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ABSTRACT
Photoplethysmography is an optical measurement principle which
is present in most modern wearable devices such as fitness trackers
and smartwatches. As the analysis of physiological signals requires
reliable but energy-efficient algorithms, suitable datasets are es-
sential for their development, evaluation, and benchmark. A broad
variety of clinical datasets is available with recordings from medi-
cal pulse oximeters which traditionally apply transmission mode
photoplethysmography at the fingertip or earlobe. However, only
few publicly available datasets utilize recent reflective mode sensors
which are typically worn at the wrist and whose signals show dif-
ferent characteristics. Moreover, the recordings are often advertised
as raw, but then turn out to be preprocessed and filtered while the
applied parameters are not stated. In this way, the heart rate and its
variability can be extracted, but interesting secondary information
from the non-stationary signal is often lost. Consequently, the test
of novel signal processing approaches for wearable devices usually
implies the gathering of own or the use of inappropriate data.

In this paper, we present a multi-varied method to analyze the
suitability and applicability of presumably raw photoplethysmo-
graphy signals. We present an analytical tool which applies 7 deci-
sion metrics to characterize 10 publicly available datasets with a
focus on less or ideally unfiltered, raw signals. Besides the review,
we finally provide a guideline for future datasets, to suit to and to be
applicable in digital signal processing, to support the development
and evaluation of algorithms for resource-limited wearable devices.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile de-
vices; • Hardware → Digital signal processing; • Applied com-
puting → Health informatics.
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1 INTRODUCTION AND MOTIVATION
The optical measurement principle photoplethysmography (PPG)
has been present as pulse oximetry in clinical studies for decades
to measure the peripheral oxygen saturation (SpO2) and the heart
rate (HR), typically with a clip attached to the fingertip or earlobe.
In recent years, the technique has undergone a revival in modern
wearable devices, such as wrist-worn fitness trackers and smart-
watches. In contrast to their medical counterparts, these devices
provide tight resources and the implemented algorithms have to
be optimized for limited processing power, memory, and battery
capacity. The loose attachment and the deployment in real life also
causes issues as the wearer’s motion results in device displacement
and soft tissue deformation which are perceivable as signal artifacts.

The development of efficient algorithms, or even the application
of machine learning in the near future, requires large datasets of
numerous individuals with different constitutions. However, obtain-
ing recordings from long-term deployment is difficult and hence
most publicly available databases, such as MIMIC-II / -III [18, 28]
of the notable platform PhysioNet [14], are originated in medical
studies with a clinical background and stationary devices. Although
these datasets usually provide PPG measurements, the compiled
findings cannot be directly transferred to wearable devices and
their challenges emerging when worn in everyday life.

In clinical settings, often the standard pulse oximeters are ap-
plied while commercial wearable devices are common for in-the-
wild studies. For both kind of devices the raw signal, directly ob-
tained from the analog front-end, is usually not accessible. The
devices apply filters to remove the predominant DC component,
low-frequency baseline wandering, and high-frequency noise to
obtain a detrended and smooth signal. Due to their limited memory,
especially wearable devices condense the signal down to its required
essence, e.g. measures of peripheral oxygen saturation (SpO2), heart
rate (HR), and heart rate variability (HRV). Only devices intended
for the use in research, such as the popular Empatica E4 [15], pro-
vide pretended raw data which, however, are still preprocessed to
ease the interpretation and to save valuable memory. Hence, the sig-
nals are already filtered, often rescaled or normalized, and flipped
to be consistent with the associated arterial blood pressure (ABP).

https://doi.org/10.1145/3419016.3431485
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Figure 1: Excerpt from the raw reference PPG signal: green light’s channel of Maxim MAX86140EVSYS#. Short close-up (left),
30-second window (middle), respective frequency spectrum (right). Pulsatile heartbeat signal is inversely proportional to the
blood volume, superimposed by low-frequency baseline wandering and high-frequency noise. Note also the large DC offset.

In contrast, researchers developing innovative sensing concepts
and hardware, primarily test their proper working, but usually
do not focus on the recording of long-term measurements under
different conditions. Typically, only a few individuals are testing the
prototypes in a lab and rarely in a real-life setting. The recordings
are exclusively evaluated and presented as consolidated results, but
the gathered data are then not made publicly available.

Hence, in research focusing on algorithms that are applied close
to the hardware level, either available datasets from a clinical origin
or self-recorded datasets with a limited evidence and reproducibility
have to be taken. As stated by Charlton et al. [5], there are only few
studies applying their approach to more than two datasets or even
comparing multiple approaches to each other, tested on the same,
larger benchmark dataset, but their comparison is important as
the "performance may differ significantly between datasets". Also
Reiss et al. [26] describe the problem that "existing approaches are
highly parametrised and optimised for specific scenarios of small,
public datasets". Pimentel et al. [25] also emphasize that "Future
studies should concentrate on the use of [...] raw data sources
as a benchmark for comparison". However, the immense variety
of possible parameters has an essential impact on the recorded
signals. The selection of light color and sampling scheme [32], but
also the hardware’s individual characteristics make it even harder
to generate a universal dataset which novel approaches such as
spectral estimation and sparse sampling could be tested with.

2 RAW SIGNALS
In digital signal processing, datasets of original, raw signals are
preferred over preprocessed ones which naturally limit the possible
use right from the start. Raw data are considered to be universal
and to still provide all inherent information, the noise spectrum as
well as the desired signals and even hidden secondary information.
Although these datasets tend to become very large quickly, it is
still reasonable to record the direct measurements, if possible, as
today’s computers are usually capable of handling them.

However, Gitelman et al. [13] state that "raw data is an oxy-
moron" as "data are always already ‘cooked’ and never entirely
‘raw’". Although rather philosophic, this statement is also valid
for PPG sensing. The definition of raw is strongly related to the
perspective and interest of the researcher. It mainly depends on the
research domain and hence the intended level of abstraction, from
the highest one of the devices’ consumer via the medicals’ view on
HR or SpO2 signals down to the engineers’ bits, amperes, and volts
or even the physicists’ luminous flux, absorption, and reflectivity.

Consequently, in context of this paper, raw signals are defined
to contain the maximum possible information by applying the min-
imum necessary preprocessing. In case of PPG this means that the
recordings contain the directly captured values from the analog-to-
digital converter (ADC) which receives the amplified analog signal
from the photodetector, usually via a transimpedance amplifier. An
excerpt from such a raw signal is presented in Figure 1.

3 PHOTOPLETHYSMOGRAPHY
The optical measurement principle photoplethysmography (PPG)
noninvasively measures the blood volume flow pulsating in the
microvascular bed of the tissue beneath the skin. It utilizes an
intensive light source to illuminate the skin while a photodetec-
tor measures the light that is either passing through the tissue in
transmission mode or that is reflected by the tissue in reflective
mode. For decades, the transmission mode is traditionally applied
to the fingertip or the earlobe at which pulse oximetry is a proven
method to monitor heart rate (HR) and peripheral oxygen satura-
tion (SpO2) of regular ward patients. In contrast, modern wearables
mostly apply the reflective mode at the dorsal wrist at which both
light-emitting diodes and photodiodes are placed nearby on the
skin surface to measure the light reflected by perfused tissue. [3, 31]

In both modes, short light flashes are emitted to sample the blood
volume of the moment. While there is a broad consensus on the
origin of the transmission mode’s signal, in which an increasing
blood volume absorbs a larger amount of light, the origin of the
signal modulation in reflective mode, however, is not entirely clear
and still subject to research [20, 30]. Moreover, there is a lot of con-
fusion about the direction of the original, raw signal’s course. For
both modes, the received light intensity is inversely proportional to
the blood volume by nature, but commonly flipped to be consistent
with the associated arterial blood pressure (ABP) [1, 8].

Depending on the utilized light color, the pulse is captured at
different tissue layers which textures result in a varying motion tol-
erance [9, 17]. Also the actual AC signal amplitude largely depends
on the wavelength, but still comprises only about 1 to 10 % of the
total signal scope [20, 21]. While the pulsating blood vessels mod-
ulate the reflected light, the smaller veins and other nearby tissue
just add a DC offset. Consequently, the analog-to-digital converter
has to provide a high resolution, usually ranging from coarse 12
up to 24 bit, to enable the detailed representation of the desired AC
signal. While commercial devices already apply advanced sampling
strategies to improve the signal’s robustness and signal-to-noise
ratio, in research uniform sampling is still standard and often only
one single and even fused channel is provided in the datasets [32].
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Table 1: Overview of the reviewed publicly available datasets.
id dataset authors year origin data format #subjects #recordings length link

S01 MAXREFDES100 [2] Biagetti et al. 2020 recording *.mat 7 105 https://www.sciencedirect.com/science/article/pii/S2352340919314003
S02 PPG-DaLiA [26] Reiss et al. 2019 recording *.pkl / *.csv 15 https://ubicomp.eti.uni-siegen.de/home/datasets/sensors19/index.html.en
S03 WESAD [29] Schmidt et al. 2018 recording *.pkl / *.csv 15 (12m, 3f) ~36 min https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/index.html.en
S04 BloodLossSvm [27] Reljin et al. 2018 recording *.csv / *.txt 9 (trauma) / 27 (healthy) 67 / 27 2 min https://figshare.com/articles/NR_bloodlosssvm_zip/5594644
S05 PPG-BP [24] Liang et al. 2018 recording *.txt 219 657 3× 2.1 s https://figshare.com/articles/PPG-BP_Database_zip/5459299
S06 BIDMC [25] Pimentel et al. 2017 MIMIC II [28] *.mat / *.csv 53 53 8 min https://physionet.org/content/bidmc/1.0.0/
S07 Wrist PPG During Exercise [16] Jarchi et al. 2017 recording wfdb data 8 (5f, 3m) https://physionet.org/content/wrist/1.0.0/
S08 Cuff-Less Blood Pressure Estimation [19] Kachuee et al. 2015 PhysioNet [14] *.mat https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
S09 IEEE SPC 2015 (TROIKA) [35] Zhang et al. 2015 recording *.mat 12 (training) / 8 (test) 12 / 8 https://sites.google.com/site/researchbyzhang/ieeespcup2015
S10 IEEE SPC 2013 [22] Karlen et al. 2013 CapnoBase [23] *.mat 42 42 8 min http://www.capnobase.org/index.php?id=857

#: number of

Table 2: Overview of the applied PPG sensor setups and configurations.
id sensing device location mode illumination 𝑓𝑆 ADC resolution preprocessing

REF MAX86140 (EVSYS#) wrist (dorsal) reflective green (2x 528 nm), yellow (2x 590 nm) 512 Hz 19 bit BS 50 / 60 Hz (hardware)
S01 MAXREFDES100# wrist reflective infrared (880 nm), red (660 nm), green (537 nm) 400 Hz 16 bit
S02 Empatica E4 wrist (non-dominant) reflective red (2x), green (2x) 64 Hz 0.9 nW/dig BW removal, MA removal (combines different light waves)
S03 Empatica E4 wrist (non-dominant) reflective red (2x), green (2x) 64 Hz 0.9 nW/dig BW removal, MA removal (combines different light waves)
S04 finger, forehead, ear reflective infrared, red 80 Hz
S05 SMPLUS SEP9AF-2 earlobe, fingertip (?) transmission infrared (905 nm), red (660 nm) 1000 Hz 12 bit BP 0.5 to 12.0 Hz
S06 wrist (dorsal) (?) transmission (?) 125 Hz
S07 Shimmer 3 GSR+ left hand’s finger (?) reflective green (510 nm) 256 Hz 12 bit Shimmer’s on-board filter / cycling: LP 15 Hz (2nd order Butterworth)
S08 fingertip transmission (?) 125 Hz
S09 wrist (dorsal) reflective green (2x 515 nm, 2 cm distance) 125 Hz BP 0.4 to 4.0 Hz (2nd order Butterworth)
S10 transmission (?) 300 Hz

(?): ambiguous information; BP: band-pass filter; BS: band-stop filter; BW: baseline wondering; MA: motion artifact

PPG is an active measurement principle which illuminates the
skin surface with high-intensity LEDs and simultaneously measures
the intensity of the light reflected. The sensor’s sampling rate 𝑓𝑠
is a very important parameter as it decides about the the energy
dissipation and the device’s battery life on the one hand, but also on
the temporal resolution and the signal’s details on the other hand.
Although Choi et al. [7] state that 25 Hz are sufficient to derive
the HRV adequately and Wolling et al. [33] state that even 10 Hz
are sufficient to derive the heart rate properly, most commercial
devices use a significantly higher sampling rate to receive detailed
signals with a high temporal resolution [32]. However, one has to
distinguish the pulse repetition frequency which is up to several
kHz and the group frequency in the tens to hundreds of Hz. For
the recording of a research dataset, a higher sampling frequency is
desirable. The uniform samples can later be resampled to a lower
rate or even irregularly sampled for advanced sparse sampling.

Common preprocessing stages for PPG signals include traditional
filters such as high-pass, band-pass, and notch filters. High-pass fil-
ters are used to detrend the raw signal, to remove the predominating
DC component and the baseline wandering, to get a zero-centered
signal. The use of a band-pass filter adds a low-pass stage to smooth
the signal contour and to suppress high-frequency noise. A notch
band-stop filter is often used to eliminate power line noise around
50 / 60 Hz and is usually implemented on-board, in the sensor’s
analog front-end hardware. The aforementioned filters are usually
implemented in software as Butterworth FIR or IIR filter of 2nd
order, as higher orders tend to degrade the signal. The emerging
Savitzky-Golay FIR is a linear phase smoothing filter which con-
serves the pulsatile shape of the desired waveform on top of the
non-stationary signal and non-Gaussian noise, but does not show
a constant, predictable transfer function [6]. [11]

4 DATASET REVIEW
Table 1 provides an overview of the 10 reviewed datasets, their
related publications, information about the length and number of
subjects and contained recordings, as well as links to their publicly
available repositories. Additional information about the utilized
sensing devices, technical details, and applied preprocessing, as
stated in their documentation, are summarized in Table 2.

4.1 Reference Data
The recording of a suitable reference dataset with multiple subjects
has been prohibited by the SARS-CoV-2 pandemic in 2020. Con-
sequently, recordings from preliminary experiments in 2019 were
taken to serve as a reference for the quality review. However, the
set of just a few experimental recordings is not itself suitable for a
full research dataset, as the number of participants is too small. The
evaluation system of the sensor MaximMAX86140 has been utilized
for the recording. The technical details are provided in Table 2, for
a more detailed description please refer to Wolling et al. [33].

4.2 Decision Metrics
The suitability and applicability of a dataset is difficult to quantify
in a universal way. Hence, we decided to provide the following 7
decision metrics which can be used to support the selection of a
publicly available dataset, either from the list of the reviewed 10
references or from a different one by applying the developed tool.

4.2.1 Time Base. The sampling frequency 𝑓𝑠 is often assumed to
be constant. Hence, the individual samples’ timestamps are usually
omitted to save valuable memory and only the desired rate is stated.
However, due to internal processes, devices tend to show a devi-
ating sampling period Δ𝑡 and consequently a jittering frequency.
The rate’s (1) mean 𝑓𝑠 is preferably close to the desired value and
the standard deviation 𝜎𝑓𝑠 ought to be negligible. Despite that, es-
pecially at high 𝑓𝑠 it is beneficial to know the exact time of a taken
sample to generate a regularly sampled dataset by interpolation.

𝑓𝑠 =
1
𝑛

𝑛∑
𝑖=1

1
Δ𝑡𝑖

and 𝜎𝑓𝑠 =

√√
1
𝑛

𝑛∑
𝑖=1

(
1
Δ𝑡𝑖

− 𝑓𝑠

)2

with Δ𝑡𝑖 = 𝑡𝑖−1 − 𝑡𝑖

(1)

4.2.2 Signal Mean. The raw signal 𝑦 naturally contains a very
large DC component. Consequently, its mean (2) already tells a lot
about the applied preprocessing. A mean of about 0 means that the
signal has potentially been shifted to get a zero-centered signal or
even a high-pass filter has been applied which also causes the signal
to drop back to the origin. For practical reasons an error margin 𝜖𝑧
of 1.5 % is added as filtered values do not always hit exact 0.

https://www.sciencedirect.com/science/article/pii/S2352340919314003
https://ubicomp.eti.uni-siegen.de/home/datasets/sensors19/index.html.en
https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/index.html.en
https://figshare.com/articles/NR_bloodlosssvm_zip/5594644
https://figshare.com/articles/PPG-BP_Database_zip/5459299
https://physionet.org/content/bidmc/1.0.0/
https://physionet.org/content/wrist/1.0.0/
https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
https://sites.google.com/site/researchbyzhang/ieeespcup2015
http://www.capnobase.org/index.php?id=857
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𝑦 :

{
𝑦 ≫ 0 , natural DC component
𝑦 ≈ 0 , detrended, zero-centered

(2)

4.2.3 Signal Scope. The signal’s scope (3) represents only a minor
fraction of the overall signal’s extent and is often cropped at its min-
imum to reduce the memory demands. In many cases, the signals
are even scaled and normalized in the range of [0, 1]. In other cases
the signal is fit into the range of [−1, 1], but if the signal has been
zero-centered beforehand, then either the min(𝑦) or the max (𝑦)
might not reach the lower −1 or upper 1 boundary.

𝑦 :


0 ≪ min(𝑦) < max (𝑦) , normal scope
min(𝑦) ≳ 0 ∧ max (𝑦) > 1 , cropped
min(𝑦) ≳ 0 ∧ max (𝑦) ≤ 1 , [0, 1] normalized
min(𝑦) ≥ −1 ∧ max (𝑦) ≤ 1 , [−1, 1] normalized

(3)

4.2.4 Granularity. The granularity Δ of the signal 𝑦 is ideally iden-
tical to its amplitude resolution if the sampling rate 𝑓𝑠 is sufficiently
high to quantize and reconstruct the signal slopes. It is determined
from the sorted list of unique values without duplicates by seeking
the minimum Euclidean distance (4). The granularity helps to un-
veil applied preprocessing as the values directly obtained from the
ADC are binary integers by nature (5).

Δ = min(𝑦𝑖 − 𝑦𝑖−1) ∀𝑦𝑖 ∈ sort (unique(𝑦)) (4)

Δ :


Δ ∈ N ∧ Δ = 1 , integer of 1 digit
Δ ∈ N ∧ Δ > 1 , integer, small 𝑓𝑠 or short 𝑡
Δ ∈ R , floating-point

(5)

4.2.5 Clipping. If the signal has been normalized either to [0, 1]
or to [−1, 1], clipping artifacts can occur at the boundaries which
cut the caps of the lowest and highest peaks. Those flat tops are
detected by means of multiple successive samples that stay at the
constant boundary values for a longer period 𝑡𝑐 , then counted and
averaged over 30 s windows along the entire time series.

4.2.6 Flipping. Traditional pulse oximetry sensors monitor the
PPG signal proportional to the course of the arterial blood pres-
sure (ABP) and hence have to flip it to enable this analogy. The raw
signals of both PPG modes, however, originally show an inversely
proportional course [1]. To determine the pulse direction, two mea-
sures are determined. The first one determines the pulses’ center
of mass which is usually originated at the systolic onset while the
diastolic peak is much lighter. Based on Choi et al. [8], the second
measure compares the steepness of the down and up slopes which
are steeper for the systolic than for the diastolic phase.

4.2.7 Frequency Spectral Ratio. As all physiological signals, raw
PPG signals are non-stationary and dominated by low-frequency
baseline wandering. Hence, most approaches are applying a high-
pass or band-pass filter to remove the low-frequency components
and to limit the pulsatile signal in a constant boundary envelope.
This filtering, however, prevents the option to analyze these fre-
quency components which are associated with activity in the auto-
nomic nervous system and particularly respiration [10, 22, 25].

The frequency spectrum is split up into four bands. The very
low frequency VLF band (0.0 to 0.167 Hz) predominantly contains

random baseline wandering. The low LF band (0.167 to 0.667 Hz
respective 10 to 40 bpm) mainly contains respiratory signals, but is
overlapping with the intermediate IF band (0.5 to 3.0 Hz respective
30 to 180 bpm) which mainly contains the heartbeat signal [10, 12].
The high frequency HF band (>3.0 Hz) is associated with noise,
but can also contain higher harmonics of the heartbeat. Distur-
bances through daily motion are mainly located in the 1.0 to 2.5 Hz
band [31] and, consequently, might affect these metrics.

The metrics are derived from firstly the ratio of the dominant
peak in the VLF versus the dominant peak in the IF band (6) and
secondly the dominant peak in the LF versus the mean of the IF
band (7). They are covering the most common corner frequencies
applied to detrend the raw PPG signal.

max (VLF)
max (IF) :

{
≫ 1 , if very low frequencies present
≤ 1 , if high-pass filtered, 𝑓𝑐 ≥ 0.167 Hz

(6)

max (LF)
IF

:

{
≫ 1 , if low frequencies present
≤ 1 , if high-pass filtered, 𝑓𝑐 ≥ 0.667 Hz

(7)

4.3 Results
Table 3 summarizes the output from the multi-varied quality anal-
ysis tool applying the presented 7 decision metrics. Most of the
reviewed datasets were recorded at a sampling rate 𝑓𝑠 of more than
100 Hz, except for the two datasets S02 and S03 based on the wear-
able Empatica E4 with fixed 64 Hz. The time bases are provided for
S01, S06, and S07. However, as no jitter was detectable for S01,
its samples’ timestamps have probably been added subsequently,
based on the desired 𝑓𝑠 , but the real 𝑓𝑠 according to the device’s
internal clock is not traceable anymore. In contrast, S06 and S07
provide real timestamps of the samples’ moments which enables
the subsequent resampling and interpolation to a regular rate. S01
and S05 showed a granularity of 1 which allows the conclusion
that those contain actual raw signals directly obtained from the
ADC. However, while the other metrics of S01 indicate that it was
not preprocessed at all, the ones of S05 indicate a flipped signal
course. The majority of the flipped time series are originated in a
transmission mode measurement (S05, S06, S08, and S10) while
only the Empatica E4 devices’ signals S02 and S03 are also flipped,
presumably to conform with the measurements of traditional pulse
oximeters. For S07 it was not possible to validate the detected di-
rection. Although most time series were filtered, only S02, S03,
S09, and S10 are actually zero-centered. While S06 is ideally fitted
into [0, 1], S04 is rather [−1, 1]-, but probably intended to be also
[0, 1]-normalized. The metrics VLF and LF reliably distinguish the
unfiltered (S01, S04) from the less (S07, S10) and the strongly (S08,
S09) high-pass filtered datasets. However, they are inapplicable for
S05 as it contains only very short signal snippets of 2.1 s which
result in a very coarse and inadequate frequency spectral resolu-
tion. Only S10 showed clipping artifacts which are typical for aged
CapnoBase data. In general, the results of S02 and S03, originated
in the same research team, show a high similarity and accordance
although the datasets contain independent recordings from differ-
ent studies with different research questions. Accompanied byREF,
only the most recent dataset S01 proved itself to contain entirely
raw signals, but S01 without providing real timestamps.
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Table 3: Results of the multi-varied quality analysis. Color highlighted indicators for the output of the 7 decisionmetrics with
green: positive, red: negative, orange: vague declaration, blue: unverifiable. Additionally, overview of subsidiary measures.

sampling rate 𝑓𝑠 (Hz) signal characteristics time domain frequency domain artifacts
id dataset desired real jitter mean min max span #values gran. Δ ZC [0, 1] [−1, 1] flip VLF / IF LF / IF clipping

REF Reference Data (MAX86140) 512.0 511.750 0.001 176529.1 174920.0 178594.0 3674.0 3477 1 No No No No 76.9 103.0 No
S01 MAXREFDES100# 400.0 400.000 6054.6 5661.0 7387.0 1726.0 1553 1 No No No No 109.5 55.3 No
S02 PPG-DaLiA 64.0 -0.002 -1647.390 1557.6 3205.0 59323 0.010 Yes No No Yes 0.150 1.783 No
S03 WESAD 64.0 -0.000 -873.670 988.080 1861.8 45440 0.010 Yes No No Yes 0.044 1.947 No
S04 BloodLossSVM 200.0 0.475 -0.013 0.998 1.011 1011 0.001 No Quasi Yes No 246.6 15.7 No
S05 PPG-BP 1000.0 2036.9 1682.0 2587.0 905.000 511 1 No No No Yes 20.009 20.047 No
S06 BIDMC 125.0 125.000 3.559 0.466 0.224 0.698 0.474 407 0.001 No Yes No Yes 0.018 1.884 No
S07 Wrist PPG During Exercise 256.0 255.882 0.575 1378.3 1269.8 1498.1 228.372 23744 0.003 No No No 1No 0.066 31.0 No
S08 Cuff-Less Blood Pressure Estimation 125.0 1.840 0.000 4.002 4.002 2792 0.001 No No No Yes 0.009 0.590 No
S09 IEEE SPC 2015 (TROIKA) 125.0 -0.708 -270.000 208.500 478.500 840 0.500 Yes No No No 0.088 0.781 No
S10 IEEE SPC 2013 300.0 -0.215 -9.840 10.240 20.080 754 0.020 Yes No No Yes 0.059 0.927 Yes

#: number of; ZC: zero-centered; VLF / IF: very low to intermediate frequency ratio; LF / IF: low to intermediate frequency ratio; 1: too noisy signal; 2: too short recordings

5 DISCUSSION
The results in Table 3 show many alerts and, besides the reference
data REF, only dataset S01 fulfills most of the criteria. Neverthe-
less also the other datasets are suitable and applicable for specific
research questions when being aware of their origin and limitations.

The most important criteria are related to filtering as it signif-
icantly affects the signal and limits the expedient applications. If
the signal mean is close to zero, most likely a high-pass filter has
been applied which removes the low-frequency components and
hence shifts the signal. Although it is an artifact of aged datasets,
also clipping considerably affects the signal quality by cutting the
lowest and highest peak caps and thus impedes their positioning.
In contrast, the granularity as well as the [0, 1] and [−1, 1] nor-
malizations do not affect the signal itself, but indicate that the raw
signals from the ADC have been relabeled according to a physical
value or even rescaled. In case of an interpolation process, e.g. due
to regularization, the granularity would presumably show rather a
floating point than an integer value. In general, the transition from
integer to floating point values is unfavorable as the calculation
with those often results in rounding errors and inaccuracies. The
awareness of flipping allows to repeatedly flip the signal as most
algorithms are less effective with slopes in inverse direction.

Limitations.We assume that the characteristics of a single time
series are valid for the entire dataset. As the two datasets S02 and
S03 show, this assumption applies not only within the same series,
but also for the same device type. Hence, we carefully selected
recordings that, in our opinion, represented a meaningful cross
section of the entire dataset. Of course the tool can be applied to
all particular data, serving as a basis for a statistical analysis, but
this would have gone beyond the scope of this paper.

6 GUIDELINES
We provide the following guidelines to supplement the general re-
quirements on quality datasets, e.g. [4, 29, 34], with a specific focus
on PPG datasets. Unprocessed, raw measurements are prefereable
and do not limit the research in signal processing and algorithms
for wearable PPG sensing right from the start. As the performance
of wearables tends to be limited, their long-term deployment in-
the-wild is not easy. Hence, the sensor configuration is always a
trade-off between universality and reusability of the data on the
one hand, but required memory and battery life on the other hand.

We would like to encourage 1) to utilize PPG sensors that are
capable of recording raw or just slightly filtered signals; 2) to record
synchronized reference signals such as ECG and RSP; 3) to use the
maximum possible sampling rate as long as it does not limit and ter-
minate your experiment early; 4) to save the unfused samples of all
particular measurement channels, also the ambient light intensity,
if available; 5) to enable the recording of timestamps for each taken
sample. These configurations consume higher amounts of valuable
memory and energy, so balance the parameters according to your
research interests and mitigate others for long-term monitoring.

Further, 6) provide all technical details of the utilized sensing
device as well as its configuration. This includes not only the desired
sampling rate and the number of measurement channels, but also
the components’ names, e.g. of LEDs and photodetectors, their
light wavelength and drive current or peak sensitivity, the sample
duration, and the applied sampling scheme. Also 7) describe setup,
attachment, and measurement location of the sensor. The location
"wrist" can for example be described more precisely by adding
"volar" for the palm side or "dorsal" for the back side.

A 8) detailed documentation with a brief description of your
research domain and questions will help your fellows to appraise
whether your experiments and the recorded data are compatible.

7 CONCLUSION
We have presented an analytical tool for the quality review of 10
publicly available photoplethysmography (PPG) datasets, based on
7 multi-varied decision metrics. Although all datasets were adver-
tised to contain raw signals, the characteristics of the PPG data
look quite diverse. Our developed tool enables to automatically
analyze the suitability and applicability of datasets for the intended
research approach and helps to identify preprocessed and filtered
signals with a limited evidence. Furthermore, we argue for more
quality datasets which actually contain raw PPG recordings that do
not limit their further use right from the start. Hence, we provide
guidelines for future datasets with a focus on recordings of reflec-
tive mode PPG for research in digital signal processing and the
development of algorithms for resource-limited wearable devices.

The raw reference data, recorded with the MAX86140EVSYS#
evaluation system, as well as the implemented Python tool, based
on the presented 7 decision metrics, will be available for download
to support the reproducibility and the review of new datasets:
https://ubicomp.eti.uni-siegen.de/home/datasets/data20/

https://ubicomp.eti.uni-siegen.de/home/datasets/data20/


DATA ’20, November 16–19, 2020, Virtual Event, Japan F. Wolling and K. Van Laerhoven

REFERENCES
[1] Tomas Ysehak Abay. 2016. Reflectance Photoplethysmography for Non-invasive

Monitoring of Tissue Perfusion. Doctoral Thesis. University of London, London,
UK. http://openaccess.city.ac.uk/16923/

[2] Giorgio Biagetti, Paolo Crippa, Laura Falaschetti, Leonardo Saraceni, Andrea
Tiranti, and Claudio Turchetti. 2020. Dataset from PPGwireless sensor for activity
monitoring. Data in brief 29 (2020), 105044. https://doi.org/10.1016/j.dib.2019.
105044

[3] Dwaipayan Biswas, Neide Simoes-Capela, Chris van Hoof, and Nick van
Helleputte. 2019. Heart Rate Estimation From Wrist-Worn Photoplethysmog-
raphy: A Review. IEEE Sensors Journal 19, 16 (2019), 6560–6570. https:
//doi.org/10.1109/JSEN.2019.2914166

[4] Andreas Bulling, Ulf Blanke, and Bernt Schiele. 2014. A tutorial on human activity
recognition using body-worn inertial sensors. Comput. Surveys 46, 3 (2014), 1–33.
https://doi.org/10.1145/2499621

[5] Peter H. Charlton, Drew A. Birrenkott, Timothy Bonnici, Marco A. F. Pimentel,
Alistair E. W. Johnson, Jordi Alastruey, Lionel Tarassenko, Peter J. Watkinson,
Richard Beale, and David A. Clifton. 2018. Breathing Rate Estimation from
the Electrocardiogram and Photoplethysmogram: A Review. IEEE Reviews in
Biomedical Engineering 11 (2018), 2–20. https://doi.org/10.1109/RBME.2017.
2763681

[6] Ayan Chatterjee and Uttam Kumar Roy. 2018. PPG Based Heart Rate Algo-
rithm Improvement with Butterworth IIR Filter and Savitzky-Golay FIR Fil-
ter. In 2018 2nd International Conference on Electronics, Materials Engineering
& Nano-Technology (IEMENTech), Satyajit Chakrabarti (Ed.). IEEE, 1–6. https:
//doi.org/10.1109/IEMENTECH.2018.8465225

[7] A. Choi and H. Shin. 2017. Photoplethysmography sampling frequency: pilot
assessment of how low can we go to analyze pulse rate variability with reliability?
Physiological measurement 38, 3 (2017), 586–600. https://doi.org/10.1088/1361-
6579/aa5efa

[8] Changmok Choi, Byung-Hoon Ko, Jongwook Lee, Seung Keun Yoon, Uikun
Kwon, Sang Joon Kim, and Younho Kim. 2017. PPG pulse direction determination
algorithm for PPG waveform inversion by wrist rotation. Conference proceedings :
... Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. 2017 (2017), 4090–4093. https://doi.org/10.1109/EMBC.2017.8037755

[9] W. J. Cui, L. E. Ostrander, and B. Y. Lee. 1990. In vivo reflectance of blood
and tissue as a function of light wavelength. IEEE transactions on bio-medical
engineering 37, 6 (1990), 632–639. https://doi.org/10.1109/10.55667

[10] Parastoo Dehkordi, Ainara Garde, Behnam Molavi, J. Mark Ansermino, and
Guy A. Dumont. 2018. Extracting Instantaneous Respiratory Rate From Multiple
Photoplethysmogram Respiratory-Induced Variations. Frontiers in physiology 9
(2018), 948. https://doi.org/10.3389/fphys.2018.00948

[11] Mohamed Elgendi. 2012. On the Analysis of Fingertip Photoplethysmogram
Signals. Current Cardiology Reviews 8, 1 (2012), 14–25. https://doi.org/10.2174/
157340312801215782

[12] Susannah Fleming, Matthew Thompson, Richard Stevens, Carl Heneghan, An-
nette Plüddemann, Ian Maconochie, Lionel Tarassenko, and David Mant. 2011.
Normal ranges of heart rate and respiratory rate in children from birth to 18
years of age: a systematic review of observational studies. The Lancet 377, 9770
(2011), 1011–1018. https://doi.org/10.1016/S0140-6736(10)62226-X

[13] Lisa Gitelman. 2013. Raw data is an oxymoron. The MIT Press, Cambridge,
Massachusetts. https://cds.cern.ch/record/1530979

[14] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. 2000. Phys-
ioBank, PhysioToolkit, and PhysioNet: components of a new research resource
for complex physiologic signals. Circulation 101, 23 (2000), E215–20. https:
//doi.org/10.1161/01.cir.101.23.e215

[15] Empatica Inc. [n.d.]. Empatica E4. https://www.empatica.com/research/e4/.
Accessed: 2020-09-15.

[16] Delaram Jarchi and Alexander Casson. 2017. Description of a Database Con-
taining Wrist PPG Signals Recorded during Physical Exercise with Both Ac-
celerometer and Gyroscope Measures of Motion. Data 2, 1 (2017), 1. https:
//doi.org/10.3390/data2010001

[17] Liu Jing, Zhang Yuan-Ting, Ding Xiao-Rong, DaiWen-Xuan, and Zhao Ni. 2016. A
Preliminary Study on Multi-Wavelength PPG Based Pulse Transit Time Detection
for Cuffless Blood Pressure Measurement. Conference proceedings : ... Annual
International Conference of the IEEE Engineering in Medicine and Biology Society.
2016 (2016), 615–618. https://doi.org/10.1109/EMBC.2016.7590777

[18] Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-Wei H. Lehman, Mengling
Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G. Mark. 2016. MIMIC-III, a freely accessible critical care database.
Scientific data 3 (2016), 160035. https://doi.org/10.1038/sdata.2016.35

[19] Mohamad Kachuee, Mohammad Mahdi Kiani, Hoda Mohammadzade, and Mahdi
Shabany. 2015. Cuff-less high-accuracy calibration-free blood pressure estimation
using pulse transit time. (2015), 1006–1009. https://doi.org/10.1109/ISCAS.2015.
7168806

[20] Alexei A. Kamshilin and Nikita B. Margaryants. 2017. Origin of Photoplethys-
mographic Waveform at Green Light. Physics Procedia 86 (2017), 72–80. https:
//doi.org/10.1016/j.phpro.2017.01.024

[21] Yung-Hua Kao, Paul C.-P. Chao, and Chin-Long Wey. 2019. Design and Valida-
tion of a New PPG Module to Acquire High-Quality Physiological Signals for
High-Accuracy Biomedical Sensing. IEEE Journal of Selected Topics in Quantum
Electronics 25, 1 (2019), 1–10. https://doi.org/10.1109/JSTQE.2018.2871604

[22] Walter Karlen, Srinivas Raman, J. Mark Ansermino, and Guy A. Dumont. 2013.
Multiparameter Respiratory Rate Estimation from the Photoplethysmogram.
IEEE transactions on bio-medical engineering 60, 7 (2013), 1946–1953. https:
//doi.org/10.1109/TBME.2013.2246160

[23] Walter Karlen, M. Turner, Erin Cooke, Guy Dumont, and J. Mark Ansermino. 2010.
CapnoBase: Signal database and tools to collect, share and annotate respiratory
signals. In 2010 Annual Meeting of the Society for Technology in Anesthesia. 25.

[24] Yongbo Liang, Zhencheng Chen, Guiyong Liu, and Mohamed Elgendi. 2018. A
new, short-recorded photoplethysmogram dataset for blood pressure monitoring
in China. Scientific Data 5, 1 (2018), 180020. https://doi.org/10.1038/sdata.2018.20

[25] Marco A. F. Pimentel, Alistair E. W. Johnson, Peter H. Charlton, Drew Birrenkott,
Peter J. Watkinson, Lionel Tarassenko, and David A. Clifton. 2017. Toward a
Robust Estimation of Respiratory Rate From Pulse Oximeters. IEEE transactions
on bio-medical engineering 64, 8 (2017), 1914–1923. https://doi.org/10.1109/TBME.
2016.2613124

[26] Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven. 2019. Deep
PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks.
Sensors (Basel, Switzerland) 19, 14 (2019).

[27] Natasa Reljin, Gary Zimmer, Yelena Malyuta, Kirk Shelley, Yitzhak Mendel-
son, David J. Blehar, Chad E. Darling, and Ki H. Chon. 2018. Using sup-
port vector machines on photoplethysmographic signals to discriminate be-
tween hypovolemia and euvolemia. PloS one 13, 3 (2018), e0195087. https:
//doi.org/10.1371/journal.pone.0195087

[28] Mohammed Saeed, Mauricio Villarroel, Andrew T. Reisner, Gari Clifford, Li-Wei
Lehman, George Moody, Thomas Heldt, Tin H. Kyaw, Benjamin Moody, and
Roger G. Mark. 2011. Multiparameter Intelligent Monitoring in Intensive Care II:
a public-access intensive care unit database. Critical care medicine 39, 5 (2011),
952–960. https://doi.org/10.1097/CCM.0b013e31820a92c6

[29] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and Kristof Van
Laerhoven. 2018. Introducing WESAD, a Multimodal Dataset for Wearable Stress
and Affect Detection. https://doi.org/10.1145/3242969.3242985

[30] Nina Sviridova, Tiejun Zhao, Kazuyuki Aihara, Kazuyuki Nakamura, andAkimasa
Nakano. 2018. Photoplethysmogram at green light: Where does chaos arise from?
Chaos, Solitons & Fractals 116 (2018), 157–165. https://doi.org/10.1016/j.chaos.
2018.09.016

[31] Toshiyo Tamura, Yuka Maeda, Masaki Sekine, et al. 2014. Wearable Photo-
plethysmographic Sensors—Past and Present. Electronics 3, 2 (2014), 282–302.
https://doi.org/10.3390/electronics3020282

[32] Florian Wolling, Simon Heimes, and Kristof Van Laerhoven. 2019. Unity in Di-
versity: Sampling Strategies in Wearable Photoplethysmography. IEEE Pervasive
Computing 18, 3 (2019), 63–69. https://doi.org/10.1109/MPRV.2019.2926613

[33] Florian Wolling and Kristof Van Laerhoven. 2018. Fewer Samples for a Longer
Life Span: Towards Long-Term Wearable PPG Analysis. In Proceedings of the
5th International Workshop on Sensor-based Activity Recognition and Interaction
(Berlin, Germany) (iWOAR ’18). ACM, New York, NY, USA, Article 5, 10 pages.
https://doi.org/10.1145/3266157.3266209

[34] Kristina Yordanova, Jesus Favela, and Gabriela Marcu. 2019. Challenges Providing
Ground Truth for Pervasive Healthcare Systems. IEEE Pervasive Computing 18, 2
(2019), 100–104. https://doi.org/10.1109/MPRV.2019.2912261

[35] Zhilin Zhang, Zhouyue Pi, and Benyuan Liu. 2015. TROIKA: A General Frame-
work for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic Sig-
nals During Intensive Physical Exercise. IEEE transactions on bio-medical engi-
neering 62, 2 (2015), 522–531. https://doi.org/10.1109/TBME.2014.2359372

http://openaccess.city.ac.uk/16923/
https://doi.org/10.1016/j.dib.2019.105044
https://doi.org/10.1016/j.dib.2019.105044
https://doi.org/10.1109/JSEN.2019.2914166
https://doi.org/10.1109/JSEN.2019.2914166
https://doi.org/10.1145/2499621
https://doi.org/10.1109/RBME.2017.2763681
https://doi.org/10.1109/RBME.2017.2763681
https://doi.org/10.1109/IEMENTECH.2018.8465225
https://doi.org/10.1109/IEMENTECH.2018.8465225
https://doi.org/10.1088/1361-6579/aa5efa
https://doi.org/10.1088/1361-6579/aa5efa
https://doi.org/10.1109/EMBC.2017.8037755
https://doi.org/10.1109/10.55667
https://doi.org/10.3389/fphys.2018.00948
https://doi.org/10.2174/157340312801215782
https://doi.org/10.2174/157340312801215782
https://doi.org/10.1016/S0140-6736(10)62226-X
https://cds.cern.ch/record/1530979
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1161/01.cir.101.23.e215
https://www.empatica.com/research/e4/
https://doi.org/10.3390/data2010001
https://doi.org/10.3390/data2010001
https://doi.org/10.1109/EMBC.2016.7590777
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1109/ISCAS.2015.7168806
https://doi.org/10.1109/ISCAS.2015.7168806
https://doi.org/10.1016/j.phpro.2017.01.024
https://doi.org/10.1016/j.phpro.2017.01.024
https://doi.org/10.1109/JSTQE.2018.2871604
https://doi.org/10.1109/TBME.2013.2246160
https://doi.org/10.1109/TBME.2013.2246160
https://doi.org/10.1038/sdata.2018.20
https://doi.org/10.1109/TBME.2016.2613124
https://doi.org/10.1109/TBME.2016.2613124
https://doi.org/10.1371/journal.pone.0195087
https://doi.org/10.1371/journal.pone.0195087
https://doi.org/10.1097/CCM.0b013e31820a92c6
https://doi.org/10.1145/3242969.3242985
https://doi.org/10.1016/j.chaos.2018.09.016
https://doi.org/10.1016/j.chaos.2018.09.016
https://doi.org/10.3390/electronics3020282
https://doi.org/10.1109/MPRV.2019.2926613
https://doi.org/10.1145/3266157.3266209
https://doi.org/10.1109/MPRV.2019.2912261
https://doi.org/10.1109/TBME.2014.2359372


TheQuest for Raw Signals: AQuality Review of Publicly Available Photoplethysmography Datasets DATA ’20, November 16–19, 2020, Virtual Event, Japan

A PLOTS

Figure A.1: Excerpts from the first five reviewed datasets: Short close-up of few pulses on the left, a 30-second window in the
middle, and its respective frequency spectrum (FFT) on the right. Note that the PPG-BP dataset (bottom) contains only snippets
of 2.1 s length. Frequency bands: very low frequency (VLF, < 0.167Hz, red), low frequency (LF, 0.167 to 0.667Hz, orange), and
intermediate frequency (IF, 0.5 to 3.0Hz , green) while the high frequency (HF, > 3.0Hz) noise and harmonics are clipped.
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Figure A.2: Excerpts from the last five reviewed datasets: Short close-up of few pulses on the left, a 30-second window in the
middle, and its respective frequency spectrum (FFT) on the right and cannot be analyzed in the frequency domain. Frequency
bands: very low frequency (VLF, < 0.167Hz, red), low frequency (LF, 0.167 to 0.667Hz, orange), and intermediate frequency
(IF, 0.5 to 3.0Hz , green) while the high frequency (HF, > 3.0Hz) noise and harmonics are clipped.
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