, which is
needed before performing other routines such as eye tracking, gaze
estimation, and developing interfaces based on eye movement.

Pupil detection has been researched extensively, leading to many
commercial eye trackers being available [18, 37] nowadays. These
provide their end users with APIs (Application Programming Inter-
face) for collection of data and performing eye and gaze tracking.
Such eye trackers tend to be expensive and platform-specific, focus-
ing strongly on high-end camera features to cater for all potential
users. We argue in this paper that for many applications, the re-
sulting high-speed and high-resolution cameras might prevent a

light-weight and energy-efficient pupil detection pipeline. For such
cases, we propose an approach that uses a miniature and low-cost
hardware design, which can be replicated by others with minimal
effort. For the software design, we developed an embedded and
real-time pupil detection pipeline based on edge analysis, and con-
tribute a dataset of near eye images taken from this hardware for
validation. We thus present a comprehensive hardware-software
open-source framework that allows researchers to holistically de-
sign their own pupil tracker. The major contributions of our paper
can thus be summarized as follows:

• We present an embedded hardware design for embedded
eye tracking, based around commercial andwidely available
camera modules and a Raspberry Pi platform.

• We developed an open-source pupil detection pipeline that
can run natively on the Raspberry Pi, in real-time.

• We created a benchmark dataset of near-eye images with
our hardware design, from people of different ethnicity,
gender, eye colour and age.

• We evaluate our pipeline on this dataset and a public one
[38] for performance in detection speed and accuracy on
an embedded platform.

Figure 1: The 3D-printed hardware setup connects two cam-
eras through USB and CSI, along a LED power delivery using
GPIO to the Raspberry Pi Model 4 B. The bottom-right image
shows the front view of the hardware while worn.

https://orcid.org/1234-5678-9012


Raj, Diwas, and Van Laerhoven

The remainder of this paper is structured as follows: In section
2, the state-of-the-art in this field is described, where we focus
particularly on existing detection methods and different hardware
setups, as well as on state-of-the-art datasets used in eye tracking.
We position our contributions among these. In the following section
3, the design methodology for the hardware and the detection
method that we designed to work on the embedded system are
presented, as well as our strategy for the creation of a near eye
benchmark dataset. This is followed by the evaluation (section
4), which contains the validation of our detection pipeline on the
proposed hardware, and also contains the performance of the pupil
detection on an existing state-of-the-art public dataset. We finally
conclude this paper in section 5 where we discuss the main results
and give an outlook on this research.

2 RELATEDWORK
Eye tracking and pupil detection depends on various components.
In this section, we introduce the closest areas in eye tracking re-
search, particularly the hardware elements that capture images of
the eye, the detection pipeline to analyze those images, and avail-
able datasets that are used to measure the performances of the
detection strategies. Several pupil detection and gaze estimation
methods have been introduced over these past years and numer-
ous researchers have used different methodologies, ranging from
blob detection [15], edge analysis [6, 18, 34] to machine learning
[7, 19, 20] based approaches. We focus here on pupil detection as
a first step towards creating an eye tracking and gaze estimation
setup. Prior research has focused on developing a fast and accu-
rate pupil detection pipeline, that could also work in a variety of
challenging scenarios.

2.1 Eye Tracking Hardware Designs
Any pupil detection strategies are highly dependent on the hard-
ware being used for capturing high resolution images of the eye,
especially in different lighting conditions, frame rate, and position
of the camera. Due to these parameters, the final detection method
heavily relies on the selection of the hardware setup. Such setups
that are commonly used for pupil detection can be divided into
two sub-categories; (1) Remote Eye Setup and (2) Near Eye Setups or
Head Mounted Camera systems.

Remote Eye Hardware setups have the camera situated away
from the participant. It can follow both a multiple camera [1, 28]
or a single camera [12, 26] design. Free movement of the user’s
head is allowed within a fixed range. The camera images of the
eye, head and posture of the whole body is captured with these
systems. They provide high resolution cameras with high frame
rates (>500 Hz), with some commercial eye tracking systems even
reaching frame rates of more than 1000 Hz [36]. These high frame
rates are not usually observed with the near eye setups. The remote
setups are useful in making inferences about the behaviour of the
user, like visual-attention [2], drowsiness, and fatigue [13, 32, 39],
which could be essential in sending alerts if an automobile driver
becomes drowsy [13]. Hardware designed by researchers includes
custom remote eye tracking setups such as [11, 12, 26], mostly
due to its own feature requirements and the expensive commercial
alternatives. A recent open-source setup is RemoteEye [12], which

provides a high-speed eye tracker that could achieve frame rates of
more than 500 fps [12] during pupil detection, and provides a gaze
estimation accuracy of 0.98 degrees, on average [12]. It provides
a low-cost alternative to commercial high speed remote camera
systems.

Near Eye Hardware Setups or head mounted camera system uses
an eye tracker headset with one (monocular) or two (binocular) eye
cameras and/or a world camera. It can be enclosed e.g. VR setups
or can be open e.g. Google Glass or Microsoft Holo lens. Addition-
ally, it has numerous infrared LEDs to provide consistent lighting
and contrast between pupil and iris. The setups also use USB or
other wired/wireless connectivity. The near eye tracker is mobile
and could capture higher detail images of the eye. Researches have
made their own near eye trackers from commercial components.
The authors [27] modified safety glasses to attach analogue cameras
and IR LEDs to create an invasive eye tracking system, where the
point of gaze is estimated offline. openEyes [22] is an open source
eye tracking contribution that uses two IEEE-1394 web cameras
(640x480 @ 30 Hz) for synchronised frames and Starburst detection
algorithm. The authors [33] have extended the framework with the
ability to seamlessly switch from watching the pupil/iris border in
bright light to tracking the iris/sclera boundary (limbus) in low light.
Researches have disassembled web camera like Microsoft LifeCam
VX-1000 to create a low-cost DIY eye tracker [25]. The Newer eye
trackers include frames that are 3D printed [3, 24] and use strobo-
scopic lighting [3]. Furthermore, research has also been performed
on a low-cost hardware to produce a smart eye tracking system
[16], that connects with a wheelchair to assist elderly people in
gaining mobility via smart commands. Another study implement-
ing an embedded system (Raspberry Pi) in eye tracking is from
the author(s) [5], where the open-source gaze tracking software
(openGazer) [41] has been extended upon and tested for evaluation
on an embedded device. Other well-known commercial products
for near eye tracking are from Pupil Labs [7, 18] and Tobiipro [37].

As suggested by the authors of [12], one disadvantage of the near
eye system is lower frame rates (30Hz - 120Hz), which hinders in the
application of robust saccade and micro-saccade detection. So far,
only limited research exist in using a head mounted, multi-camera
eye tracking system incorporated within a fully embedded system,
whereas this field is particularly interesting because it would grant
more mobility to the end user, as the device would be portable
enough that it can be carried along or be worn by the user.

2.2 Pupil detection methods
Historically, a majority of pupil detection methods employ a range
of well-known computer vision techniques. They predominantly
rely on edge detection methods, thresholding, and morphological
filtering to locate the pupil in the current image. Recently, more
end-to-end machine learning based approaches have gained in
popularity and are also being used for pupil detection. Any of these
methods have to face similar challenges while performing pupil
detection, however, with pupil detection being mostly hampered
by challenges that include:

• reflection in eye images due to external lighting
• blury images due saccade and micro-saccade
• poor contrast between iris and pupil



An Embedded and Real-Time Pupil Detection Pipeline

• obstruction/occlusion in pupil view due to eyebrows, eyelid
and/or eye wear.

A well known computer vision based pupil detection pipeline
is proposed by Lech Świrski et al. [35]. In this pipeline, the input
image is first convolved with a HAAR-like feature to have a max-
imum response within the image. This convolution operation is
repeated for different user-defined radii sizes. The radii with maxi-
mum response is used as a pupil region. The pupil is identified in
this region by k-means clustering on the histogram, followed by
edge detection using canny filter to finalize the boundary. Lastly,
a Random Sample Consensus (RANSAC) ellipse fitting is used to
detect the pupil. PupilLabs [18] follow an approach for pupil detec-
tion that is similar to the pipeline used in article [35]. After ROI
estimation and edge detection, filtering of edges is performed based
on histogram analysis and removal of any spectral reflection. The
contours are then connected, and ellipse fitting is performed on the
identified pupil.

In another study [15] a detector using threshold operation has
been proposed. After the identification of pupil segments, a convex
hull operation is used to enclose the segments and the enclosure is
used to identify the centre of pupil. ExCuSe [6] is yet another well
known state-of-the-art method for pupil detection in real world
scenarios. It uses two different approaches to find the pupil, being
edge detection and thresholding. If there is a peak in the bright
region of the histogram analysis, detection can be performed using
edge analysis [6, 8]. PuRe (or Pupil Reconstructor) is also an edge-
based detector that uses edge segment selection and conditional
segment combination schemes to perform pupil detection [34].
Additionally, it provides a confidence measure (𝜓 ) for the selected
ellipse.

Machine learning based methods are known to be used in the
research of pupil detection and gaze estimation. The ML based esti-
mators use features for training a neural network model to locate
the pupil and determine the gaze. Convolutional Neural Network
(CNN) and VGG are the commonly used ML models. A CNN based
ML model is NVGaze [19], it provides accurate pupil detection and
gaze estimation on synthetic as well as real near eye images. It ihas
little modifications, depending on the application. The model in-
cludes 6 - 7 convolutional layers each with 2×2 stride, and dropout
layers after each convolutional layer, and no padding or pooling.
PupilNet is another well known CNN based detector [7]. It uses du-
alCNN pipeline, where one network coarse estimates the location of
pupil and the other network fine positions on this estimate to have
a final localisation of pupil. Estimation for occluded eye images due
to eyelids, wearables or even reflections make the pupil detection a
difficult task. EllSeg framework [20] also offers a method to segment
the entire elliptical structure containing the iris and pupil, hence
providing pupil detection on highly occluded images. The EllSeg
framework can be used with any encoder-decoder architecture, as
well.

2.3 Datasets: Pupil & Gaze Estimation
With the rise in augmented reality and virtual reality applications
and machine learning (ML)-based estimators, there are now more
publicly available datasets, containing images or videos of Near In-
frared (NIR) [38], remote eye images [21] and simulated eye models

[19], with manual annotation of pupil position. Table 1 contains
some of the most well-known state-of-the-art datasets for pupil
detection and gaze estimation to provide an overview of their fea-
tures.

LPW or Labelled pupil in the wild [38] contains 66 high quality
videos from 22 participants, where the videos were recorded using
a head mounted camera system [18]. The dataset is collected under
varying lighting conditions, both indoors and outdoors, at 95𝑓 𝑝𝑠 .
The pupil location is manually labelled inside the dataset. Gaze
estimation is not part of the dataset, but it contains pupil centre
location annotation for each frame.

NVGaze [19] contains near eye images in infrared lighting. It
has both synthetically generated data (2M images at 1280×960) and
real-world data (2.5M images at 640x480) collected from 30 subjects.
Synthetic data was rendered from 3D models [40] under active
illumination with 4 IR LEDs, with each image labelled with 3D
eye location, 2D pupil location and 2D gaze vector. The synthetic
dataset contains exact segmentation for sclera, skin, pupil and iris.
The real-world data consists of binocular images captured from a
120Hz camera. The data is collected under two separate conditions,
with users performing acuity tasks. One using VR hardware with
IR illumination, and the other using a head mounted setup for AR
with varying infrared intensity, emulating a real world scenario
with varied lighting conditions.

GazeCapture is a dataset that is used for gaze estimation [21].
It is a crowd-sourced project where users capture their images
using mobile devices like phones and tablets. The subjects use the
mobile application to capture images of their face while they look
at markers on the screen. The images are captured in a variety of
lighting conditions, making it a diverse dataset. There are more
than 2.5M images in the dataset. Since the images are taken in
different lighting conditions and from a remote device (mobile
phone or tablet), near eye images of the pupil are not part of this
dataset. The dataset also contains motion data from the mobile
device (accelerometer, gyroscope, manometer) captured at 60Hz.

Open EDS [9] contains near eye infrared images in a controlled
environment. The images were captured using a VR headset that
has been modified to capture images in 200 Hz. The dataset contains
binocular images with a subset of images that have pixelated anno-
tation of eye regions (eyelid, pupil, iris). These annotations were
made using ellipse selector as well as manual annotators. Since this
dataset contains not only the centre of pupil but also annotation for
each region of eye on real-world participants, it becomes a novel
dataset for training ML and non-ML based detectors.

3 METHODOLOGY
The eye tracking hardware is the central component of this paper,
which provides near eye infrared images in high quality that would
be used for our pupil detection pipeline. It is important to have a low-
cost and open-source hardware platform that makes it accessible
for any researchers to incorporate and eye tracking in their projects.
We have created a custom monocular hardware design that has an
eye camera and a world camera. The work from the pupil labs [18]
and previous eye trackers [22, 27] served as an inspiration for this
hardware design.



Raj, Diwas, and Van Laerhoven

Table 1: State-of-the-art publicly available datasets, the lighting conditions within these datasets can be varied i.e. indoors and
outdoors. For article [9] a controlled environment is created to capture the images inside a VR headset.

Dataset Number of images Lighting conditions Hardware used YOP Gaze Direction

GazeCaptue [21] 2.5M Indoors and outdoors Mobile/tablet camera 2016 yes
NVGaze [19] 2.5M real and 2M synthetic Indoors with varied lighting VR headset and a head mounted camera

640x480 @ 30 Hz and 1280x960
2019 yes

Labelled Pupils in the
wild [38]

130,856 Indoors and outdoors Head mounted camera; 480x640 @ 95 Hz 2016 no

OpenEDS [9] 356,649 Indoors, in a controlled en-
vironment

VR headset; 400x640 @ 200 Hz 2019 no

The eye tracker can be divided into 3 major components, the
frame, the camera systems & their connection, and the compute-
device. Except the compute device, all the components are attached
to the eye tracker frame. The frame of the eye tracker draws inspi-
ration from safety eyewear and DIY eye tracker from Pupil Labs,
and can be worn as an accessory. The eye tracker headset/frame is
designed in a 3D modelling software and is 3D printed using PLA
as a print material. Individual camera support holders are printed
separately and joined together via snap connectors. The eye tracker
is monocular and the frame incorporates a holder for the world
camera (fig 1).

The camera system can be further subdivided into the eye camera
and world camera. The eye camera is a Raspberry Pi Zero camera
with an OmniVision OV5647 camera sensor from Sparkfun. It is a
fixed focus 5 MP camera that supports VGA(640x480) @ 90Hz and
720 p@ 60Hz. The focus of the camera is manually modified to have
it capture near images of the eye. The eye camera (Pi Zero NoIR)
supports taking images in infrared lighting, as it is build without the
infrared blocking filter and an infrared LED array is created with
SFH 4050-Z from OSRAM Opto Semiconductors. The world camera
(Logitech HD-C615) takes images of the subject’s Field of View
(FOV), this commercial camera needs to be disassembled first to be
attached with our headset. It supports 1080p/30fps and 720p/30fps
resolutions.

The central processing module is a Raspberry Pi model 4B, a
miniature and low-cost single-board computer made by from Rasp-
berry Pi foundation that runs on a Debian based Linux distribution
(Pi OS bullseye). This board is used to perform pupil detection lo-
cally, on the . It has an ARM Cortex A72 64-bit SoC @ 1.5GHz and
4 GB of RAM. The compute-device provides the necessary interface
to our cameras and LED array. The eye camera is connected to a
camera adapter to be later connected to the compute device with
a CSI cable, the world camera is connected with a USB cable to
the compute-device, and the IR-emitter is controlled with GPIO
connections to the Raspberry Pi.

The hardware is used to acquire the near eye images in IR light-
ing, with the initial constraint of having a detection method to
be able to run on our embedded device. We wanted our detection
strategy to have as few components as possible, such that it would
not be computationally expensive and would not stall the processor
of the Raspberry Pi. This motivated us to create a custom ellipse
fitting method, which is not computationally expensive and also
provides detection of pupil in a variety of edge cases. The ellipse fit-
ting methods use edge detection to find contours in the image, and

from these contours the contour representing the pupil is identified
and segmented. Figure 2 shows our pipeline components, which is
similar to one presented by the authors of [6] and relies on edge
features of the images to find the pupil in the initial image. The
pupil is assumed to be dark and have a distinguishing boundary as
compared to the iris when illuminated by the infrared LED lighting.

Preprocessing. The initial image is captured in infrared lighting
of resolution 480x640 or 240x320 px. This image is cropped for the
Region of Interest (ROI), and contains the region of eye including
the eyebrows and eyelashes. The ROI cropped image is converted to
greyscale and is blurred using amedian blur filter with a fixed kernel
size (𝐾𝑏𝑙𝑢𝑟 ). Canny edge detection with intensity threshold (𝑇𝑐𝑎𝑛𝑛𝑦 )
is performed to obtain the edges of the image. A morphological
open operation is used to reduce the intensity of the eyelashes [35].

It is important to note at this poit that the choice of the canny
edge detector intensity (𝑇𝑐𝑎𝑛𝑛𝑦 ) and median blurring (𝐾𝑏𝑙𝑢𝑟 ) could
lead to images with various goodness in edge response. It is there-
fore crucial to find a set of𝑇𝑐𝑎𝑛𝑛𝑦 &𝐾𝑏𝑙𝑢𝑟 values that would produce
the best identifiable edges for pupil. This is investigated in section 4.
Once we have an image with clearly identifiable features for pupil,
morphological operations are performed to find which edges could
correspond to pupil.

Filtering contours for pupil detection.

(1) After the determination of initial edges in the frame with
preprocessing, the contours inside the frame are identified
and filtered to correspond to the pupil. For this, an estima-
tion of the closed area of the contour is made using convex
hull operation. This ensures that, only close contours are
considered as a prospective pupil, hence, straight line edges
are discarded.

(2) The area of the closed contour is used as a filtering strategy,
since the pupil size in a frame is usually found to be constant
or lie in a range (MAX_PUPIL_SIZE & MIN_PUPIL_SIZE).
Based on this, we obtain a list of closed contours that could
correspond to pupil.

(3) Filtering is then performed based on circularity of the closed
contour. The eye-camera is in front of the subject’s eye,
leading to the pupil appearing circular. Therefore, we can
filter the contours which do not lie above a circularity value
(𝑇𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 ). The circularity is calculated by formula 1.

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦_ℎ𝑢𝑙𝑙 =
(4 ∗ 𝜋 ∗ 𝑎𝑟𝑒𝑎_ℎ𝑢𝑙𝑙)
𝑐𝑖𝑟𝑐𝑢𝑚𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_ℎ𝑢𝑙𝑙2

(1)



An Embedded and Real-Time Pupil Detection Pipeline

Table 2: List of components in the Eye Tracker with all the component being available commercially, where the headset is
created using a custom design, that could accommodate the camera system. The 3D model design of the headset can be found
in this repository : https://github.com/anonymized.edu/pupiltracker

Components Product Name Specifications

Eye Camera Pi Zero Camera NoIR 5MP VGA(640x480) @ 90Hz and 720 p @ 60 H
World Camera Logitech HD-C615 1080p/30fps and 720p/30fp UVC complient

Compute Embedded Device Raspberry Pi model 4 B ARM Cortex A72 64-bit SoC @ 1.5GHz, 4 GB RAM
Headset Custom 3D printed design

Emitter IR-LEDs OSRAM SFH 4050-Z

Figure 2: Our pupil detection pipeline, which is implemented in Python3 and makes extensive use of the OpenCV library [29],
is made available open-source. It uses ellipse fitting, where the input image is capture in infrared lighting, and confidence on
the parameter selection for canny (𝑇𝑐𝑎𝑛𝑛𝑦) and blurring (𝐾𝑏𝑙𝑢𝑟 ) is performed using the parameter estimation routine (sec 4.2).

With these operations a closed contour is identified, that lies
within the estimated area of pupil, and is above a circularity thresh-
old value. Now an ellipse can be fitted onto the identified closed
contour. Estimation of the centre of the pupil can be made on the
selected contour.

The third component of a detection system is the dataset of im-
ages, which can be used for analysis of different detection methods
and can be tested with different computer architectures. It is com-
mon in the research area of eye tracking to create a dataset specific
to the hardware configuration [19, 38]. Since our DIY hardware
is made from off-the-shelf components, there is no publicly avail-
able dataset that is specific to our camera selection. The images
are obtained in two different resolutions, i.e. 480x640 and 240x320
px. The lower resolution images are useful when we would like to
have a faster detection system, as it reduces the IO operation time.
The higher resolution images are useful when we would want to
have more details on our images, i.e. edges are more prominent.
All the images for the dataset are taken in indoor conditions with
an open window and/or incandescent lighting in the room. The
display/monitor is also a source of light during this experiment.
The setup represents a normal indoor condition where there could
be light coming from different light sources, instead of a controlled
environment.

Two different approaches are taken for data collection. First, a
fixedmarker locationwhere positional markers are added to a screen,
the participants are asked to look at fixed positional markers on the
display. A constant distance of 60 cm from the screen is maintained
while performing the experiment. Second, free movement where
the participants are asked to perform a clockwise/counterclockwise
movement of the eye, maintain gaze towards different objects. The
participants maintained a fixed head pose while they performed
both the experiments.

In Dataset Marker Location, fixed positional markers are dis-
played on a monitor of resolution 1920x1080 px. The participants
are asked to look at these marker locations sequentially (figure 3).
For each marker location, 30 images of the participant’s eye are
captured. Since the participants are told to look at the marker loca-
tions, there are only a few blinks while performing the experiment.
And the participant maintained a constant gaze. In total 150 images
are captured per session of the data collection. The participants per-
formed one experiment for the higher resolution (480x640 px), and
then repeated the same procedure for a lower resolution (240x320
px).

Dataset Free Movement is the second data collection procedure,
the participants are not asked to look at fixed markers, but instead,
they are encouraged to look in different directions while main-
taining a fixed head position. The participants rolled their eyes in
clockwise and counterclockwise, moved their eye randomly, and
sometimes even fixated on different objects in the room. The aim
of this method is to get more edge case data, where the participants
are not bound to a fixed location marker or even keep their eye
open, during the entire length of the experiment. The data collec-
tion is also performed for two different resolutions (640x480 and
240x320 px), and 300 images of the eye are taken in each session.
The free_movement procedure provided images where there is blink-
ing, occluded eyes and blurry frames. These images are helpful in
performance evaluation of the pupil detection pipeline.

4 EVALUATION
The ellipse detection pipeline is evaluated with the LPW dataset
[38], it provides near eye infrared images of 22 different participants.
The image repository of each participant contains near eye images
(2000 frames) in different lighting conditions, which are called
parts in the dataset. We use the term "use case" to represent the

https://github.com/anonymized.edu/pupiltracker


Raj, Diwas, and Van Laerhoven

Figure 3: Study participants perform the experiments, while
these run completely on the embedded system itself. The
Raspberry Pi (left) acquires the images, while in the fixed
marker location experiment each participant would start
from the top left marker location, and would go to top right
marker, followed by central marker, then bottom left marker,
and finally bottom right marker. Displayed here are all mark-
ers and the real-time eye camera feed, which is not displayed
to the participant while performing the experiment.

Figure 4: Cumulative error distribution for our ellipse detec-
tion method on the LPW dataset [38] up-to 20px error. The
detection rate distribution at 5px and 10px is shown in the
right.

parts in a participant repository, for example, use case LPW/P1/P9
represents Participant 1 Part 9 of the dataset. Since the LPW dataset
has a lot of challenging images e.g. outdoors, participants with
prescription glasses, reflections and shadows, it is therefore selected
as a benchmark for testing our pupil detection pipeline.

4.1 Model Evaluation
The Euclidean distance or L2 norm is used as a method for testing
the accuracy of the model. The error between the evaluated centre
of pupil from our detector and the actual centre of pupil is calculated
for every participant in the dataset. The initial frame from each
participant (480x640 px) is cropped for region of interest (ROI) and
the default processing is used. Changes are only made to the𝑇𝑐𝑎𝑛𝑛𝑦 ,
𝐾𝑏𝑙𝑢𝑟 and the size of pupil to perform detection.

Our ellipse detection pipeline performed at a cumulative accu-
racy of 38.21% with less than 5px error and 43.6% with less than

10px error and an overall average accuracy of 51.9% at 5.3368 px.
The detection rate is comparable to Pupil Labs, ExCuSe and Świrski
of 30% detection rate with lower than 5px error on LPW dataset
[38]. Our detection method stagnates after 20px error at close to
50% accuracy on the LPW dataset. However, the current ellipse
detector is able to perform near accurate detection on complicated
dataset without using any extensive feature extraction method e.g.
HAAR or ML based operation. The LPW dataset contains challeng-
ing images that have high reflections, strong shadows and eyelid
occlusions [38]. Images in outdoor scenarios can be challenging,
especially in case the participant is wearing prescriptive glasses,
resulting in strong reflections. This is one of the reason for the
lower detection distribution of less than 10% in these extreme cases
(fig 4). One example of this case is with LPW/P5/P6, where the pupil
is obstructed with eye wear, another example is LPW/P20/P7 where
the pupil is not in focus resulting in weak edges for pupil. For some
use cases, as suggested in PuRe [34], detection accuracy can be
improved by readjustment of the position of eye camera.

4.2 Parameter Estimation
As discussed before, the embedded edge detection pipeline, works
on pre-determined set of parameters for Canny threshold (𝑇𝑐𝑎𝑛𝑛𝑦 )
and Median blur kernel size (𝐾𝑏𝑙𝑢𝑟 ). Since there are multiple com-
binations of 𝑇𝑐𝑎𝑛𝑛𝑦 & 𝐾𝑏𝑙𝑢𝑟 that could be used for pupil detection,
it is important to find the best parameter set that could provide de-
tection for most cases. To achieve this goal, a parameter estimation
routine is created that uses a variety of near eye images to produce
the best estimate on these parameters (𝑇𝑐𝑎𝑛𝑛𝑦 & 𝐾𝑏𝑙𝑢𝑟 ).

4.2.1 Procedure for parameter estimation. All near eye infrared
images of each participant are stored in a separate directory. Only
images that have a visible pupil are stored in the working directory.
Edge cases that have less than 50% of the visible pupil, closed eye
and/or high reflections are omitted, since they could affect the
parameter estimation result, and there might be no pupil detection.
The objective of the procedure is to have images where the pupil
detector is bound to work, and if there is no definitive pupil in the
image, there would not be any detection, which could add a penalty
to the loss parameter. Next, using a list of threshold and kernel
size values, the routine takes a combination of 𝑇𝑖 & 𝐾𝑖 values and
uses it to perform pupil detection on all the images in the working
directory. The program then calculates a loss for each image or
frame in the directory, this gives an estimate on how good the
pupil detection was for this combination. The loss parameter 𝐿 is
evaluated as :-

𝐿 = 𝑁𝑐 +𝐴𝑚𝑖𝑛 +𝐶 (2)

The loss formula is a confidence measure for the ellipse detection
strategy, and gives an estimation on the goodness of the selected
parameters. The components of loss criteria include:
𝑁𝑐 : Number of initial contours, is high in case there are more

edges in the input image. This happens due to a lower𝑇𝑐𝑎𝑛𝑛𝑦 value
(see fig 5), due to which the calculated loss (𝐿) is high. Therefore, it
is computationally more expensive for our embedded system, and
thus it is penalized. For a higher median blur kernel size (𝐾𝑏𝑙𝑢𝑟 ),
𝑁𝑐 is lower in comparison to a low 𝐾𝑏𝑙𝑢𝑟 value.



An Embedded and Real-Time Pupil Detection Pipeline

𝐶 : Constant for no contour determination. If no contours/edges
are identified in the initial image i.e. 𝑁𝑐 = 0, there is no possibility
to look for a contour that could correspond to pupil. This occurs
due to a high 𝑇𝑐𝑎𝑛𝑛𝑦 value, therefore, the calculated loss value
(𝐿) is a constant (C) penality of 1000. This penality is empirically
determined for the resolution 480x640 px.
𝐴𝑚𝑖𝑛 : Area difference between convex hull and fitted ellipse, is

a measure of goodness in the fitted ellipse and convex hull. If this
measure is high, there is a significant area difference between them,
therefore the choice of 𝑇𝑐𝑎𝑛𝑛𝑦 & 𝐾𝑏𝑙𝑢𝑟 is not effective. If the area
enclosed by the convex hull and the area of the fitted ellipse are
close to each other, (𝐴𝑚𝑖𝑛), becomes minimum. In case of evaluation
of 𝐴𝑚𝑖𝑛 , there are contours present in the initial image, i.e. 𝐶 is
evaluated as zero.

As can be seen in figure 5, the value 𝑇𝑖 = 14 and 𝐾𝑖 = 15 are the
best parameters for estimating pupil in subject 04, image resolution
(480x640 px). Using this method, we can visualize the selection of
parameters that could perform well in the pupil detection pipeline.
It is recommended to find the best parameters (𝑇𝑐𝑎𝑛𝑛𝑦 & 𝐾𝑏𝑙𝑢𝑟 ) for
each subject before performing pupil detection.

Figure 5: Confidence on parameter selection (𝑇𝑐𝑎𝑛𝑛𝑦 & 𝐾𝑏𝑙𝑢𝑟 )
for Subject 04 from our dataset based on the loss formula (eq
2). The parameters𝑇𝑐𝑎𝑛𝑛𝑦 = 14 & 𝐾𝑏𝑙𝑢𝑟 = 15 display an overall
better detection rate.

4.3 Runtime & Memory Consumption
Embedded devices are limited in terms of memory and compute
resources. It is therefore important to make sure that our programs
are not stalling the device by consuming a lot of resources. Our
embedded compute device i.e. Raspberry Pi 4B @ 1.5 GHz, 4GB
RAM, has enough compute resources to perform our low weight
detection method. But performing any graphic intensive processes,
could lead to stalling or even crashing of some programs due to low
memory. The pipeline for detection method is made using Python
and the experimentation was performed on a GUI based operating
system. The pupil detection pipeline (python3 kernel) uses around
100MB of memory and 30 - 35% of the CPU resources to perform
detection on 480x640 px initial image, and 90MB memory with 28
- 30% CPU resources for 240x320 px. Both of the detections were
performed on 30 fps. This can be further improved as the pupil
camera supports 90 fps.

The time required for each process in the detection pipeline is
measured using software timestamps. Python’s standard library

was used for calculating process timing using a monotonic CPU
process timer. The time measurement calculation is performed for
100 frames, where the participant wore the hardware while the
detection method is running. The time estimation is made for both
image resolutions, 240x320 and 480x640 px. The parameters used
for both the resolutions are mentioned in table 4.

The edge based pupil detection pipeline (fig 2), consists of various
components like pre-processing, finding of contours, filtering of
contours, and post-processing. Figure 6 shows the breakdown of
time required by each component in pupil detection in a boxwhisker
plot on a linear scale. It also shows a comparison of time required to
perform pupil detection by different resolutions. The left image is
for a higher resolution and the right image is for a lower resolution.
As can be seen from figure 6, there is a strong difference in finding
pupil for both the resolutions while performing the experiment
on the hardware. For the lower resolution, the complete operation
took 22 ms (median value) for one frame, while it took 50 ms/frame
for the higher resolution. The experiment was carried out without
any overclocking or acceleration on the Raspberry Pi embedded
hardware. For both the experiments, the blurring operation took
a significant portion of the total time required for the complete
detection process.

Our results have also shown that for the lower resolution of
240x320 pixels, the blurring operation has only a minor impact. The
detection rate per 100 images for both with and without blurring
is the same, i.e., 92 out of 100 frames. This is due to the in-camera
downsampling of the image, which leads to an inherent addition
of blurring for the lower resolution setting, whereas for the higher
resolution of 480x640 pixels, the blurring operation contributes a
more significant part of the detection process: Without the blurring
operation, the pupil detection performance is lower, with 25-30
frames out of 100 frames, while with the blurring process added in
the pipeline, the detection percentage increases to approximately
60-70 frames out of 100.

4.4 Dataset
To study the effect of images taken with our proposed embedded
platform, we have collected 36153 near eye images with our hard-
ware from 20 participants. We have collected images from people
of different ethnicity and age groups and made it as generic as
possible to test different pupil detection pipelines. Table 5 contains
some key features about the collected data. The procedure of data
collection contains two different strategies that allow us to have
a diverse set of images, which have been motivated in section 3.
The dataset from fixed marker location can be used as a calibration
dataset, containing images of different participants looking at the
screen from a fixed distance, or can be used for parameter estima-
tion. The free movement images provided enough variations to our
dataset and gave us edge cases with blurry images, reflections and
close/occluded eye.

Figure 7 displays several example images from the fixed marker
experiment of the participants, where the participants’ gaze is to-
wards the set markers. Due to this setup, there are almost no images
where the participant is either blinking or rolling their eye, thereby
providing images that can be used as a calibration method for the



Raj, Diwas, and Van Laerhoven

Table 3: Average resource consumption during real time ellipse detection at 30𝑓 𝑝𝑠. The memory consumed, and CPU usage
varied depending on the type of operation being performed e.g. writing pupil centre locations to a file or displaying a GUI
image for pupil detection. These calculations were made with no GUI display and file operations.

Experiment Size of initial image (px) Memory Consumed (python3 kernel) CPU

Ellipse detection for 1000 frames 240x320 80-90 MB 28 - 30%
Ellipse detection for 1000 frames 480x640 100 MB 30 - 35%

Figure 6: The time required for pupil detection, in linear scale for both resolution settings of 480x640 px (left) and 240x320 px
(right). The time measurement is performed on the Raspberry Pi embedded device. Blurring (pre-process) constitutes a
significant amount of time, compared to the other steps in the pipeline, accounting for around 50% in the high and 35% in the
low resolution settings.

Table 4: Parameter selection for computing the time require-
ment for pupil detection. The table below contains the selec-
tion of parameters for both resolution settings of our dataset,
480x640 px. and 240x320 px.

Parameter 480x640 px 240x320 px

Canny Threshold (𝑇𝑐𝑎𝑛𝑛𝑦 ) 24 30
Median Blur Kernel Size (𝐾𝑏𝑙𝑢𝑟 ) 23 7

Max size pupil 2000 px 300 px
Min size pupil 1000 px 100 px

detector. The marker location dataset contains images in two dif-
ferent resolutions, 480x640 px and 240x320 px. Additionally, these

Table 5: Key features to illustrate the diversity of our col-
lected dataset of near eye infrared images, taken with the
embedded platform as described in Section 3.

Parameter Value Parameter Value

Participants 20 Images 36153
Participant - Male 12 Nationalities 9
Participant - Female 8 Average Age 26

images were also used to identify the parameters for pupil detec-
tion, since the pupil is always clearly visible in the frames. On the
other hand, figure 8 contains some example images from the free
movement experiment. Figures 8a - 8d show images of participants



An Embedded and Real-Time Pupil Detection Pipeline

(a) Marker location 1 (b) Marker location 2 (c) Marker location 3 (d) Marker location 4 (e) Marker location 5

Figure 7: Dataset images from the fixedmarker location strat-
egy with resolution 480x640 px. The participants are fixating
on different marker locations, due to which there are no
blinking/closed eye images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Free movement experiment @ 480x640 px, it con-
tains edge cases as blurry images (fig 8e, 8i), occluded eyes
(fig 8e, 8j), closed eyes and gaze fixation in various directions
(fig 8a, 8c, 8g).

looking in random directions. There are multiple more difficult edge
case images within the dataset which would make the detection
process challenging. Figures 8e - 8j show particular examples of
some these edge cases. These include blurry images in figure 8f,
occluded images in figures 8e and 8h) as well as reflections in figure
8i. The dataset contains free movement images in both resolutions
of 640x480 px and 320x240 px.

5 CONCLUSIONS
In this paper, we first presented a real-time and open-source eye
tracker setup that allows reproducible pupil detection studies. The
hardware design centres around a custom 3D head mount design,
which supports a miniature infrared-sensitive eye (Pi Zero) camera,
infrared illumination, and a (Logitech C615) world camera. These
components are controlled by a single (Raspberry Pi Model 4B)
embedded system. Using this platform, we contribute with an open-
source data pipeline for pupil detection for the eye camera. Based
on ellipse fitting and edge analysis, we present a method that can
perform real-time pupil detection on the embedded system. Fur-
thermore, we have contributed a complementary dataset of near
eye images of more than 35000 frames, from 20 participants at 30fps
for our particular hardware system. In subsequent experiments, we
show that the pupil detection pipeline has a cumulative accuracy of
38.21% with less than 5px error, 43.6% with less than 10px error, and
an overall average accuracy of 51.9% at 5.3368 px on the Labelled
Pupils in the Wild (LPW) dataset [38].

The hardware design files, the detection pipeline source code, and
the complementary dataset presented in this paper have been made

publicly available to support furthering this research by others and
replication of our results. These can be downloaded at:
https://github.com/ankurrajw/Pi-Pupil-Detection.

ACKNOWLEDGMENTS
We thank all study participants for their contribution to this work.

REFERENCES
[1] D. Beymer and M. Flickner. 2003. Eye gaze tracking using an active stereo

head. 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings. 2 (2003), II–451. https://doi.org/10.1109/cvpr.2003.
1211502

[2] Ali Borji and Laurent Itti. 2013. State-of-the-Art in Visual Attention Modeling.
IEEE Transactions on Pattern Analysis andMachine Intelligence 35 (2013), 185–207.

[3] Frank H. Borsato, Federal University of Technology, Carlos H. Morimoto, and
University of São Paulo. 2019. Towards a low cost and High Speed Mobile Eye
Tracker: Proceedings of the 11th ACM symposium on Eye Tracking Research;
Applications. https://dl.acm.org/doi/pdf/10.1145/3314111.3319841

[4] Magdalena Borys and Małgorzata Plechawska-Wójcik. 2017. Eye-tracking met-
rics in perception and visual attention research. In European Journal of Medical
Technologies (EJMT). ISASDMT, Lublin, Szczerbowskiego, Poland, 11–23.

[5] Onur Ferhat, Fernando Vilarino, and Francisco Javier Sanchez. 2014. A cheap
portable eye-tracker solution for common setups. Journal of Eye Movement
Research 7, 3 (2014). https://doi.org/10.16910/jemr.7.3.2

[6] Wolfgang Fuhl, Thomas Kübler, Katrin Sippel, Wolfgang Rosenstiel, and Enkele-
jda Kasneci. 2015. ExCuSe: Robust Pupil Detection in Real-World Scenarios. In
CAIP 2015: Computer Analysis of Images and Patterns, Vol. 9256. Springer Interna-
tional Publishing, Cham, 39–51. https://doi.org/10.1007/978-3-319-23192-1_4

[7] Wolfgang Fuhl, Thiago Santini, Gjergji Kasneci, and Enkelejda Kasneci. 2016.
PupilNet: Convolutional Neural Networks for Robust Pupil Detection. https:
//doi.org/10.48550/ARXIV.1601.04902

[8] Wolfgang Fuhl, Marc Tonsen, Andreas Bulling, and Enkelejda Kasneci. 2016.
Pupil detection for head-mounted eye tracking in The wild: An evaluation of
the state of the art. Machine Vision and Applications 27, 8 (2016), 1275–1288.
https://doi.org/10.1007/s00138-016-0776-4

[9] Stephan J. Garbin, Yiru Shen, Immo Schuetz, Robert Cavin, Gregory Hughes,
and Sachin S. Talathi. 2019. OpenEDS: Open Eye Dataset. https://doi.org/10.
48550/ARXIV.1905.03702

[10] Kerstin Gidlöf, Annika Wallin, Richard Dewhurst, and Kenneth Holmqvist. 2013.
Using eye tracking to trace a cognitive process: Gaze behaviour during decision
making in a natural environment. Journal of Eye Movement Research 6, 1 (2013),
1–14. https://doi.org/10.16910/jemr.6.1.3

[11] Craig Hennessey, Borna Noureddin, and Peter Lawrence. 2006. A Single Camera
Eye-Gaze Tracking System with Free Head Motion. In Proceedings of the 2006
Symposium on Eye Tracking Research &; Applications (San Diego, California)
(ETRA ’06). Association for Computing Machinery, New York, NY, USA, 87–94.
https://doi.org/10.1145/1117309.1117349

[12] Benedikt Hosp, Shahram Eivazi, Maximilian Maurer, Wolfgang Fuhl, David
Geisler, and Enkelejda Kasneci. 2020. RemoteEye: An open-source high-speed
remote eye tracker. Behavior Research Methods 52, 3 (2020), 1387–1401. https:
//doi.org/10.3758/s13428-019-01305-2

[13] Xinyun Hu and Gabriel Lodewijks. 2021. Exploration of the effects of task-related
fatigue on eye-motion features and its value in improving driver fatigue-related
technology. Transportation Research Part F: Traffic Psychology and Behaviour 80
(2021), 150–171. https://doi.org/10.1016/j.trf.2021.03.014

[14] Tariq Jamil, Iftaquaruddin Mohammed, and Medhat H. Awadalla. 2016. Design
and implementation of an eye blinking detector system for automobile accident
prevention. In SoutheastCon 2016. IEEE, NY, USA, 1–3. https://doi.org/10.1109/
SECON.2016.7506734

[15] Amir-Homayoun Javadi, Zahra Hakimi, Morteza Barati, Vincent Walsh, and Lili
Tcheang. 2015. SET: a pupil detection method using sinusoidal approximation.
Frontiers in Neuroengineering 8 (2015), 1–10. https://doi.org/10.3389/fneng.2015.
00004

[16] Aniwat Juhong, T. Treebupachatsakul, and C. Pintavirooj. 2018. Smart eye-
tracking system. In 2018 International Workshop on Advanced Image Technology
(IWAIT). IEEE, NY, USA, 1–4. https://doi.org/10.1109/IWAIT.2018.8369701

[17] Bronisław Kapitaniak, Marta Walczak, Marcin Kosobudzki, Zbigniew Jóźwiak,
and Alicja Bortkiewicz. 2015. Application of eye-tracking in drivers testing: A
review of research. International Journal of Occupational Medicine and Environ-
mental Health 28, 6 (2015), 941–954. https://doi.org/10.13075/ijomeh.1896.00317

[18] Moritz Kassner, William Patera, and Andreas Bulling. 2014. Pupil: An Open
Source Platform for Pervasive Eye Tracking and Mobile Gaze-based Interaction.
https://doi.org/10.48550/ARXIV.1405.0006

https://github.com/ankurrajw/Pi-Pupil-Detection
https://doi.org/10.1109/cvpr.2003.1211502
https://doi.org/10.1109/cvpr.2003.1211502
https://dl.acm.org/doi/pdf/10.1145/3314111.3319841
https://doi.org/10.16910/jemr.7.3.2
https://doi.org/10.1007/978-3-319-23192-1_4
https://doi.org/10.48550/ARXIV.1601.04902
https://doi.org/10.48550/ARXIV.1601.04902
https://doi.org/10.1007/s00138-016-0776-4
https://doi.org/10.48550/ARXIV.1905.03702
https://doi.org/10.48550/ARXIV.1905.03702
https://doi.org/10.16910/jemr.6.1.3
https://doi.org/10.1145/1117309.1117349
https://doi.org/10.3758/s13428-019-01305-2
https://doi.org/10.3758/s13428-019-01305-2
https://doi.org/10.1016/j.trf.2021.03.014
https://doi.org/10.1109/SECON.2016.7506734
https://doi.org/10.1109/SECON.2016.7506734
https://doi.org/10.3389/fneng.2015.00004
https://doi.org/10.3389/fneng.2015.00004
https://doi.org/10.1109/IWAIT.2018.8369701
https://doi.org/10.13075/ijomeh.1896.00317
https://doi.org/10.48550/ARXIV.1405.0006


Raj, Diwas, and Van Laerhoven

[19] Joohwan Kim, Michael Stengel, Alexander Majercik, Shalini De Mello, David
Dunn, Samuli Laine, Morgan McGuire, and David Luebke. 2019. NVGaze: An
Anatomically-Informed Dataset for Low-Latency, Near-Eye Gaze Estimation. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300780

[20] Rakshit S. Kothari, Aayush K. Chaudhary, Reynold J. Bailey, Jeff B. Pelz, and
Gabriel J. Diaz. 2021. EllSeg: An Ellipse Segmentation Framework for Robust
Gaze Tracking. IEEE Transactions on Visualization and Computer Graphics 27, 5
(2021), 2757–2767. https://doi.org/10.1109/TVCG.2021.3067765

[21] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhan-
darkar, Wojciech Matusik, and Antonio Torralba. 2016. Eye Tracking for Every-
one. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
New York City, USA, 2176–2184.

[22] Dongheng Li, Jason Babcock, and Derrick J. Parkhurst. 2006. OpenEyes: A Low-
Cost Head-Mounted Eye-Tracking Solution. In Proceedings of the 2006 Symposium
on Eye Tracking Research & Applications (San Diego, California) (ETRA ’06).
Association for Computing Machinery, New York, NY, USA, 95–100. https:
//doi.org/10.1145/1117309.1117350

[23] Jia Zheng Lim, James Mountstephens, and Jason Teo. 2020. Emotion recognition
using eye-tracking: Taxonomy, review and current challenges. Sensors 20, 8
(2020), 2384. https://doi.org/10.3390/s20082384

[24] Kristian Lukander, Sharman Jagadeesan, Huageng Chi, and Kiti Müller. 2013.
OMG! ANewRobust,Wearable and Affordable Open SourceMobile Gaze Tracker.
In Proceedings of the 15th International Conference on Human-Computer Interaction
with Mobile Devices and Services (Munich, Germany) (MobileHCI ’13). Association
for Computing Machinery, New York, NY, USA, 408–411. https://doi.org/10.
1145/2493190.2493214

[25] Radosław Mantiuk, Michał Kowalik, Adam Nowosielski, and Bartosz Bazyluk.
2012. Do-It-Yourself Eye Tracker: Low-Cost Pupil-Based Eye Tracker for Com-
puter Graphics Applications. In Proceedings of the 18th International Conference
on Advances in Multimedia Modeling (Klagenfurt, Austria) (MMM’12). Springer-
Verlag, Berlin, Heidelberg, 115–125. https://doi.org/10.1007/978-3-642-27355-
1_13

[26] André Meyer, Martin Böhme, Thomas Martinetz, and Erhardt Barth. 2006. A
Single-Camera Remote Eye Tracker. In Proceedings of the 2006 International
Tutorial and Research Conference on Perception and Interactive Technologies
(Kloster Irsee, Germany) (PIT’06). Springer-Verlag, Berlin, Heidelberg, 208–211.
https://doi.org/10.1007/11768029_25

[27] Jason S. Babcock Rochester Institute of Technology, Jason S. Babcock, Rochester
Institute of Technology, Rochester Institute of TechnologyView Profile, Jeff B.
Pelz, Clemson University, and Queens University. 2004. Building a lightweight
eyetracking headgear: Proceedings of the 2004 symposium on eye tracking
research; applications. https://dl.acm.org/doi/pdf/10.1145/968363.968386

[28] Takehiko Ohno and Naoki Mukawa. 2004. A Free-Head, Simple Calibration,
Gaze Tracking System That Enables Gaze-Based Interaction. In Proceedings of the
2004 Symposium on Eye Tracking Research &; Applications (San Antonio, Texas)
(ETRA ’04). Association for Computing Machinery, New York, NY, USA, 115–122.
https://doi.org/10.1145/968363.968387

[29] OpenCV. 2015. Open Source Computer Vision Library. https://opencv.org/
[30] Keyurkumar Patel, Hu Han, and Anil K. Jain. 2016. Secure face unlock: Spoof

detection on smartphones. IEEE Transactions on Information Forensics and Security
11, 10 (2016), 2268–2283. https://doi.org/10.1109/tifs.2016.2578288

[31] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir
Benty, David Luebke, and Aaron Lefohn. 2016. Towards Foveated Rendering
for Gaze-Tracked Virtual Reality. ACM Trans. Graph. 35, 6, Article 179 (2016),
12 pages. https://doi.org/10.1145/2980179.2980246

[32] Mathieu Rodrigue, Jungah Son, Barry Giesbrecht, Matthew Turk, and Tobias
Höllerer. 2015. Spatio-Temporal Detection of Divided Attention in Reading
Applications Using EEG and Eye Tracking. In Proceedings of the 20th Inter-
national Conference on Intelligent User Interfaces (Atlanta, Georgia, USA) (IUI
’15). Association for Computing Machinery, New York, NY, USA, 121–125.
https://doi.org/10.1145/2678025.2701382

[33] Wayne J. Ryan, Andrew T. Duchowski, and Stan T. Birchfield. 2008. Limbus/Pupil
Switching for Wearable Eye Tracking under Variable Lighting Conditions. In
Proceedings of the 2008 Symposium on Eye Tracking Research & Applications
(Savannah, Georgia) (ETRA ’08). Association for Computing Machinery, New
York, NY, USA, 61–64. https://doi.org/10.1145/1344471.1344487

[34] Thiago Santini, Wolfgang Fuhl, and Enkelejda Kasneci. 2018. Pure: Robust pupil
detection for real-time pervasive eye tracking. Computer Vision and Image
Understanding 170 (2018), 40–50. https://doi.org/10.1016/j.cviu.2018.02.002

[35] Lech Świrski, Andreas Bulling, and Neil Dodgson. 2012. Robust Real-Time Pupil
Tracking in Highly off-Axis Images. In Proceedings of the Symposium on Eye Track-
ing Research and Applications (ETRA ’12). Association for Computing Machinery,
New York, NY, USA, 173–176. https://doi.org/10.1145/2168556.2168585

[36] Tobii. 2022. Most Advanced Eye Tracking System - TOBII Pro Spectrum. Re-
trieved October 10, 2022 from https://www.tobii.com/products/eye-trackers/

screen-based/tobii-pro-spectrum
[37] Tobii Pro AB. 2014. Tobii Pro Lab. Computer software. http://www.tobiipro.com/
[38] Marc Tonsen, Xucong Zhang, Yusuke Sugano, and Andreas Bulling. 2016. La-

belled Pupils in the Wild: A Dataset for Studying Pupil Detection in Uncon-
strained Environments. In Proceedings of the Ninth Biennial ACM Symposium
on Eye Tracking Research &; Applications (Charleston, South Carolina) (ETRA
’16). Association for Computing Machinery, New York, NY, USA, 139–142.
https://doi.org/10.1145/2857491.2857520

[39] Yan Wang, Guangtao Zhai, Shaoqian Zhou, Sichao Chen, Xiongkuo Min, Zhong-
pai Gao, and Menghan Hu. 2018. Eye Fatigue Assessment Using Unobtrusive Eye
Tracker. IEEE Access 6 (2018), 55948–55962. https://doi.org/10.1109/ACCESS.
2018.2869624

[40] Erroll Wood, Tadas Baltrusaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson,
and Andreas Bulling. 2015. Rendering of Eyes for Eye-Shape Registration and
Gaze Estimation. In 2015 IEEE International Conference on Computer Vision (ICCV).
IEEE, Santiago, Chile, 3756–3764. https://doi.org/10.1109/ICCV.2015.428

[41] Piotr Zieliński. 2013. Opengazer: open-source gaze tracker for ordinary webcams
(software). http://www.inference.org.uk/opengazer/

[42] Gal Ziv. 2016. Gaze behavior and visual attention: A review of Eye Tracking
Studies in aviation. The International Journal of Aviation Psychology 26, 3-4 (2016),
75–104. https://doi.org/10.1080/10508414.2017.1313096

https://doi.org/10.1145/3290605.3300780
https://doi.org/10.1109/TVCG.2021.3067765
https://doi.org/10.1145/1117309.1117350
https://doi.org/10.1145/1117309.1117350
https://doi.org/10.3390/s20082384
https://doi.org/10.1145/2493190.2493214
https://doi.org/10.1145/2493190.2493214
https://doi.org/10.1007/978-3-642-27355-1_13
https://doi.org/10.1007/978-3-642-27355-1_13
https://doi.org/10.1007/11768029_25
https://dl.acm.org/doi/pdf/10.1145/968363.968386
https://doi.org/10.1145/968363.968387
https://opencv.org/
https://doi.org/10.1109/tifs.2016.2578288
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1145/2678025.2701382
https://doi.org/10.1145/1344471.1344487
https://doi.org/10.1016/j.cviu.2018.02.002
https://doi.org/10.1145/2168556.2168585
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-spectrum
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-spectrum
http://www.tobiipro.com/
https://doi.org/10.1145/2857491.2857520
https://doi.org/10.1109/ACCESS.2018.2869624
https://doi.org/10.1109/ACCESS.2018.2869624
https://doi.org/10.1109/ICCV.2015.428
http://www.inference.org.uk/opengazer/
https://doi.org/10.1080/10508414.2017.1313096

	Abstract
	1 Introduction
	2 Related Work
	2.1 Eye Tracking Hardware Designs
	2.2 Pupil detection methods
	2.3 Datasets: Pupil & Gaze Estimation

	3 Methodology
	4 Evaluation
	4.1 Model Evaluation
	4.2 Parameter Estimation
	4.3 Runtime & Memory Consumption
	4.4 Dataset

	5 Conclusions
	Acknowledgments
	References

