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ABSTRACT

Research into the detection of human activities from wearable sensors is a highly active field,
benefiting numerous applications, from ambulatory monitoring of healthcare patients via fitness
coaching to streamlining manual work processes. We present an empirical study that compares 4
different commonly used annotation methods utilized in user studies that focus on in-the-wild data.
These methods can be grouped in user-driven, in situ annotations - which are performed before
or during the activity is recorded - and recall methods - where participants annotate their data in
hindsight at the end of the day. Our study illustrates that different labeling methodologies directly
impact the annotations’ quality, as well as the capabilities of a deep learning classifier trained with
the data respectively. We noticed that in situ methods produce less but more precise labels than
recall methods. Furthermore, we combined an activity diary with a visualization tool that enables the
participant to inspect and label their activity data. Due to the introduction of such a tool were able to
decrease missing annotations and increase the annotation consistency, and therefore the F1-score of
the deep learning model by up to 8% (ranging between 82.1 and 90.4 % F1-score). Furthermore, we
discuss the advantages and disadvantages of the methods compared in our study, the biases they may
could introduce and the consequences of their usage on human activity recognition studies and as
well as possible solutions.
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1 Introduction

Sensor-based activity recognition is one of the research fields of Pervasive Computing developed with enormous
speed and success by industry and science and influencing medicine, sports, industry, and therefore the daily lives of
many people. However, current available smart devices are mostly capable of detecting periodic activities like simple
locomotions. In order to recognize more complex activities a multimodal sensor input, such as [1]], and more complex
recognition models are needed. Many of the published datasets are made in controlled laboratory environments. Such
data does not have the same characteristics and patterns as data recorded in-the-wild. Data that belongs to similar
classes but is recorded in an uncontrolled versus controlled environment can differ significantly since it contains more
contextual information [2]]. Furthermore, study participants tend to control their movements more while being monitored
[3]. The recording of long-term and real-world data is a tedious, time-consuming, and therefore a non-trivial task.
Researchers have various motivations to record such datasets but the technical hurdles are still high and problems
during the annotation process occur regularly. With regards to Human Activity Recognition (HAR), recording a
long-term dataset always presents the researcher with the problem of developing a methodology that, on one hand,
allows precise labels and, on the other hand, does not unnecessarily burden or disturb the study participants. Relying
only on self-recall methods, like writing an activity diary, e.g. [4]], can result in imprecise time indications that do not
necessarily correspond to the actual time periods of an activity. Such incorrectly or noisy labeled data [5] leads a trained
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Figure 1: The study participants collected data for 14 days in total and annotated the data with 4 different methods:

Labeling @ in situ with a mechanical button, @ in situ with an app, @ by writing a pure self-recall diary and @
writing a self-recall diary assisted by a visualization of their time-series data.

model that is less capable of detecting activities reliably, due to unwanted temporal dependencies learned by wrongly
annotated patterns [6].

We can see an emerging spotlight on real-world and long-term activity recognition and think that it will be one of the
main research challenges that need to be put more in focus in order to overcome current limitations and be capable to
recognize complex day-to-day activities. Such datasets, rely heavily on self-recall methods or using additional apps to
track movements and set labels either automatically [7]] or with the manual selection of a label [8]]. Due to these hurdles,
many researchers prefer to work with datasets from controlled over uncontrolled environments. As a consequence, only
a very limited number of in-the-wild datasets has been published until now.

Contribution: Our study focuses on the evaluation of 4 different annotation methods for labeling data in-the-wild:
@ In situ (lat. on site or in position) with a button on a smartwatch, @ in situ with the app Strava (an app that
is available for iOS and Android smartphones), @ pure self-recall (writing an activity diary at the end of the day),

and @ time-series assisted self-recall with the MAD-GUI [9]], which displays the sensor data visually and allows
to annotate it interactively. Our study was conducted with 11 participants, 10 males, and 1 female, over 2 weeks.
Participants wore a Bangle.js Version 1E| smartwatch on their preferred hand, used Strava, and completed self-recall
annotations every evening. In the first week, the participants were asked to write an activity diary at the end of the
day without any helping material and additionally using two user-initiated methods (in situ button and in situ app)
to manually set labels at the start and beginning of each activity. In the second week, the participants were given an
additional visualization of the sensor data with an adapted version of the MAD-GUI annotation tool. With the help of
this, participants then were instructed to label their data in hindsight with the activity diary as a mnemonic aid. Given
labels from both weeks were compared to each other regarding the quality through visual inspection and statistical
analysis with regard to the consistency and quantity of missing annotations across labeling methods. Furthermore, we
used a Shallow-DeepConv(LSTM) architecture, see Bock et al. [10] and Ordofiez et al. [11], and trained models with a
leave-one-day-out cross-validation method of 6 previously selected subjects and each annotation method.

'https://www.strava.com/
“https://www.espruino.com/banglejs
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Impact: Annotating data, especially in real-world environments, is still very difficult and tedious. Labeling such data is
always a trade-off between accuracy and workload for the study participants or annotators. We raise awareness among
researchers to put more effort into exploring new annotation methods to overcome this issue. Our study shows that
different labeling methodologies have a direct impact on the quality of annotations. With the deep learning analysis,
we proof that this impacts the model capabilities directly. Therefore, we consider the evaluation of frequently used
annotation methods for real-world an long-term studies to be crucial in order to give decision makers of future studies a
better base on which they can choose the annotation methodology for their study in a targeted way.

2 Related work

Since 2015, only 4 newer datasets that contain wearable sensor data and locomotion activities were released [[12]]. To
the best of our knowledge, a very limited number of datasets are currently publicly available which were recorded
in-the-wild, e.g. [13} 14} 15,116, [17]]. Thus, even though [[16] and [17]] were recorded in an in-the-wild scenario, the
participants were equipped with many sensors on different body locations and filmed by a third person during the
exercises. Such visible equipment as well as the accompaniment of a third person could have led to a behavior bias [18]
in the data since it can alter the participants’ movement patterns as participants are constantly reminded that they are
currently in the context of a study [3]]. Furthermore, multimodal datasets that were recorded with multiple body-worn
sensors instead of only one IMU (Inertial Measurement Unit) faced the challenge of proper inter-sensor synchronization
[19]. A dataset with a big scope, diverse classes, and accurate annotations, which is recorded by one device that is
almost not noticeable by the participant (and therefore might not influence their behavior or movement patterns), is
not yet available publicly due to the presented hurdles. According to Stikic ez al. [20] and later Cleland et al. [8],
we distinguish between 6 or 7, respectively, different methods and 2 environments (online/offline) of labeling data,
the methods are (1) Indirect Observation, (2) Self-Recall, (3) Experience Sampling, (4) Video/Audio Recordings, (5)
Time Diary, (6) Human Observer, (7) Prompted Labeling. Cruz et al. [21] uses 4 different categories to classify data
labeling approaches, these are (1) temporal (when) - is the label conducted during or after the activity, (2) annotator
(who) - is the label given by the individual itself or by an observer, (3) scenario (where) - is the activity labeled in a
controlled (e.g laboratory) or uncontrolled (in-the-wild) environment, and (4) annotation mechanism (how) - is the
activity labeled manually, semi-automatically or fully-automatically. All labeling methods have their own benefits,
costs and come with a trade-off between required time and label accuracy. However, not every method is suitable for
long-term and in-the-wild recording data. Reining et al. [22]], evaluated the annotation performance between 6 different
human annotators of a MoCap (Motion Capturing) and IMU HAR Dataset for industrial deployment. They came to
the conclusion that annotations are moderately consistent when subjects labeled the data for the first time. However,
annotation quality improved after a revision by a domain expert. In the following, we would like to go into more detail
on what we consider to be the most important labeling methods for the specific field of activity recognition.

2.1 Annotation Methods in Activity Recognition

Self-Recall methodologies are generally called methods in which study participants have to remember an event in
the past. This methodology is used, for instance, in the medical field (e.g. in the diagnosis of injuries [23]]), but also
frequently in studies in the field of long-term activity recognition. Van Laerhoven et al. [24] used this method during a
study in which participants were asked to label their personal daily data at the end of the day. They noticed that the
label quality depends heavily on the participant’s recall and can therefore be very coarse. During a study conducted
by Tapia et al. [25], every 15 minutes a questionnaire was triggered in which participants needed the answer multiple
choice questions about which of 35 predefined activities were recently performed.

App Assisted Labeling: Cleland er al. [8] presented in 2014 the so called Prompted labeling. An approach that is
already used by commercial smartwatches like the Apple Watc In this study user’s were asked to set a label for a time
period which has been detected as an activity right after the activity stops. Akbari et al. [7]] leverages freely available
Bluetooth Low Energy (BLE) information broadcasted by other nearby devices and combines this with wearable sensor
data in order to detect context and direction changes. The participant is asked to set a new label whenever a change in the
signal is detected. Gjoreski et al. [26] published in 2017 the SHL dataset which contains versatile labeled multimodal
sensor data that has been labeled using an Android application that asked the user to set a label whenever they detected
a position change via GPS. Tonkin et al. [27] presented a smartphone app that was used in their experimental smart
home environment with which study participants were able to either use voice-based labeling, select a label from a
list of activities ordered by the corresponding location or scan NFC tags that were installed at locations in the smart
house. Similar to Tonkin et al. [27], Vaizmann et al. [14] developed an open-source mobile app for recording sensor
measurements in combination with a self-reported behavioral context (e.g. driving, eating, in class, showering). 60
subjects participated in their study. The study found that most of the participants preferred to fill out their past behavior

*https://www.apple.com/watch/
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through a daily journal. Only some people preferred to set a label for an activity that they are about to do. Schroder et
al. [28]] developed a web-based GUI which can either be used on a smartphone, tablet, or a PC to label data recorded in
a smart home environment. However, it is important to mention that, According to Cleland et al. [8]], the process of
continually labeling data becomes laborious for participants and can result in a feeling of discomfort.

Unsupervised Labeling is a methodology that uses clustering algorithms to first categorize new samples without
deciding yet to which class a sample belongs. Leonardis et al. [29] presented in 2002 the concept of finding multiple
subsets of eigenspaces where, according to Huynh [30], each of them corresponds to an individual activity. Huynh uses
this knowledge to develop the eigenspace growing algorithm, whereby, growing refers to an increasing set of samples as
well as to increasing the so-called effective dimension of a corresponding eigenspace. Based on the reconstruction error
(when a new sample is projected to an eigenspace), the algorithm tries to find the best-fitting representation of a sample
with minimal redundancy. Hassan et al. [31] recently published a methodology that uses the Pearson Correlation
Coefficient to map very specific labels of a variety of datasets to 4 meta labels (inactive, active, walking, and driving) of
the ExtraSensory Dataset [14].

Human-in-the-Loop (Labeling) is a collective term for methodologies that integrates human knowledge into their
learning or labeling process. Besides of being applied in HAR research, such techniques are often used in Natural
Language Processing (NLP) and according to [32] the NLP community distinguishes between entity extraction [33}34]],
entity linking [35]], Q&A tasks [36] and reading comprehension tasks [37]].

Active Learning is a machine learning strategy that currently receives a lot of attention in the HAR community. Such
strategies involves a Human-in-the-Loop for labeling purposes. In the first step the learning algorithm automatically
identifies relevant samples of a dataset which are posteriorly queued to be annotated by an expert. Incorporating
a human guarantees high quality labels which directly leads to a better performing classifier. Whether a sample is
determined to be relevant, and as well the decision to whom it may get presented for annotation purposes are the main
focus of research in this field. Bota et al. [38]] presents a technique that relies on specific criteria defined by 3 different
uncertainty-based selection functions to select samples that will be presented to an expert for labeling and then be
propagated throughout the most similar samples. Adaimi et al. [39] benchmarks the performance of different Active
Learning strategies and compared them, with regard to 4 different datasets with a fully-supervised approach. The
authors came to the conclusion that Active Learning needs only 8% to 12% of the data to reach similar or even better
results than a fully-supervised trained model. These results suggest that presenting pre-selected samples to a human for
labeling purposes can reduce the amount of data needed to train a machine learning classifier significantly due to the
increased quality of the labels. Miu et al. [40] presented a system which used the Online Active Learning approach
published by Scully [41]] to bootstrap [42] a machine learning classifier. The publication presented a smartphone app
that asked the user right after finishing an activity, which activity has been performed. Afterwards a small subset of the
labeled data was used to bootstrap a personalized machine learning classifier.

3 Methodology

3.0.1 Hardware

Participants wore the commercial open-source smartwatch Bangle.js Version 1 with our open-source ﬁrmwareﬂ installed.
The device comes with a Nordic 64MHz nRF52832 ARM Cortex-M4 processor with Bluetooth LE, 64kB RAM, 512kB
on-chip flash, 4MB external flash, a heart rate monitor, a 3D accelerometer, and a 3D magnetometer. Our firmware only
uses the 3D accelerometer and provides the user with the basic functions of a smartwatch, like displaying the time and
counting steps. The data is recorded with 25Hz, a sensitivity of +8g and saved on the devices’ memory with a delta
compression algorithm. Therefore, we are able to save up to 8-9 hours (depending on how much of the data could be
compressed) of data with the given parameters. The smartwatch stops recording as soon as the memory is full. At the
end of the day, the participants need to upload their daily data and program the starting time for the next day using our
upload web-tooﬂ

3.1 Study Setup

Our study is conducted with 11 participants, from which 10 are male and 1 is female. The participants are between
25 and 45 years old. Out of 11 participants, 6 are researchers in the field of signal processing and are used to read
and work with sensor data. Participants were selected among acquaintances and colleagues. The study was conducted
over a period of 2 weeks while participants wore an open-source smartwatch on their wrist of choice. During the two
week study, the participants were instructed to use 4 different labeling methods in parallel, In the first week they were

*Our smartwatch firmware is made publicly available at: https://github.com/kristofvl/BangleApps/tree/master/
apps/activate
>Our web-tool is made publicly available at: https://ubi29.informatik.uni-siegen.de/upload/
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asked to use the (1) in situ button, (2) in situ app, and @ pure self-recall methods. In the beginning of the 2nd week

we expanded the number of annotation methods with the @ time-series recall. This annotation method combines the
activity diary with a graphical visualization of the participants daily data.

@ The Bangle.js smartwatch has 3 mechanical buttons on the right side of the case. These buttons are programmed to
record the number of consecutive button presses per minute. The total number of button presses is stored with the given
timestamp and can therefore be used to mark the beginning and end of an activity in the time-series.

@ In addition, the participants were asked to track their activities with the smartphone app Strava. Strava is an activity
tracker that is available for Android and iOS and freely downloadable from the app stores. The user can choose from a
variety of predefined labels and start recording. Recording an activity starts a timer that runs until the user stops it. The
time as well as the GPS position of the user during the activity is tracked and saved locally.

@ The pure self-recall methods consist of writing an activity diary on a daily basis at the end of the day. The
participants were explicitly told that they should only write down the activities that they still remember 2 hours after the
measurement stopped.

(4) The time-series recall method can be seen as a combination of an activity diary and graphical representation of
the raw sensor data. For visualization and labeling purposes, we provided the participants an adapted version of the
MAD-GUI. The GUI has been published by Ollenschliger ef al. [9] in 2022 and is a generic open-source Python
package. Therefore, it can be integrated into one’s own project. Our adaptions to the package are available for download
from a GitHub repositoryﬂ It contains changes to the data loader, the definition of available labels and color settings for
displaying the 3D raw data. Annotation Guidelines: The participants were briefed to note daily returning activities
(sports or activities of daily living) that are performed longer than 10 minutes roughly 2 hours after the recording stops.
The name of the activity was chosen individually by the participant. Participants decided individually at what time of
the day the recording will start on the next day. Each of these annotation methods represents a layer of annotation that
is used for the visual, statistical, and deep learning evaluation. Figure[T]illustrates the overall concept.

3.2 Statistical Analysis

The labels were statistically analyzed based on their consistency using the Cohen & score as well as the number of
missing annotations across all methods. The Cohen & score describes the agreement between two annotation methods,
which is defined as follows k = (pg — p.)/(1 — p.) (see [43] and [22]). Where py is the observed agreement ratio and
pe is the expected agreement if both annotators assign labels randomly. The score basically shows how uniform two
different annotators labeled the same data. For calculation purposes, an implementation provided by Scikit-Learn [44],
was used. Furthermore, missing annotations across methods are measured as the percentage of missing or incomplete
annotations. The annotations of all methods were first compared with each other and matched based on the given time
indications. Annotations that could not be assigned or were missing were marked accordingly and are the base for
calculating this indicator, Figure 4] visualizes this. We used a similar representation as [45]] to visualize the matches
among labeling methods. In this study, the authors compared genome annotations labeled by different annotators with
regard to their error score between different annotators.

3.3 Effects on Deep Learning Performance

The deep learning analyses is performed using the DeepConvLSTM architecture [[11] which is based on a Keras
implementation of [46]. We did not perform hyperparameter tuning because it would involve a considerable amount of
additional workload, since we trained 64 models independently during the evaluation. We therefore decided to opt-out
the architecture with regards to efficiency rather than optimal classification results. Additionally, we don’t expect that
the actual experiment - evaluating different annotation methods - would benefit from hyperparameter tuning or gain any
significant information and insights. Instead, we use the default hyperparameters provided by the authors. These are
depicted in the Figure 2]

Furthermore, we reduce the number of LSTM-Layers to one and instead increase the number of hidden units of the only
LSTM-Layer to 512. According to [[10], this modification decreases the runtime up to 48 % compared to a two-layered
DeepConvLSTM while significantly increasing the overall classification performance on 4/5 publicly available datasets:
[47], [16], [L1], [48]], [49]. LSTM-Layers in general are important if the dataset contains sporadic activities [6]. However,
our dataset does not and our evaluation aims to identify long periods of periodic activities, like walking or running.
For this reason, we can conclude that additional LSTM layers are not needed. The implementation of [46] includes
BatchNormalization-Layers after each Convolutional-Layer, as well as a MaxPooling for the transition between the last

https://github.com/ahoelzemann/mad-gui-adaptions/
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Figure 2: The architecture consists of an Input Layer with the kernel-size 10 (window_size) x 10 (filter_length) x
3 (channels). The data is passed into 3 concatenated convolutional blocks, followed by a MaxPooling (kernel 2x1)
where 50% of the data is filtered. The convolutional block consists of a convolutional layer with a variable kernel size of
5x1x(n*64) following a ReLu activation function and a BatchNorm-Layer. We decided two use a single LSTM-Layer
with the size of 512 units, as mentioned by [[10], which is followed by a Dropout-Layer that filters 30% of randomly
selected samples of the window.

Activation gamma: n*64
beta: n*64
moving_mean: n*64

moving_variance: n*64

convolutional block and LSTM-Layer and a Dropout-Layer before the classification. The BatchNormalization-Layers
are included in order to speed up training time and to avoid the negative impact of the internal covariate shift, please see
[50] for more information.

Before training the neural network we apply two preprocessing steps to the data. These are an upsampling to a constant
25 Hz due to small deviations in the device sampling-rate as well as a rescaling of the accelerometer data between -1
and 1.

Leave-One-Day-Out Cross-Validation: Figure [3|shows the train- and test-setting for the deep learning model. For
every study participant and every week, a personalized model has been trained and tested. We adapted the leave-one-
subject-out strategy to fit our needs. Instead of using one participant for testing, we used one day of the week for testing
and trained on every other day. The dataset consists of a major void-class and a small number of samples per activity
class and participant. In order to counteract an above-average large void-class, we trained our model with balanced
class weights.

Not limiting the participants in their choice of daily performed activities as well as well as not specifying predefined
activity labels resulted in very unique sets of activities per study participant. Due to these circumstances we cannot
expect that it is possible to train a model which is capable to generalize across participants and days. Every participant
comes with their personal specific patterns to perform an activity. Furthermore, due to the in-the-wild recording setup,
the intra-class differences [51] for comparatively simple activities, walking or running can be significant. The impact of
different labeling methods are therefore expected to be more present, and hence more visible, in a personalized than it
would in a generalized model.

Postprocessing & Classification: We classified the data based on a sliding window with a length of 2 seconds (50
samples). However, we are looking for longer periods of reoccurring activities and decided therefore to apply a jumping
window of 5 minutes that applies a majority vote to the given time period. The activity with the most instances in that 5
minute period is set for the whole window.

4 Results

Our participants were asked to annotate activities carried out in their daily life performed for more than 10 min. We
didn’t limit the participants to a predefined set of classes. They rather decided independently which labels they would
like to set for certain time periods. After normalizing the labels, e.g. changing “going for a walk” to “walking” etc., the
set of labels as given by the participants contains the following 23 (22 + void) different labels: laying, sitting, walking,
running, cycling, bus_driving, car_driving, vacuum_cleaning, laundry, cooking, eating, shopping, showering, yoga,
sport, playing_games, desk_work, guitar_playing, gardening, table_tennis, badminton, horse_riding. Every sample that
wasn’t specifically labeled is classified as void.
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Figure 3: Leave-One-Day-Out Cross validation. The models are personally trained for every participant and are not
intended to generalize across all study participants. Instead, a generalization across all days of one week is desired.

4.1 Missing Annotations and Consistency Across Methods

Missing Annotations and the consistency of labels set over the course of one week varied greatly depending on the study
participant. However, tendencies with regards to specific methods are observable. Method @, pressing the situ button

Table 1: Missing annotations across all labeling methods (in %) of both weeks. The columns contain the Subject-ID of
all participants. The last column shows the average percentage of missing annotations across all every labeling methods,
for all participants.

Week 1
Subject 2b88 36fd 74ed 90ad4 834b 4531 a506 d8f2 eed7 f30d fc25 | Avg.
@ in situ button 40 70.59 7941 52.18 36.37 50 26.32 96.15 45.46 0 26.81 | 40.95
@ in situ app 13.30 589 97.06 100 5.00 0 36.84 9230 22.73 100 435 | 4340
@pure self-recall 6.67 0 0 0 4.55 0 31.58 0 4.55 0 0 4.30
Week 2
@ in situ button 23.08 73.33 92.00 82.14 833 7647 0 9533 61.11 0 27.78 | 49.05
Q) in situ app 61.54 6.67 100 89.29 833 3530 100 79.16 3333 100 11.11 | 56.79
@pure self-recall 0 0 857 17.88 4.17 35.30 0 12.50 5.56 0 5.56 | 8.14
@ time-series recall 0 0 22.88 39.29 0 0 0 16.67 0 0 5.56 | 7.67

on the smartwatch’s case, was not consistently used by every participant. Furthermore, this method carries the risk that
either setting one of the two markers (start or end) is forgotten. An annotation where one marker is missing becomes
therefore obsolete. The app assisted annotation method @, for which we used the app Strava, is well accepted among
the participants that agreed with using a third-party software. However, 4 participants, namely 74e4, 90a4, d8f2 and
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Figure 4: Missing annotations across all study participants and both weeks. The Y-axis shows the total number of
annotations of one specific participant for the corresponding week. The color codes are as followed: @ Annotation is
missing, O Annotation is partially missing (start or stop time), @ Annotation is complete. The figure design is inspired
by [45], Figure 1.
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f30d did not use the app continuously or refused to use it completely due to concerns regarding their private data. Strava
is a commercial app, which is freely available for download on the app stores, but it collects certain users’ meta data. In
order to label a time period with Strava, the participant needs to (1) take the smartphone in the hand, (2) open the app,
(3) start a timer, set a label, and (4) end the timer. This procedure contains significantly more steps than other methods.
Therefore, the average value of missing annotations results in 46.40% (week 1) and 56.79% (week 2). One participant
found the annotation process in general very tedious and therefore dropped out of the study. These data have been
excluded from the dataset and the evaluation. Method @ pure self-recall, writing an activity diary, got well accepted
by every participant. As Figure [ shows and the results in Table[T] proofs, it is overall the most complete annotation
method with an average amount of missing annotations of 4.30 % for the first and 8.14 % for the second week. By
introducing the MAD-GUI, participants were able to inspect their personal daily data and get insights on how patterns
of specific classes look like and label them interactively. With an average amount of missing annotations of 7.67%, this
method became the most complete during the second study week. Table [2 shows the resulting Cohen & scores. Due
to the constraint that only one labeling method can be compared to a second one and since, according to Table[T] the
most consistent annotation methods are @ pure self-recall and @ time-series recall, we used these methods as our
baseline and compared them with every other method used in the study. The second column indicates the comparison
direction. The abbreviations used in this column are defined as follows: (@ C/W @) pure self-recall compared with
in situ button, (@ C/wW @) pure self-recall compared with in situ app and (@ C/W @) pure self-recall compared

with time-series recall. The direction (4) C/W @) is not explicitly included since Cohens & is bidirectional and both
directions result in the same score. The score indicates how similar two annotators, or in our study labeling methods,
are to each other. The resulting score is a decimal value between -1.0 and 1.0, where -1.0 means that the two annotators
differ at most and 1.0 means complete similarity. 0.0 denotes that the target method was not used on that specific day.

Comparing the @ pure self-recall method with the @ in situ button and @ in situ app method we can see that the
final results for weeks 1 and 2 are proximate to one another. @ Pure self-recall compared with the @ time-series
recall results in the highest similarity of 0.52. The comparison between the @ time-series recall and the @ in situ
button as well as the @ in situ app assisted annotations result in higher similarity than the prior comparison of @ pure

self-recall vs. both methods @ and @ This means that subjects rather agree to the timestamps of the in sifu methods
than to a self-written activity diary as soon as they can visually inspect the accelerometer data.

4.2 Visual Time-Series Analysis

Figure 5| shows exemplary the time-series of the sixth day of every participant’s second week. The four bars that are
visible above the accelerometer data are the labels set by the participants for every layer. The order is from bottom
to top: (1) in situ button, (2) in situ app. @ pure self-recall, and (4) time-series recall. Examples of labels that
differs with regards to the applied labeling method are marked with red boxes. The x-axis of every subplot represents
roughly 8-9 hours of data. Most of the day was not labeled and is therefore categorized as void. However, such long
periods often contain shorter periods of other activities, like walking. This makes it difficult to define a distinguishable
void-class, which results in false positive classifications of non-void samples. Figure [5 visually shows that each
individual participant labels his or her data very subjectively. The long green-labeled time periods of participant
74e4 represent the class desk_work. The only other participant that used this label is 90a4. Since each of the study
participants work in an office environment and thus conclusively work at a desk, we can assume that the same class is
classified as void for all other study participants. This intra-class and inter-participant discrepancy becomes a problem
whenever a model shall be trained that is supposed to generalize across individuals. To reduce these side effects and
focus on the experiment itself, we decided to evaluate on personalized models that take weekly data from participants
into account.

The in situ button annotation is empty for 5 participants: eed7, 36fd, 74e4, 90a4 and d8f2. Labels are only partially
set or missing entirely for this annotation method and we therefore assume that participants tending to forget to press
the button on the smartwatch. Both tables, [T and [2] support this assumption, as this labeling method shows a high
percentage of missing annotations as well as a low Cohen & score of 0.36% (week 1) and 0.39% (week 2). The pure
self-recall method @, visible on the 2nd upper layer, is often misaligned compared to the in situ methods as well as the

time-series recall method @ Participants tend to round up or down the start- and stop-time in steps of 5 or 10 minutes.
For example, the annotations in Figure[5]given by the subjects 2688, 834b or f30d, show such incorrectly annotated
data. The pink color represents the class walking. With a closer look on the corresponding time-series data, one can
see that the in situ button annotation (bottom layer) and time-series recall annotation (top layer) rather belongs to the
typical periodically pattern of walking than the period labeled by pure self-recall. A consistent reliable performance in
all labeling methods can only be observed at the participants 4537 and fc25. Other participants like eed7, 36fd, 74e4 or
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Table 2: Average similarity between annotation methods according to the Cohan & score for both study weeks. The
columns are ordered subject-wise. The last column shows the average across all participants for one study week. The
Direction column indicates in which the direction the Cohan & score is calculated and needs to be interpreted as follows:

@ in situ button, @ in situ app, @ pure self-recall, @ time-series recall, (C/W) compared with.

Week, Day Direction | 2b88 | 36fd | 4531 | 74e4 | 834b | 90ad4 | a506 | d8f2 | eed7 | £30d | fc25 | Avg.
®cw® | 032 0.0 0.0 00| 069 | 035| 079 | 0.22 0.0 | 023 | 0.58

1,1 ®cw®@ | 069 | 085 | 0.69 0.0 | 0.76 0.0 0.0 0.0 | 0.90 0.0 | 0.49
12 ®cw@ | 0.64 | 0.69 00| 009 | 085 | 005 | 051 0.0 ] 055 | 047 | 0.74
’ Bcw@ | 064 | 068 | 0.84 | 0.05 | 0.86 0.0 | 050 0.0 | 093 0.0 | 0.73
L3 ®aw® 0.0 | 0.62 | -0.03 00| 039 | 056 | 053 0.0 | 0.05 | 0.53 | 0.51
’ Qcw(@ | 086 0.0 | -0.03 0.0 | 038 0.0 | 044 0.0 | 028 0.0 | 0.54

@®cw@® | 038 ] 030 091 | 008 | 0.63] 003 0.80 0.0 | 0.66 | 0.80 | 0.0

1,4 @cw®@ | 099 | 069 | 090 00 | 074 0.0 | 057 | 0.69 | 0.80 00| 00
Ls @ow® | 033 033 00| 004 | 039| 032| 093 0.0 | -0.03 | 093 | 0.87

’ @ C/W @ 0.32 | 0.83 0.0 0.0 | 037 0.0 | 0.96 0.0 | -0.31 0.0 | 0.89
L6 G cw @ 0.0 00| 0.75 | 0.07 00| 034 | 0.67 00| 042 ] 099 | 0.84

Bcw® | -0.14 ().9.6 0.71 0.0 | 0.15 0.0 | -0.07 | 041 | 0.52 0.0 | 0.84

L7 ®cw@ | 030 0.0 | 056 | 0.04 0.0 | 0.525 | 0.99 0.0 ] 029 | 0.90 | 0.49
’ ®cocw®@ | 078 | 0.15| 0.69 0.0 | 0.10 00 | 043 0.0 | 042 0.0 | 0.77

®cw® | 030 | 056 | 036 | 0.10| 051 0.0 | 0.88 0.0 | 041 | 0.89 | 0.85
@®CcwW@ | 045 | 077 | 037 0.0 | 057 | -0.02 0.0 | 0.63 | 0.51 0.0 | 0.81
2,1 GCcw@ | 085] 076 | 0.56 | 0.10 | 048 | 0.11 | 0.90 | 0.78 | 0.74 | 0.86 | 0.46
@cow @ | 039] 043 | 048 ) 043 | 0.74 0.0 | 098 0.0 | 058 | 0.82 | 0.58
@cw@ 0.53 | 0.61 | 045 00| 070 | 0.18 00| 0.71 | 0.57 0.0 | 0.55

®@cwWD® | 082 | 021 | 091 ] 005] 047 003 ] 070 0.0 ] 029 ] 0.74 | 0.36
@CcwWQ@ | 084 075| 093 0.0 | 0.90 0.0 0.0 | 0.87 | 0.59 0.0 | 0.81
2,2 B cw@) | 002 | 082 | 062 | 009 | 084 | 009 | 070 | 0.83 | 0.56 | 0.85 | 0.46
@cw @ | -0.02] 011 | 0.66 | 038 | 047 | 0.77 1.0 0.0 | 043 | 0.70 | 0.45
@cw @ -0.02 | 0.83 | 0.63 0.0 | 092 0.0 0.0] 096 | 0.71 0.0 | 0.46

®@cwD® | 070 | 044 0.0 0.0 | 0.62 0.0 | 0.90 0.0 | 028 | 0.99 | 0.68
@®CwWQ@ | 066 | 044 | 098 00 | 0.72 0.0 0.0 | 047 | 0.36 0.0 | 0.82
2,3 B)cw@) | 068 | 054 | 062 | 091 | 049 | -0.18 | 0.90 | 0.86 | 0.39 | 0.98 | 0.58
@cw @ | 091 053 0.0 0.0 | 0.77 0.0 1.0 0.0 | 0.88 | 0.96 | 0.41
@cw Q) 0.74 | 0.53 | 0.82 0.0 | 0.74 0.0 0.0 | 0.60 | 0.79 0.0 | 0.65

®cw® | 045 00| 0.83 00 | -0.02 | 0.05 | 0.64 0.0 | 023 ] 0.67 | 0.78
@CcwWQ@ | 014 | 085 | 083 0.0 | -0.02 0.0 0.0 0.0 | 026 0.0 | 0.87
2,4 GB)cw(@) | 0.17 | 0.86 | 0.84 | 0.90 | -0.02 00| 064 | 0.84 | 038 | 0.86 | 0.92

@cw @ | 071 0.0 | 0.86 0.0 | 0.80 | 047 1.0 0.0 | 0.68 | 0.66 | 0.76
@cw Q) 0.82 | 0.51 | 0.86 0.0 | 0.80 0.0 0.0 0.0 | 050 0.0 | 0.85

®@cwD | 059 0.0 0.0 00| 028 | 0.09 | 0.60 0.0 0.0 | 0.73 | 0.95
ow® 0.0 | 041 | 0.77 00 | 028 | 0.01 0.0 | 054 | 0.54 0.0 | 0.92
2,5 B)cw@) | 048 | 047 | 076 | 0.16 | 026 | 0.09 | 0.59 | 0.82 | 0.40 | 043 | 0.47
@cw (@D 0.5 0.0 0.0 00| 0.82| 094 | 0.99 0.0 0.0 | 0.38 | 0.46
@cw Q) 0.0 | 034 | 0.89 0.0 | 0.83 | 0.60 0.0 | 049 | 0.70 0.0 | 0.44

®@cw® | 048 0.0 | 0.90 0.0 | 0.39 00 | 0.73 0.0 0.0 | 0.20 | 0.86
ow® 00| 085 | 0.96 00 | 039 | 0.02 0.0 ] 055 | 0.83 0.0 | 0.87
2,6 B)cw(@) | 047 | 086 | 092 | 0.77 | 0.30 00| 072 | 0.83 | 0.86 | 0.74 | 0.86
@cw@ | 098 0.0 | 095 0.0 | 047 0.0 | 0.99 0.0 0.0 | 046 | 0.83
@cw Q) 0.0 | 0.88 | 0.89 00| 0.62| 0.69 0.0 | 043 | 095 0.0 | 0.82

®@cw® 0.0 0.0 0.0 0.0 | 030 00| 073 | 040 | 043 | 091 | 0.86
ow® 0.0 | 041 | 0.76 0.0 | 030 0.0 0.0 0.0 | 0.14 0.0 | 0.86
2,7 B cw@ | 096 | 047 | 0.72 00| 024 | -001 | 042 | 0.79 | 033 | 092 | 0.84
@cw(@ 0.0 0.0 0.0 0.0 | 0.79 00 | 067 | 046 | 0.71 | 0.94 | 0.78
@cw Q) 0.0 | 0.80 | 093 0.0 | 0.78 0.0 0.0 0.0 | 0.46 0.0 | 0.78

@CcWD | 048] 017 | 043 ] 002 ] 036 | 002 | 074 00| 023] 073 | 076 | 0.39
QCW@ | 030 0.64| 080 | 00| 045, 00| 00| 0.44 | 046 | 0.0 | 0.85 | 0.36
Avg. Week 2 | 3)C/W(2) | 0.51 | 0.68 | 072 | 012 | 037 | 0.01 | 070 | 0.82 | 033 | 0.81 | 0.66 | 0.52
@cw (D | 050 | 015 | 042 | 042 | 0.69 | 031 | 094 | 0.07 | 047 | 0.70 | 0.61 | 0.48
@Cw @ | 030 | 064 | 078 | 0.0 | 078 | 021 00| 0.46 | 0.67 | 0.0 | 0.65 | 0.41
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Figure 5: Visualization of participants’ accelerometer data on the sixth day in the second week of the study, together
with annotations set by them. The four layers in the upper part of every participant’s daily data represent the four
annotation methods. The order is from bottom to top: @ in situ button, @ in situ app, @ pure self-recall and @
time-series recall.

a506 are very precise in their annotations across methods, but are missing at least one layer of labels. The complete
collection of visualizations is available in our dataset repository[/|

4.3 Effects on Classification

The results of our deep learning evaluatiorﬁ suggest that the annotation method chosen can have a crucial impact on the
classification ability of a trained deep learning model. Depending on the chosen methodology, the average F1-score
results differ by up to 8%. In the first week, the in situ methodologies, button @ and app @, generally perform better
than the pure self-recall diary @ Study participants mostly correctly estimated the duration of an activity, but tend to
round up or down the start and end times. The in situ methods are up to 8% better than the pure self-recall, although the
amount of annotated data available, due to missing annotations, is significantly lower than for other methods. Although,
we work with a dataset recorded in-the-wild, the deep learning results generally show a high F1-score. This is untypical
for such datasets, but can be explained by the fact that the majority of the daily data are assigned to the void class. This
leaves proportionally only a few samples that are crucial for determining the classification performance.

Despite the fact that the number of available annotations that have been labeled by the study participants using the
time-series recall method (4) is significantly high with 92.33%, the average F1 score is 1.1% lower (89.00%) than the
results reached with the App Assisted method (90.1%). To understand this result it is crucial to look at Table [3in detail
and take meta-information about the participants into account. The participants mostly used their diary as a mnemonic
aid for the graphical annotation method and tried to identify the corresponding periods in the acceleration data. The
results of subjects 2088, a506 and eed7 show that the performance of the classifier could be increased with graphical
assistance. However, the F1-Score of 2b88 is 0.01% below the F1 score of the in situ app assisted annotation method
(2). These subjects have in common that they are already trained in interpreting acceleration data due to their prior
knowledge and thus assign samples to specific classes more precisely. Subjects fc25, 4531, and 834b, on the other hand,
do not have prior knowledge. Apart from subject 834b, the deep learning results show that presenting a visualization to

"https://doi.org/10.5281/zenodo. 7654684
$Detailed results for every participant included in our deep learning evaluation can be accessed online on the Weights & Biases
platform: https://tinyurl.com/4vxvfaed.

11


https://doi.org/10.5281/zenodo.7654684
https://tinyurl.com/4vxvfaed

A Matter of Annotation

B Insitubutton [ Insituapp Pure selfrecall [l Time series recall

100

75 +

50

25

0_

Week 1 Week 2

Figure 6: The overall mean F1-Scores for the Leave-One-Day-Out Cross Validation across all participants. In the first
week the participants used methods @ - @ In the second week we introduced method @

Week 1
Subject 2b88 | a506 | eed7 | fc25 | 4531 | 834b | Average
@ in situ button 0,91 | 0,92 | 0,89 | 0,89 | 0,91 | 0,91 90,4
@ in situ app 0,92 | 0,60 | 091 | 0,84 | 0,93 | 0,92 85,5
@ pure self-recall 0,78 | 0,76 | 0,83 | 0,86 | 0,86 | 0,89 83,0
Week 2
) in situ button 0,88 | 0,92 | 0,90 | 0,92 | 0,86 | 0,72 86.8
@ in situ app 0,91 na 0,92 | 094 | 0,85 | 0,88 90,1
@ pure self-recall 0,81 | 0,86 | 0,82 | 0,94 | 0,83 | 0,67 82,1
@ time-series recall | 0,90 | 0,91 | 0,95 | 0,86 | 0,86 | 0,86 89,0

Table 3: In detail representation of the final F1 scores for every annotation methodology and week per study participant.
The average F1-Scores are graphically visualized in Figure [f]

an untrained participant rather harmed than helped the classifier. If one looks at the visualizations of day 1 & 6, week 2
of fc25, see Figure[5]and[7] the labels set by the subject with the help of the graphical interface, it is comprehensible
that this study participant tended to be rather confused by the graphical representation and therefore labeled the data
incorrectly.

5 Discussion

In our 2-week long-term study, we recorded the acceleration data of 11 participants using a smartwatch and analyzed it
visually, statistically, and using deep learning. The findings of the visual and statistical analysis were confirmed by the
deep learning result. They show that the underlying annotation procedure is crucial for the quality of the annotations
and the success of the deep learning model.

The in situ button method @ offers accuracy but brings the risk that the setting of a label is forgotten entirely or
incompletely set. However, this method can be combined with additional on-device feedback or a smartphone app, so
that a greater accuracy and consistency of the annotation can be achieved. This involves a considerable implementation
effort, which many scientists avoid because such projects, although of their significant value to the community, attract
little attention in the scientific world. The use of existing, but often commercial, software and hardware is all too often
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Figure 7: Visualization of the 1st day in week 2 of subject fc25. Differences can be seen in the upper annotation layer

(@) time-series recall), exhibiting larger differences regarding the annotated start- and stop times compared to other
methods.

accompanied by a loss of privacy. As our research has shown in passing, many users therefore shy away from using
such products.

Through our investigation on the consistency of annotations between methodologies, we were able to show that
participants in our study seem to prefer to write an activity diary (pure self-recall method @). This finding corresponds
to what Vaizmann et al. [14] already points out. However, this method has the disadvantage that it can be imprecise,
which is evident in the visualization of the data and annotations. Similarly, the activity diary methodology performed
the least reliably among all methodologies, which has been confirmed by the deep learning model. Since the deep
learning results using the in situ app annotations @ are almost similar to the results given by the time-series recall @
even though the number of labeled samples is lower, it raises the question if a smaller set of high-quality annotations is
more valuable for a classifier than a larger set of annotated data that comes with imprecise labels. This could mean that
in future works we can reduce the amount of necessary training samples drastically if a certain annotation quality can
be assured. However, this needs to be confirmed by further investigations.

Some participants reported that they found the support provided by the visual representation of the data helpful. The
resulting Cohen « scores strengthen this impression, since the Fl-scores are much higher when we compare the
time-series recall with both in situ methods vs. the pure self-recall. This indicates that as soon as the participants
received a visual inspection tool, they rather tend to annotate data at similar time periods as through the in situ methods,
since they are able to easily identify periods of activity that roughly correspond to the execution time they remember.
Our participants reported similar preferences, which led us to the conclusion that a digital diary that includes a data
visualization could combine the benefits of both annotation methods.

However, the study also showed that participants can find it difficult to interpret the acceleration data correctly and thus
set inaccurate annotations. As our trained models show, this also has a strong influence on the classification result. If
such a tool is to be made available to study participants, it must be ensured that they have the necessary knowledge
and tools to be able to interpret these data. Thus, to assure the success of future long-term and real-world activity
recognition projects, prior training of the study participants regarding the data interpretation is of crucial importance if
a data visualization is supposed to be used. Apart from trying to solve annotation difficulties during the annotation
phase itself, we can also partially counter wrong or noisy classified data by using machine learning techniques like
Bootstrapping, see Miu et al. [40] or using a loss function that specifically tries to counteract this problem, such
as [5,152]. By using Bootstrapping, the machine or deep learning classifier is initially trained by a small subset of
high-confident labels and further improved by using additional data. However, this technique comes with the trade-off
that whenever wrong labeled data is introduced as training data, the error will get propagated into the model. An
effect that sooner or later occurs as long as the annotation methodologies themselves are not further researched. Other
machine learning techniques that can work with noisy labels, see [53]], are already successfully tested for Computer
Vision problems and can, in theory, be adopted for Human Activity Recognition. However, earlier research has shown
that not every technique that is applicable in other fields is also applicable on sensor based data [46]].
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5.1 Discussing different Annotation Biases

We need to take into account that a number of biases could have been introduced due to the chosen annotation guidelines
and tools. For example, the usage of in situ annotation methods during the day can have a positive effect on the
self-recall capabilities of a participant at the end of the day. However, the comparison of consistencies across methods
does not confirm that this effect indeed occurred. Every study participant showed an almost complete overall profile of
self-recall annotations, even though the person has not used or has incomplete in-situ annotations, see Fig. @ However,
deeper investigations are needed in order to be able to understand such effects better.

Yordanova et al. [18] lists the following 3 biases for sensor-based human activity data: Self-Recall bias [23], Behavior
bias [3] and the Self-Annotation bias [18]. We showed that indeed a time-deviation bias (which can be seen as a
self-recall bias) has been introduced to annotations created with the pure self-recall method @, and that such a bias
effects the classifier negatively. However, visualizing the sensor data can counter this effect because it was easier for
participants to detect active phases in hindsight.

A behavior bias can be neglected, because the participants were not monitored by a person or video camera during
the day and the minimalistic setup of one wrist-worn smartwatch does not influence ones behavior since the wearing
comfort of such a device is generally perceived as positive [54]. A self-annotation bias, a bias that occurs if the annotator
labels their data in an isolated environment and cannot refer to an expert in order to verify an annotation, did occur as
well. With the deep learning analysis we were able to show that the classifier was less negatively impacted by this bias
than by time-deviation bias.

6 Conclusion

We argue that the annotation methodologies for benchmark datasets in Human Activity Recognition do not yet capture
the attention it should. Data annotation is a laborious and time-consuming task that often cannot be performed accurately
and conscientiously without the right tools. However, there is a very limited number of tools that can be used for this
purpose and often they do not pass the prototype status.

Only a few scientific publications, such as [22], that focuses on annotations and their quality. Although the use of proper
annotated data drastically affects the final capacities of the trained machine or deep learning model. Therefore, we
consider our study to be important for the HAR community, as it analyzes this topic in greater depth and thus provides
important insights that go beyond the current state of science. Table ] summarizes the advantages and disadvantages
of every method. To guarantee high-quality annotations in future studies, especially in an uncontrolled real-world

Table 4: Comparison of advantages and disadvantages of all annotation methods used in this study.

Methodology Advantages Disadvantages

- Participants tend to forget pressing a button

- Many incomplete annotations that become
unusable for the classifier

- Easy to implement and use

@ in situ button - Can be improved with feedback mechanisms

- Tracking apps are already widely used and accepted,
therefore low acceptance threshold

- Can be improved with feedback mechanisms or

() in situ app additional smartphone functionalities

- List of possible annotations can be expanded with
minimum effort

- Participants tend to set very precise annotations.

- Data and privacy concerns if a commercial app is used.
- Participants often forgot to set an annotation,

especially when they were unfamiliar with tracking apps.
- Implementation workload may be very high

- Easy to use even without technical knowledge - Can be very imprecise

@ Ifrecall (a handwritten diary) ) ) - Only suitable for coarse activity 1abels aqd activities
pure self-reca - Most accepted method in our experiment that were performed for long periods of time,
- Annotations are very consistent like walking or running
- Available tools are often in the state of a prototype
(@ time-series - Visualization of data helps participants to set and need additional developments and adjustments
- - annotations more accurate than using the pure and are therefore not impromptu usable.

recall self-recall method (3) - Participants need to be trained to be able to interpret

sensor data.

environment where a video recording is not available for the subsequent acquisition of ground truth, further research in
this field is necessary. The methodologies used for annotating activity data need to be challenged and further developed.

The combination of a (handwritten) diary with a correction aided by a data visualization in hindsight shows the best
results in terms of consistency and missing annotations and provides accurate start and end times. However, this
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combination results in additional work for the study participants and therefore, remains a trade-off between additional
workload and annotation quality.

Lesson Learned. During this study we gained insights about the effects of different annotation methods on the
reliability and consistency of annotations and finally on the classifier itself, but also about training deep learning models
on data recorded in-the-wild. In this chapter we would like to share these insights in order to help other researchers
performing their experiments more successful. With regards to Table [d we are able to narrow down specific study
setups that either benefit more from self-recall or in situ annotation methods.

1. Due to the good acceptance and the low workload for study participants we can recommend a self-recall
method for studies where label precision is not the highest priority and rough estimations of activities are
sufficient.

2. According to our study, we can increase the label precision of the self-recall method with an additional software
that visualizes the raw data, e.g. [9]. We recommend to consider the implementation of such a module and
providing this software to participants together with an introduction on how to interpret sensor data. According
to [[14] the self-recall method can also be effectively improved by introducing server guesses of activities or
visually organizing the day chronologically.

3. In situ annotations result generally in more precise labels. However, the label process is more labor intensive
than a self-recall method, since it can take a lot of time and often includes many steps to set the label. We
argue, that smaller studies with participants that agree with performing such laborious work can benefit from
this method.

4. Such a system needs to be implemented carefully and with a holistic concept in order to not be seen as a
burden by the participants [55].

5. Annotating data with commercial apps, like Strava, are negligible due to data and privacy concerns.

6. In situ annotation can have the same benefits as an app solution. However, only if researchers have access to the
programming interface of the recording device and can implement additional features that helps participants to
not forget setting a label.

As part of our annotation guidelines, we gave our study participants the opportunity to name their activities as they
wished. Therefore, we were forced to simplify certain activities. In order to be able to create a real-world dataset which
contains complex classes or even classes that consists of several subclasses, more elaborated annotation methods and
tools must be developed. We believe that with the current available resources the hurdle lies very high for such datasets
to be annotated accurately.

Our study includes people who cycle to work in their daily work routine, others commute by public transport or
work in a home office environment. Thus, each study participant has his or her own personal set of daily repetitive
activities. Due to the nature of our dataset as one recorded in a real-world and long-term scenario, the number of labeled
samples is rather small and given labels very participant dependant. This mix of factors creates a bias in the dataset and
we concluded that a cross-participant train-/test-strategy is not appropriate for our study design and would not give
meaningful insights, since every study participant has their own set of unique activities which are too different in nature
and hardly generalizable. Therefore, for certain studies the commonly known and accepted Leave-One-Subject-Out
Cross-Validation is not suitable.
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