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ABSTRACT
Control rooms are central to the well-being of many people. In
terms of human computer interaction (HCI), they are character-
ized by complex IT infrastructures providing numerous graphical
user interfaces. More modern approaches have been researched for
decades. However, they are rarely used. What role does the attitude
of operators towards novel solutions play? In one of the first quan-
titative cross-domain studies in safety-related HCI research (N =
155), we gained insight into affinity for technology interaction (ATI)
and wish for pervasive computing solutions of operators in three
domains (emergency response, public utilities, maritime traffic).
Results show that ATI values were rather high, with broader range
only in maritime traffic operators. Furthermore, the assessment of
autonomy is more strongly related to the desire for novel solutions
than perceived added safety value. These findings can provide guid-
ance for the design of pervasive computing solutions, not only but
especially for users in safety-critical contexts.
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•Human-centered computing→ Empirical studies in HCI;
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1 INTRODUCTION
If the electric light comes on when you flip the switch and water
flows in the shower in the morning, when you encounter an ambu-
lance and a fire brigade on your way to work, and the supermarket
is well stocked in the evening, then the control room operators in
various domains worked in the background to ensure all this.

To operate successfully in such “location[s] designed for an
entity to be in control of a process” [18], means to handle a vari-
ety of alarms and messages, solve demanding problems and make
short-term decisions with the help of colleagues and complex IT in-
frastructures. While pervasive technologies (e.g., wearables, smart
home solutions) are increasingly becoming part of private and pro-
fessional life, where “people and devices are mobile and use various
wireless networking technologies to discover and access services
and devices in their vicinity” [38], state of the art control rooms are
characterized by numerous screens and graphical user interfaces
operated by mouse and keyboard. Cooperation between operators
is rarely proactively supported by technology. Approaches that
go beyond these established solutions have been researched for
decades. Although their benefits have been demonstrated, as illus-
trated in section 2, that has hardly had any impact on practice so
far. The question is, why?

It can be assumed that there is no single answer and that various
factors contribute (financial, legal, etc.). One of them could be that
operators don’t want to engage with new solutions because they
prefer proven ones due to their high-responsibility job. Answers
are becoming more urgent as demands on control rooms increase
in many areas (e.g., private photo-voltaic systems influence energy
grids, the number of emergencies increases due to demographic
and climate change).

In any case, "it is crucial that HCI researchers [...] contribute
to next-generation control room technologies" [6]. In the follow-
ing, we take a quantitative approach to shed light on and compare
operators’ perspectives from three domains (emergency response,
maritime traffic, and public utilities). First, their affinity for technol-
ogy interaction (ATI) is considered. Whether a person approaches
or avoids interaction with technology [13] is considered an impor-
tant component of operator skills [7]. Instead of relying on common
self-assessments [33], a validated ATI scale was used (see section 3).
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Second, we have provided specific suggestions for pervasive com-
puting in control rooms and asked operators to assess influences
on autonomy, safety, and their wish to use them. Specifically, we
focus on the following three research questions:

• RQ1: What is the distribution of affinity for technology
interaction in control room operators?

• RQ2: What is control room operators’ assessment of differ-
ent pervasive technology scenarios regarding safety, auton-
omy and their wish to use such a solution?

• RQ3:What is the relationship between affinity for technol-
ogy interaction and wish for pervasive technology?

The remainder of this paper is structured as follows: In section 2,
we summarize previous research on control rooms. The subsequent
section 3 provides details on study design. Results (see section
4) are presented, focusing on affinity for technology perspectives
and feedback on pervasive computing approaches, followed by a
discussion of results in section 5. Finally, goals and main outcomes
of this study are summarized (see section 6).

2 RELATEDWORK
Subsequently, characteristics and HCI-related research of control
rooms relevant for further understanding are described.

2.1 Characteristics of Control Room
Environment

Multi-screen single-user workstations, larger wall-mounted screens,
graphical user interfaces operated with a mouse, keyboard, and
other haptic controls (e.g., knobs), as well as shift work can be
considered characteristic for the state of the art control rooms fitting
the generic definition in section 1 [21, 40, 41, 47]. Mobile devices,
wearables, and sensors have rarely been used so far [17, 20, 27]. In
general, a rather conservative attitude to novel technology can be
identified [32, 37].

In addition to these, there are domain-specific characteristics.
A possible differentiation is provided by the taxonomy of Mentler
et al. [36] focusing on location and number of operators acting in
parallel (see Figure 1). It mentions a key difference between control
rooms at "fixed" locations (e.g., emergency response, public utilities)
and "mobile" control rooms that are often part of the managed
infrastructure and processes (e.g., ship bridges, aircraft cockpits).

This difference concerns means and way of work. In control
rooms with fixed locations, there are often input and output de-
vices comparable to office environments - only in larger numbers
(more private and public screens, more than one keyboard and
mouse at a single workstation, headsets connected to a telephone
system that routes multiple calls in parallel to one operator) [37]. In
"mobile" control rooms, operators work with more customized solu-
tions because rooms are usually narrower, in motion (e.g., swaying)
and can be exposed to extreme weather conditions [29, 30, 42]. In
addition, many tasks (e.g., "manoeuvring close to a towering oil
rig" [30]) require a look outside the windows.

While operators working in control rooms with fixed locations
can return home after their shifts, operators working in mobile
settings often can’t. For example, many maritime traffic operators
are on the move for several days to months on different ships with

changing sizes, bridges, and international crews in a wide variety
of locations [30, 31].

2.2 HCI-related Research on Control Rooms
Control rooms have been studied by HCI researchers for more than
30 years with respect to automation, alarms, collaboration, safety
culture, situation awareness, training, interaction design, and work-
load [6, 41, 47]. Apart from conceptual or model-based approaches
[3, 5], the majority of research involving operators is characterized
by qualitative approaches, e.g., contextual inquiries [50], ethnogra-
phies [4, 16], expert evaluations [25], interviews [12, 28], partici-
patory observations [19], and usability inspections [1]. Valuable
insights have been gained on control rooms as contexts of use.
Quantitative approaches that complement these findings and facili-
tate transferability have been rarer. They are often characterized by
studies with smaller sample sizes that complicate the interpretation
of results [22, 48]. With a few exceptions (e.g., [34, 46]), research is
devoted to a specific control room domain (e.g., simulator studies
[15, 24], questionnaires [8]).

Current research on user interface and interaction design for
control rooms is devoted to multi-modal interaction, extended real-
ity applications, and enhanced collaboration (e.g., touch control for
surfaces, gesture and voice control at workstations, [2, 23, 25, 44]).
Findings have often been promising, but "there still exists a gap
between the interaction technologies being employed in pervasive
displays used in other settings and those used in control rooms"
[17].

Less related to individual applications, but to control rooms as
a whole, approaches of "smart control rooms" [23, 37] or "con-
trol rooms as human-centered pervasive computing environments"
[12] have been developed. They break with traditional interaction
paradigms as there are no single desktop workstations any more,
and users are able to interact in the moment when the need arises,
regardless of what they were doing in the first place. These control
rooms might include solutions that proactively execute identified
tasks, filter messages by priority or route them to other operators if
one is busy or stressed, ensure messages reach operators, or suggest
actions to maintain the operators’ health [35].

Operators have often been involved in participatory design pro-
cesses and as participants in usability tests (e.g., [9, 10, 23]). While
performance and well-being have already been addressed, to the au-
thors’ knowledge, there has not been any assessment of technology
affinity or related concepts yet. However, it cannot be assumed that
operators, due to their technology-influenced work environment,
are generally positive about new forms of technology. In summary,
HCI-related quantitative research involving operators of different
control room types is largely absent.

3 METHOD
Within the framework of the research project PervaSafe Comput-
ing, which is dedicated to the topic of human-centered pervasive
computing environments [12], an online survey was conducted via
LimeSurvey to investigate RQ1-RQ3. Invitations were sent out
in germany via email to 112 fire and rescue services (emergency
control rooms), 263 public utility companies (energy and water
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Figure 1: Types of control rooms according to location and number of operators (Illustration based on [36]. Highlighted areas
(green, yellow, dark grey) indicate the 3 domains considered in this study and are reflected in the statistical analyses).

control rooms) and 9 associations of captains and ship officers (mar-
itime traffic control rooms). They represent control room contexts
that are both different enough to gain insight into the transfer-
ability of findings and comparable with respect to the taxonomy
shown in Figure 1. Among others, the Professional Association of
Control Centers in germany invited their members to participate.
Links were distributed in the forum of the web-based control room
simulation LstSim (https://lstsim.de/).

Survey questions assessed demographic variables (including age
group, job domain, work experience), current state of workplace
digitization (including use of tablets, smartphones, IoT, etc.), evalu-
ation of pervasive technology use cases, and affinity for technology
interaction.

Scenarios (see Table 2 and appendix Table 3) were selected in
collaboration with domain experts during interview and workshop
activities within the project to cover a variety of use cases relevant
in all three domains: to adapt tasks and task load to current de-
mands (A-D), to improve communication (B, E), and to help dealing
with high stress levels and maintaining the operators’ health (F-H).
Respondents rated on a six-point Likert scale (completely disagree
to completely agree) whether the pervasive technology used in the
scenario would improve safety, maintains the operators’ autonomy,
and whether they would like to have it available (wish). To control
for acquiescence bias, for half of the participants, the agreement to
the scenarios (whether it would improve safety or autonomy) was
reverse coded (e.g., "does not increase autonomy").

To assess affinity for technology interaction (ATI) in a structured
manner, the scale by Franke et al. was used (ATI-scale, [13], see
appendix Table 4). It is grounded in the psychological construct
need for cognition and assesses a person’s tendency to actively
engage in intensive technology interaction as a uni-dimensional
construct with a short (9 items) and reliable scale. Answers are
given on a six-point Likert scale (from 1 = completely disagree to
6 = completely agree). Validity has been demonstrated with more
than 1500 participants, and independently by other researchers
[26].

Participants opened the link to the survey, were informed about
study details, asked for consent to participate, and if they did, filled
in their answers. Finally, they were thanked and asked if they would
be available for further research requests. If yes, they were able to
provide a contact email address independently of survey responses.

4 RESULTS
In total, 161 participants finished the survey. 59 of them agreed to
be contacted for further research purposes. Data were manually
checked for inconsistencies, such as people claiming a longer work
experience than possible in their age group. This resulted in 155
usable answers with a fully completed ATI scale.

Demographic variables: 151 of 155 participants (97.4%) were
male, three female (1.9%), one gave no answer (0.6%). Regarding
age, 7 participants were between 18-29 years, 38 between 30-39
years, 49 between 40-49 years, 48 between 50-59 years, and 13 were
60 years or older. Work domain was unbalanced. 106 participants
work in emergency services and 20 work in public utilities control
rooms. All of the 29 answers in work domain "other" were related
to maritime traffic, which is used as label for this group. Average
work experience was 14.74 years (SD = 9.88), ranging from 0 to
44 years (see appendix, Figure 2). Maritime traffic operators had a
significantly higher work experience (ANOVA, F (2, 152) = 13.93,
p < .001, [2 = .15), though care should be taken when interpreting
results due to unequal group sizes.

Workplace and digitization: Number of coworkers (see ap-
pendix, Figure 3) and state of digitization (see appendix, Figure 4)
support previous research (see section 2). Looking at mobile de-
vices and private work spaces, maritime traffic operators are de-
scriptively more mobile than emergency response operators, while
public utilities control room operators frequently work with com-
mon workplace screens. Wearables and IoT are rarely used by any
group.

Affinity for technology interaction: As Cronbach’s alpha
was .9 (excellent), items were combined into one mean ATI value
(reverse-coding items 3, 6, and 8). Average ATI was 4.66 (SD =
0.84), ranging from 1.89 to 6.00 (see Table 1 and appendix, Figures
5 and 6). ATI was statistically significantly different between the
three work domains (ANOVA, F (2, 152) = 17.51, p < .001, [2 =
.19), with maritime traffic operators having a lower ATI score than
the other two groups, using Bonferroni-corrected post-hoc tests.
Using the data from [13] as a comparison, emergency response
operators and public utilities control operators have statistically
significantly higher ATI values than the German quota sample (M
= 3.61, SD = 1.08). For maritime traffic operators, no statistically
significant differences could be found (see Table 1, two-sample t-
tests were used as the raw data was available through the authors,
one-sample t-tests using the German quota sample mean of 3.61
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Table 1: ATI overall and in the three work domains

Domain M SD Range comparison with quota sample

Overall 4.66 0.84 1.89 — 6.00 t(376.69) = 10.68, p < .001
Emergency Services 4.84 0.71 2.67 — 6.00 t(295.96) = 12.45, p < .001
Public Utilities 4.77 0.50 4.00 — 5.56 t(37.34) = 8.76, p < .001
Maritime Traffic 3.91 1.05 1.89 — 5.67 t(259) = 1.38, p = .17

Table 2: Correlations between ATI and autonomy, safety and wish. The scenario refers to a digital assistance system for control
rooms that detects (and) ...

Scenario Correlation 𝒓 𝒑 effect size

A) execute tasks that were
identified in the
communication of the
operators

autonomy wish .55 < .001 large
ATI wish .27 .001 small

safety autonomy .26 .001 small
safety wish .23 .003 small
ATI autonomy .13 .111 small
ATI safety .05 .519

B) whether an operator is
on the phone and if so
presents messages not via
sound but using other
modalities

autonomy wish .63 < .001 large
ATI wish .42 < .001 medium

safety wish .30 < .001 small
ATI autonomy .21 .009 small
safety autonomy .16 .051 small
ATI safety .11 .187 small

C) an unusual work
situation or system state
and offers to log all
activities in the control
room automatically

autonomy wish .52 < .001 large
safety wish .38 < .001 medium
ATI wish .24 .003 small

safety autonomy .23 .005 small
ATI safety .10 .228
ATI autonomy .08 .319

D) whether team briefings
are currently being
conducted, in which case
the system offers to
withhold low priority
messages during that time

autonomy wish .42 < .001 medium
safety wish .37 < .001 medium
ATI wish .23 .004 small

safety autonomy .20 .014 small
ATI autonomy .14 .085 small
ATI safety .12 .122 small

Scenario Correlation 𝒓 𝒑 effect size

E) whether an operator is
in his personal work
space, if not the messages
are presented where the
person is at the moment

autonomy wish .57 < .001 large
safety wish .39 < .001 medium
safety autonomy .32 < .001 medium
ATI wish .21 .008 small
ATI safety .16 .047 small
ATI autonomy .09 .267

F) whether the operator is
eating or drinking and
gives the operator the
instruction to do so if
necessary

autonomy wish .51 < .001 large
safety autonomy .42 < .001 medium
safety wish .39 < .001 medium
ATI wish .12 .142 small
ATI safety -.05 .548
ATI autonomy -.07 .384

G) by monitoring the
respiratory frequency
how stressed the operator
is and if necessary
distributes incoming tasks
to other operators

autonomy wish .40 < .001 medium
safety wish .34 < .001 medium
safety autonomy .22 .006 small
ATI wish .19 .016 small
ATI autonomy .12 .135 small
ATI safety .06 .439

H) whether the operator
needs physical exercise
and gives movement
recommendations

autonomy wish .55 < .001 large
safety wish .27 .001 small
ATI wish .21 .008 small

safety autonomy .20 .013 small
ATI autonomy .12 .130 small
ATI safety -.02 .827

as comparison leads to similar results). As the gender distribution
is highly skewed (97.4% male) and [13] report gender differences,
another comparison was done using only male participants, which
leads to similar results.

Evaluation of the pervasive technology scenarios: Looking
exploratively at the correlations between autonomy, safety and
wish in the eight scenarios (see Table 2), we find large to medium
positive correlations between autonomy and wish (ranging from .63
to .40), and medium to small positive correlations between safety
and wish (ranging from .39 to .23) as well as safety and autonomy
(ranging from .42 to .16).

Descriptively, maritime traffic operators are muchmore reluctant
to use the suggested pervasive technology, while — in some cases —
seeing that it preserves autonomy and contributes to safety. They
are also the only group for whom with some scenarios, no member
wants to use the technology (see appendix, Figure 7).

Possible relationships between affinity for technology in-
teraction and pervasive technology scenarios: Looking at the
correlations between ATI and autonomy, safety and wish (see Ta-
ble 2), they ranged from medium (r = .42, wish for scenario B) to
small or not even small (all correlations positive). Strongest ATI
related correlations were between ATI and wish (r = .42 to .12, see
Table 2).

5 DISCUSSION
Subsequently, results are discussed with respect to the aforemen-
tioned research questions and limitations of the study.

5.1 Distribution of Affinity for Technology
Interaction (ATI; RQ1)

Looking at the ATI distribution, control room operators in emer-
gency response and public utilities are open to technology and
like to interact with it. Maritime traffic operators have lower ATI
values. This might be partly explained by more frequent changes
of work environments ("mariners move from ship to ship and from
company to company" [39]), operators’ expectations for the robust-
ness ("durability") of technology in "mobile" control rooms [42],
and higher average age. To some extent, these values reflect the
taxonomy by [36] and domain similarities outlined in section 2.

While a selection bias cannot be excluded with an online sur-
vey about the use of technology, given that low ATI values were
present in one group (maritime traffic operators), this effect would
have to be group specific (occurring for emergency services and
public utilities operators, but not for maritime traffic operators). In
combination with the (for some scenarios) critical assessment of
the pervasive technology scenarios, this bias seems unlikely. Given
that all but four participants were male and there are indications for
gender differences in ATI in the general population (with males hav-
ing higher ATI on average, see [13]), the high ATI values might also
be partly explained this way. However, again this does not explain
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the lower values in maritime traffic operators. While sampling all
operators in a control room (e.g., cluster sampling) might provide
more reliable answers, ATI values indicate that at least emergency
and public utilities control room operators like to interact with
technology more than the general population.

5.2 Assessment of Different Pervasive
Technology Solutions Regarding Safety,
Autonomy and Wish (RQ2)

The assessment of the pervasive technology scenarios (RQ2, cf.
Table 2 and appendix, Figure 7) regarding safety, autonomy and
whether operators want to use this technology, differs descriptively
between scenarios and work domains. Pervasive technology with a
high chance of acceptance are those that many operators want to
have (wish). If they are technically feasible, they are "easy wins", esp.
if the perceived consequences on safety are also seen as highly pos-
itive. These implementations could be used as a way to introduce
pervasive technology to these contexts. Note that these scenarios
can differ between groups. For emergency services, it would be log-
ging unusual work situations, or having messages presented where
the operator is at the moment. For public utilities control room
operators, it would likely be indicating physical exercises. Finding
a suitable scenario for maritime traffic operators is more difficult.
It is much easier to identify scenarios that have little chance of
succeeding, at least if their self-assessment is taken at face value.
For example, indicating when to eat or drink, or monitoring stress,
and even executing tasks automatically based on the communi-
cation, is not desired by the maritime traffic operators despite its
descriptively higher safety evaluation.

The rejection of certain pervasive technology scenarios seems
to be strongly related to its negative effect on operators’ autonomy.
In general, autonomy, not safety, seems to be more strongly pos-
itively correlated with wishing to have the pervasive technology
(although autonomy and safety are also correlated. While these
are correlations and no causal inferences can be drawn, it seems
prudent to pay close attention to preserving users’ autonomy when
implementing pervasive technology in control rooms. A possible ex-
planation could be the role of acting autonomously (incl. not being
constrained by a system) in order to deal with exceptional circum-
stances. Further studies could examine by differentiating between
autonomy in general as a human need (cf. self-determination theory,
e.g., [43]) and autonomy in specific work situations, in which being
constrained by the rules would have detrimental effects, including
on safety.

Scenarios that operators do not desire do not necessarily imply
that realization should not be attempted, especially if their utility for
safety is seen. Further studies can use these results to delve deeper
into the concrete concerns and try to find ways to ameliorate them.
One likely concern is the perceived limiting of personal autonomy
if such a system is used. However, there may be other variables
that might be discovered during human-centered design processes.
Cross-domain research can help to identify similar challenges [45]
and transfer solutions [36].

5.3 Relationships Between Affinity for
Technology Interaction and Wish for
Pervasive Technology (RQ3)

As for possible relationships between ATI and pervasive technology
scenarios (RQ3), ATI seems to be (weakly) related to whether a
person wants to use a pervasive technology. Other variables, e.g.,
whether the solution preserves autonomy, seem to be more impor-
tant. However, overall ATI values of the samples were rather high
(with a broader range only in maritime traffic operators), which
makes assessing honest correlations difficult [49]. Additionally, a
high correlation between ATI and scenario evaluations could be
constrained by the highly responsible work context. For example,
a person might want to interact with technology, but not when
doing so might put others at risk. Similar to the research on effects
of attitudes on behavior, measuring closer to the actual situation
leads to better predictions. Instead of using the ATI scale speaking
about "a technical system" in general, it could be adapted to the
systems used in the work context. Comparing these two variants
would allow the detection of effects of the workplace on interaction
with technology.

ATI was measured after evaluating the scenarios, in order to
avoid having a person’s conscious self-assessment on how much
they like to interact with technology influence their evaluation
of the scenarios. However, as a consequence, participants could
have thought specifically about technology in control rooms and
not about technology in general when answering the ATI scale.
Even though the ATI scale was introduced by asking about and
defining "technical systems” in general, pervasive technology was
primed. In this case, the correlations between the assessment of the
technology and ATI might already reflect the specific technology
in question and asking specifically about pervasive technology and
not about "a technical system" would make little difference. Thus,
further research, asking specifically for “pervasive systems”, would
shed some light on whether the correlations are already at their
upper bounds. However, the caveat is that a more specific use of ATI
(e.g., regarding interaction with pervasive technology) reduces the
usefulness (in terms of applicability to different kinds of technology)
compared to a general “technical systems” assessment of ATI.

5.4 Limitations
There are some limitations to this study. The sample is self-selected,
so self-selection biases cannot be ruled out. As a general interest in
technology would likely have to be present to participate in such
a survey, the results might reflect the best case when it comes to
ATI and evaluation of these scenarios. However, even if such a bias
occurred, there are operators – at least in emergency services and
critical infrastructure control rooms – that are likely willing to
use pervasive technology. They might serve as early adopters and
multipliers in change processes.

Although the gender ratio is highly skewed, it is not untypical for
studies with control room operators (e.g., 95 all-male participants
in [14], 15 all-male participants in [51] or 12 all-male participants
in [11]). As control rooms were contacted via publicly available
contact addresses and asked to forward the request to all operators,
it can be assumed that the discernible imbalance approximately re-
flects work reality. However, sampling whole control rooms (cluster



CHI EA ’23, April 23–28, 2023, Hamburg, Germany Flegel et al.

sampling) would allow for a more accurate assessment, especially
as information about the non-responders could be assessed.

The ATI scale was deliberately used in very broad and abstract
technical context. Further investigations in the context of concrete
realizations of assistance systems and pervasive computing envi-
ronments are necessary.

While the focus on emergency services, public utilities, and mar-
itime traffic cover different kinds of control rooms facing increasing
complexity, other contexts should be examined as well, e.g., air traf-
fic control or power plants. Furthermore, the differences between
the groups presented must also be further examined for other rele-
vant factors.

The present study examines the wishes of the operators regard-
ing the scenarios. When it comes to actually introducing technology
to these safety-critical and highly regulated work places, other fac-
tors must be taken into account. Beyond the difference between
imagination and reality, this includes regulations and laws, finances,
but also cyber-security. After all, if the work environment becomes
less static and more pro-active, a compromised (hacked) pervasive
environment has many options to actively work against the op-
erators. While these are serious concerns, given that promising
scenarios can be identified, at least the operators themselves will
likely not be part of the barriers.

6 CONCLUSION
Our study shows that, in general, control room operators in three
different domains have a rather high affinity for technology inter-
action (ATI) and are not outright rejecting pervasive technology.
According to a cautious assessment, users’ attitude to technology
does not represent a striking reason why innovative system and
interaction concepts have hardly found their way into control room
practice so far. ATI scores are even higher for emergency and public
utilities control room operators, while maritime traffic operations
have a lower ATI score with a broader range. The later are also more
critical on proposed pervasive computing solutions, especially if
their autonomy would be restricted. But even in this work domain,
some operators are open to certain scenarios (e.g., a system that
detects unusual work situations, and offers to log all activities in
the control room). Results suggest that findings from one control
room domain should be transferred to another only after thorough
evaluation. This seems to be especially true between "fixed" and
"mobile" control rooms. Given the correlations between wish for
a system and autonomy (which was even higher than with ATI),
care should be taken to preserve the autonomy of the operators
(although causal inferences cannot be drawn). In principle, ATI and
autonomy considerations can provide valuable guidance for the de-
sign of interactive systems, not only but especially for professional
users in safety-critical contexts. The quantitative cross-domain
approach allowed for a better understanding of the relationships
between (perceived) autonomy, (perceived) safety gain and wish
for novel technologies.
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Table 3: Scenarios for pervasive technology in control rooms

ID A digital assistance system for control rooms that detects ...

A ... and executes tasks that were identified in the communication of the operators.
B ... whether an operator is on the phone and if so presents messages not via sound but using other

modalities (e.g., text, graphics).
C ... unusual work situations and offers to log all activities in the control room automatically.
D ... whether team briefings are currently being conducted, in which case the system offers to

withhold low-priority messages during that time.
E ... whether an operator is in his personal work space, if not, the messages are presented where the

person is at the moment (e.g., via wall projection, other screens).
F ... whether the operator is eating or drinking and giving instruction to do so if necessary.
G ... by monitoring the respiratory frequency how stressed the operator is and if necessary distributes

incoming tasks to other operators.
H ... whether the operator needs physical exercise and gives movement recommendations.

Table 4: Items of the ATI-scale by [13]

No Item

1 I like to occupy myself in greater detail with technical systems.
2 I like testing the functions of new technical systems.
3 I predominantly deal with technical systems because I have to. (reversed)
4 When I have a new technical system in front of me, I try it out intensively.
5 I enjoy spending time becoming acquainted with a new technical system.
6 It is enough for me that a technical system works; I don’t care how or why. (reversed)
7 I try to understand how a technical system exactly works.
8 It is enough for me to know the basic functions of a technical system. (reversed)
9 I try to make full use of the capabilities of a technical system.

Figure 2: Reported Work Experience in Years, shown for the
three different control room work domains.

Figure 3: Minimum and maximum number of coworkers
reported for the three different control roomwork domains.
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Figure 4: Respondents’ feedback on technology usage in the three control room domains (colored bars = percentage of yes
answers)

Figure 5: ATI values for the three different control room
work domains investigated in this work.

Figure 6: Stacked histogram of ATI values in the three dif-
ferent control room work domains.
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Figure 7: Evaluation of the pervasive technology scenarios for the three different control room work domains, according to
whether it preserves the operators’ autonomy, is seen as contributing to safety, and whether the operators would wish to have
this technology available. The higher the number, the higher the agreement.
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