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Abstract—Hardware accelerators for compute intensive al-
gorithms such as convolutional neural networks benefit from
number representations with reduced precision. In this paper, we
evaluate and extend a number representation based on power-
of-two quantization enabling bit-shift-based processing of multi-
plications. We found that weights of a neural network can either
be represented by a single 4 bit power-of-two value or with two
4 bit values depending on accuracy requirements. We evaluate the
classification accuracy of VGG-16 and ResNet50 on the ImageNet
dataset with weights represented in our novel number format.
To include a more complex task, we additionally evaluate the
format on two networks for semantic segmentation. In addition,
we design a novel processing element based on bit-shifts which
is configurable in terms of throughput (4 bit mode) and accuracy
(8 bit mode). We evaluate this processing element in an FPGA
implementation of a dedicated accelerator for neural networks
incorporating a 32-by-64 processing array running at 250 MHz
with 1 TOp/s peak throughput in 8 bit mode. The accelerator is
capable of processing regular convolutional layers and dilated
convolutions in combination with pooling and upsampling. For
a semantic segmentation network with 108.5 GOp/frame, our
FPGA implementation achieves a throughput of 7.0 FPS in the
8 bit accurate mode and upto 11.2 FPS in the 4 bit mode corre-
sponding to 760.1 GOp/s and 1,218 GOp/s effective throughput,
respectively. Finally, we compare the novel design to classical
multiplier-based approaches in terms of FPGA utilization and
power consumption. Our novel multiply-accumulate engines
designed for the optimized number representation uses 9 % less
logical elements while allowing double throughput compared to a
classical implementation. Moreover, a measurement shows 25 %
reduction of power consumption at same throughput. Therefore,
our flexible design offers a solution to the trade-off between
energy efficiency, accuracy, and high throughput.

Index Terms—Deep Neural Networks, Quantization, Efficient
Hardware Acceleration

I. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have

reached an unprecedented performance in a variety of chal-

lenging computer vision tasks, such as image classification [1]

and semantic segmentation [2]. Consequently, these algorithms

are promising candidates for future advanced driver assistance

systems based on camera, radar, or lidar sensors. However,

the computational workload of Deep Neural Networks is large

and prevents their extensive deployment in resource con-

strained systems. Therefore, algorithmic advances to reduce

the computational complexity of neural networks have been

proposed such as number representations at reduced precision.

In contrast to general-purpose processors, dedicated acceler-

ators for neural networks can fully utilize the advantages of

reduced precision and furthermore benefit from neural network

inherent data reuse patterns.

With this paper we make the following contributions:

• We propose a number representation allowing efficient

bit-shift-based multiply-accumulate engines and evaluate

it on a variety of networks and datasets.

• We design and implement a multiply-accumulate engine

capable of processing weights in our proposed number

format which is configurable in terms of accuracy and

throughput. The engines use 9 % less logical elements

while allowing double throughput.

• We integrate the multiply-accumulate engines in an

accelerator for semantic segmentation running at

250 MHz with a peak throughput of 1 TOp/s. We

achieve 760.1 GOp/s on a use-case network and reach

1,218 GOp/s exploiting throughput benefits of our novel

processing engines.

II. RELATED WORK

Reduced precision for number representation in neural net-

works has been proposed by a variety of previous works. Most

prominently, a special training procedure has been proposed

for training neural networks with binary weight representa-

tion [3], [4]. However, this training procedure has not yet been

extended to complex tasks such as semantic segmentation.

Other previous work has been focusing on pre-trained neural

networks and quantize weights using a nonuniform quanti-

zation procedure to better fit to data distributions in neural

networks [5], [6]. To overcome performance degradations [5]

retrain the network after quantization. A logarithmic number

representation with arbitrary log-base which requires both

weights and activations to be in a logarithmic number format

is proposed in [6]. Accelerators based on bit-shift-multipliers

similar to our work are reported in [7], [8].

In contrast to our work, previous work did not evaluate the

benefits of an efficient multiply-accumulate engine based on

bit-shifts with selectable accuracy and throughput.

III. METHODOLOGY

A. CNNs for Classification and Semantic Segmentation

Convolutional neural networks for image processing typi-

cally consist of a number of stacked layers, where convolu-

tional layers are used for extracting features from an input
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image. To reduce the spatial dimension so-called pooling

layers map neighboring values to a single output value. In clas-

sification networks, fully-connected layers usually aggregate

the extracted features and output a class label. In the case of

semantic segmentation, so-called upsampling layers counteract

the pooling operations and restore the spatial dimension of

the input such that each input pixel can be classified with an

individual class label. Mathematically, convolutional and fully-

connected layers can be written as weighted sums, followed

by a non-linearity function Φ (·) using a bias term b:

y = Φ
(
b+

∑
wx

)
(1)

State-of-the art networks typically feature a piecewise linear

function Φ(x) = ReLU(x) = max(x, 0).

B. Number Representation

While a floating-point format with 32 bit (float32) offers a

large dynamic range and high-precision especially necessary

during training, reduced precision representations are bene-

ficial for the deployment of DNNs on embedded devices.

In this section, we first discuss state-of-the-art linear and

power-of-two quantization before introducing a novel number

representation.

1) Linear Quantization: We define function lin quant :
x �→ xq for mapping a value x from a quasi-continuous rep-

resentation to a linearly quantized, signed value xq according

to (2), where N denotes the bit-width and Δ the step size:

xq = Δ clip
(

round
( x

Δ

)
,−2N−1, 2N−1 − 1

)
. (2)

Here, clip(x, a, b) restricts x to the interval [a, b]. An example

for linear quantization of weights is depicted in Fig. 1, where

quantized sampling points are uniformly distributed. Hence the

distance between neighboring values xq is constant Δ.

2) Power-of-Two Quantization: In contrast to linear quan-

tization, a power-of-two scheme incorporates a nonuniform

distribution of sampling points. The mapping pow2 quant :
x �→ xq for signed power-of-two quantization with N bit and

step size Δ is given by

xq = sign (x) �2x̂q�Δ, where

x̂q = clip
(

round
(
log2 |

x

Δ
|
)
, − 1, 2N−1 − 2

)
.

(3)

To allow xq = 0, we clip x̂q to the range [−1, 2N−1 − 2].
Consequently, x̂q = −1 corresponds to a zero-code to indicate

Fig. 1. Linear quantization of weights of a layer with bimodal distribution
using 8 bit. Such weight distribution is typically found in layers which were
initialized with an identity operation before training.

Fig. 2. Power-of-two quantization of weights of a layer with bimodal data
distribution using 4 bit. Since a power-of-two quantized value carries at most
a single 1 in a binary representation, we use the term one-hot synonymously.

xq = 0. Instead of storing xq in memory, we merely save the

exponent value x̂q using N bit.

Sampling points of a power-of-two quantization are shown

in Fig. 2. As can be seen, the quantization is nonuniform with

an aggregation of sampling points near zero and sparse sam-

pling towards large absolute values. Especially for multimodal

data distributions as examplarily depicted in Fig. 2, power-

of-two quantization offers few samples for the second mode

near 1. In a power-of-two quantization scheme, Δ denotes the

smallest step size between 0 and the first nonzero value.

Using power-of-two values is advantageous because a sim-

ple bit-shift (�) can replace a costly multiplication:

w · xq = w � x̂q. (4)

3) Two-Hot Quantization: Since the power-of-two quan-

tization offers merely sparse sampling of large values, we

present a number representation with the benefits of bit-shift-

based multiplications while providing more sampling points

towards large values. Instead of representing a value xq with a

single power-of-two value x̂q , we use two values to represent

xq such that xq = xMSB
q + xLSB

q and quantize xMSB
q and

xLSB
q both as power-of-two values 2x̂

MSB
q and 2x̂

LSB
q . We use

N/2 bit for each exponent value x̂MSB
q and x̂LSB

q . In total,

value xq is represented by N bit. Since the resulting value xq

carries at most two 1’s in a binary representation, we refer to

this number format as two-hot.
Multiplications with a two-hot quantized value are as cheap

as two bit-shifts and an addition:

wq · xq = wq · (xMSB
q + xLSB

q )

= Δ
(
w � x̂MSB

q + w � x̂LSB
q

)
.

(5)

To quantize a value x in two-hot format, we first determine

xMSB
q according to

xMSB
q = pow2 quantN/2(x,Δ). (6)

The second part xLSB
q is then extracted from the remainder

xδ = x− xMSB
q :

xLSB
q = pow2 quantN/2(xδ,Δ).

(7)

In Fig. 3, the resulting sampling points of a two-hot quantiza-

tion with 8 bit are shown. As can be seen, the two-hot scheme

resolves the neighborhood of power-of-two sampling points

with yet another power-of-two quantization.
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Fig. 3. Two-hot quantization of weights of a layer with bimodal data
distribution. Two-hot quantization offers additional sampling points in the
neighborhood of power-of-two (one-hot) quantized values.

C. Step Size Optimization

We determine the step size Δ based on the propagation

of the quantization error δ through the neural network as we

previously introduced in [9]. We write ỹ for the output of a

layer with quantized weights wq (compare (1)):

wq = quant (w,Δw) = w + δw,

ỹ = Φ
(∑

xwq + b
)
.

(8)

To determine the optimal step size Δw, we minimize the

resulting error at the output of the layer:

Δw = argmin
Δw

(∣∣ỹ − y
∣∣2). (9)

For the step size Δx of quantized input activations x follows:

ỹ = Φ
(∑

xqw + b
)
,

Δx = argmin
Δx

(∣∣ỹ − y
∣∣2). (10)

This procedure is also used for finding a suitable quantization

step size Δb for biases.

IV. EVALUATION

We evaluate the two-hot quantization procedure on two

networks for image classification. For that purpose we use

the ILSVRC dataset [10]. This dataset contains more than

1 million RGB-images each categorized into one of 1,000

classes. The results of the following experiments are reported

on the ImageNet validation set of 50,000 images. Reported

performance figures are top-1 (highest rated label correct) and

top-5 accuracy (correct classification among five highest rated

labels). The networks for classification are VGG16 [11] and

ResNet50 [12].

Furthermore, to include a more complex task, we addition-

ally report results on Convolutional Neural Networks (CNNs)

for semantic segmentation. As a benchmark, we use the

Cityscapes dataset [13]. It includes 5,000 RGB-images with

fine-grained labels for training and its validation set consists

of 500 images. The images have a resolution of 2048× 1024.

On this task, we evaluate two models, Dilated Model [14]

and FCN8s [2], by reporting mean Intersection over Union

(mIoU) and mean pixel accuracy (pix. acc.) on the validation

set after quantizing the networks. For the experiments with the

Dilated Model, we downsampled images by a factor of 4× to

a resolution of 512× 256.

A. Image Classification

Quantization results on the ImageNet dataset of ResNet50

and VGG-16 are listed in Table I. For this evaluation, activa-

tions and biases are quantized in an 8 bit linear format, whereas

weights are quantized in either linear, power-of-two, or two-

hot format. As can be seen, an 8 bit linear quantization of

weights does not severely affect the network accuracy in com-

parison to the original floating-point weights. For the case of

VGG16, the top-5 accuracy even increases slightly, which may

emerge from regularizing effects. While a 4 bit power-of-two

representation for weights reduces the network performance of

VGG16 by less than 6 percentage points, the top-1 accuracy of

ResNet50 drops by more than 20 percentage points. However,

we observe comparably low accuracy degradation with 8 bit

two-hot quantization of weights.

Since multiplications with power-of-two and two-hot

weights are both based on bit-shifts, we furthermore evaluate

the accuracy of a DNN with mixed power-of-two and two-

hot quantized layers. For this analysis, we chose ResNet50

since its performance degradation for complete power-of-two

quantization is more pronounced. Starting with the last layer,

we quantize its weights with a power-of-two scheme and

keep the remaining layers in two-hot format. This way, we

quantize the network layer by layer until the weights of all

layers are in power-of-two format. The corresponding accuracy

numbers are plotted in Fig. 4. From these results, we see that

particularly layers close to the input of ResNet50 are sensible

to quantization noise whereas layers deeper in the network are

more resilient to power-of-two quantization.

B. Semantic Segmentation

Semantic segmentation is a rather complex task which is

especially promising for scene understanding and environment

perception. On this task, we evaluate power-of-two and two-

hot quantization on two networks in comparison to a linear

fixed-point number representation. The quantization results

are summarized in Table II. As can be seen, power-of-two

quantization affects the network accuracy the most. A two-hot

number representation for weights, results in little to no degra-

dation of network accuracy compared to a linear quantization

scheme. Similar to the analysis of ResNet50, we conduct an

experiment where some layers of the Dilated Model have

power-of-two quantized weights and the remaining weights

TABLE I
COMPARISON OF 8 BIT LINEAR FIXED-POINT NUMBER REPRESENTATION

WITH 4 BIT POWER-OF-TWO AND 8 BIT TWO-HOT QUANTIZATION OF

WEIGHTS ON IMAGE CLASSIFICATION NETWORKS.

VGG-16 ResNet50

accuracy [%] top-1 top-5 top-1 top-5

float32 baseline 69.58 89.04 72.99 90.93

linear 69.12 89.06 71.67 90.73

power-of-two 63.85 86.76 46.36 72.11

two-hot 68.82 89.51 70.24 90.35

two-hot vs. linear -0.30 +0.49 -1.43 -0.38
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Fig. 4. Top-1 (solid line) and top-5 (dashed line) accuracy are reported when
layers to the left of a given layer index are power-of-two quantized whereas
layers to the right are in two-hot format. With dedicated processing elements,
the power-of-two format results in a higher throughput. The resulting speed-up
for processing a frame is reported.

TABLE II
LINEAR, POWER-OF-TWO, AND TWO-HOT QUANTIZATION OF WEIGHTS ON

SEMANTIC SEGMENTATION NETWORKS.

Dilated Model FCN8s

accuracy [%] mIoU pix. acc. mIoU pix. acc.

float32 baseline 55.63 92.85 66.48 94.65

linear 55.62 92.78 66.47 94.44

power-of-two 49.52 90.13 60.75 92.10

two-hot 55.23 92.71 66.21 94.40

two-hot vs. linear -0.39 -0.07 -0.26 -0.04

are in two-hot format. The results are reported in Fig. 5. Re-

markably, when quantizing any layer of the Dilated Model in

power-of-two format, a performance degradation of at least 3

percentage points is the consequence. We suppose this emerges

from the reduced precision for bimodal distributions when

quantizing dilated convolutional layers. Moreover, similar to

the results on ResNet50, layers close to the input of the

network are more susceptible to power-of-two quantization.

V. NEURAL NETWORK ACCELERATOR

A. Hardware Architecture

We evaluate our proposed two-hot number representation

in a dedicated hardware accelerator for neural networks. The

accelerator architecture consists of a processing array with

32-by-64 multiply-accumulate engines, weight buffers, and

input and output buffers for intermediate data. The accelerator

processes each layer of a neural network separately. We use

the Dilated Model as a use-case for this accelerator. Since

intermediate results of layers are larger than on-chip memory,

they need to be transferred to external memory.

The computing block consists of an array of 32-by-64

processing elements (PEs). Each PE implements a multiply-

accumulate operation. The array produces 64 output channels

in parallel, each of which takes 32 input values that are

aggregated to the output through an adder-tree.

B. Processing Elements

The processing elements implement the core multiply-

accumulate operation. We propose a novel two-hot-based PE

Fig. 5. mIoU of the Dilated Model when layers to the left of a given index
are power-of-two quantized whereas layers to the right are in two-hot format.
Dedicated processing elements allow a speed-up for the power-of-two format.

and compare it to a regular PE for multiplication of fixed-point

values. The design of our PE which is capable of processing

either a single weight in two-hot format or two weights in

power-of-two representation is depicted in Fig. 7. Weights

consist of two 4 bit power-of-two values each including a

sign bit. In case of processing two-hot values, the input X
is bit-shifted twice and the result is added and fed to an

accumulator. If the engine is configured to process power-

of-two quantized weights, the input X is bit-shifted but the

results are forwarded to two separate accumulator stages.

Consequently, the throughput of the second operating mode

is doubled. For this reason, a speed-up factor is reported

alongside accuracy numbers in Figs. 4 and 5.

C. FPGA Resource Utilization and Power Measurement

We evaluate our design in a prototypical implementation on

a Xilinx Virtex UltraScale+ (XCVU9P) device. To compare

our design with a multiplier approach in a fair manner, we

switch off automatic DSP-slice instantiation during synthesis.

As can be seen from Table III, the multiplier stage of a single

twoh-hot-based PE uses 9 % less logical elements. Due to

identical input sizes and similar output sizes, the number of
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Fig. 7. Our proposed multiply-accumulate engine based on bit-shifts. The
engine is capable of processing weights in two-hot format and additionally
offers a mode to process two power-of-two quantized weights. In the two-hot-
mode only one accumulator is being used whereas for the power-of-two-mode
a second accumulator outputs a second accumulation result.

TABLE III
FPGA RESOURCE UTILIZATION OF OUR ACCELERATOR USING

FIXED-POINT MULTIPLIERS OR TWO-HOT BIT-SHIFT-BASED PES.

Multiplier Two-Hot rel. diff.

#LUTs (Mult. Stage) 66 60 -9.1 %

#Regs (Mult. Stage) 80 79 -1.2 %

#LUTs (total) 281,698 167,261 -40.6 %

#Regs (total) 268,326 267,317 -0.34 %

register elements is only marginally reduced. Nevertheless, the

two-hot PE offers double throughput. Furthermore, we report

the total utilization after synthesis of the accelerator. Compared

to a regular design, the utilization of logical elements is

reduced by 40.6 %. Our accelerator has a peak throughput of

2Op× 32× 64× 250MHz = 1TOp/s using regular PEs and

reaches double peak throughput employing our two-hot PEs.

The dilated model has a total workload of 108.6 GOp/frame.

The processing time on the accelerator with regular PEs and

when all layers are two-hot quantized is 142.6 ms. When

switching to power-of-two weights for all layers with more

than 64 output channels, the execution time reduces to 89.1 ms,

thereby increasing the effective throughput to 1,218 GOp/s.

The Xilinx VCU118 evaluation board allows rudimentary

power measurements through the on-board Maxim power

regulators. To allow a successful implementation of the more

costly mutliplier design without DSP-slice instantiation, we

reduced the PE-array size to 4×64 for a power measurement.

The dynamic power consumption of the bit-shift-based design

showed 2.55 W while a multiplier-based approach uses 3.4 W.

Both designs have identical peak throughput. Therefore, our

novel PEs allow a reduction of 25 % in power consumption.

VI. CONCLUSION

In this paper we proposed and evaluated two-hot quantiza-

tion – a novel number representation allowing efficient pro-

cessing of neural network based on simple bit-shifts. Further-

more, we designed and implemented a processing element with

selectable accuracy and throughput. Our PE processes either

a single weight in two-hot format or two weights in power-

of-two representation and hence reaches double throughput at

reduced precision. This PE offers a flexible solution for the

accuracy vs. throughput trade-off. We additionally implement

the bit-shift-based multiply-accumulate engines in a dedicated

accelerator for neural networks for semantic segmentation.

On a network with 108.5 GOp/frame, we achieve 781.2 GOp/s

in 8 bit accurate mode and 1,218 GOp/s employing the 4 bit

reduced precision mode. Furthermore, a power measurement

on an FPGA evaluation board showed that our novel bit-shift-

based processing elements allow 25 % power reduction com-

pared to a regular fixed-point implementation. Therefore, our

flexible design offers a solution to the trade-off between energy

efficiency, accuracy, and high throughput. Future work will

investigate the benefits of our proposed design on integrated

circuit implementations.
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