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Abstract
The	Wearables	 for	Epilepsy	And	Research	(WEAR)	International	Study	Group	
identified	a	set	of	methodology	standards	to	guide	research	on	wearable	devices	
for	 seizure	 detection.	 We	 formed	 an	 international	 consortium	 of	 experts	 from	
clinical	 research,	 engineering,	 computer	 science,	 and	 data	 analytics	 at	 the	 be-
ginning	of	2020.	The	study	protocols	and	practical	experience	acquired	during	
the	development	of	wearable	research	studies	were	discussed	and	analyzed	dur-
ing	bi-	weekly	virtual	meetings	to	highlight	commonalities,	strengths,	and	weak-
nesses,	and	to	formulate	recommendations.	Seven	major	essential	components	of	
the	experimental	design	were	identified,	and	recommendations	were	formulated	
about:	(1)	description	of	study	aims,	(2)	policies	and	agreements,	(3)	study	popu-
lation,	(4)	data	collection	and	technical	infrastructure,	(5)	devices,	(6)	reporting	
results,	and	(7)	data	sharing.	Introducing	a	framework	of	methodology	standards	
promotes	optimal,	accurate,	and	consistent	data	collection.	It	also	guarantees	that	
studies	are	generalizable	and	comparable,	and	that	results	can	be	replicated,	vali-
dated,	and	shared.
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1 	 | 	 INTRODUCTION

Research	using	wearable	devices	for	seizure	detection	has	
flourished	in	the	last	decade.1	Despite	the	rapid	advance-
ment	 of	 technology	 and	 the	 availability	 of	 new	 devices,	
the	 use	 of	 wearables	 in	 daily	 clinical	 epilepsy	 care	 re-
mains	rare	and	its	benefit	is	not	adequately	supported	by	
evidence.2	The	lack	of	studies	demonstrating	the	validity	
of	data	collected	in	real-	world	conditions	and	the	lack	of	
collaboration	between	regulators,	health	tech	companies,	
and	medical	professionals	have	impeded	clinical	adoption.	
Another	reason	for	the	gap	between	research	findings	and	
the	clinical	use	of	wearables	may	be	a	lack	of	standards	in	
data	 acquisition	 and	 analysis	 in	 this	 relatively	 new	 area	
of	research.	Data	appraisal	across	studies	is	hampered	by	
variability	 in	data	acquisition	and	inconsistent	reporting	
of	 essential	 contextual	 information	 in	 practical	 settings.	
The	 advantages	 of	 common	 data	 elements	 in	 mobile	
health	epilepsy	applications	were	highlighted	previously.3

Although	 specific	 standards	 for	 testing	 and	 clinical	
validation	 of	 seizure	 detection	 devices	 have	 been	 intro-
duced,4	there	remains	room	for	improvement	across	de-
vice	development	and	testing	processes.	This	work	builds	
upon	these	standards	and	incorporates	practical	guidance	
on	study	design	based	on	our	collective	experience.	The	
proof-	of-	concept	 that	 a	 commercial	 or	 noncommercial	
device	is	suitable	for	seizure	monitoring	is	first	obtained	
from	 validation	 studies	 performed	 in	 epilepsy	 monitor-
ing	units	(EMUs).	Outpatient	setting	studies	are	crucial	
for	testing	and	validation.5–	7	Currently,	different	research	
groups	adopt	various	methods	and	report	heterogeneous	
or	 incomplete	 information,	 leading	 to	 inconsistency	be-
tween	studies	and	hindering	study	comparison	and	rep-
lication.	 It	 is	 important	 to	 note	 that	 these	 studies	 often	
face	technical	and	usability	challenges	frequently	not	re-
ported,	 resulting	 in	 the	 acquisition	 of	 sub-	optimal	 data	
sets.

Encouraging	 data	 and	 source	 code	 sharing	 across	 re-
search	 groups	 would	 enable	 the	 development	 of	 a	 com-
mon	 methodology	 and	 would	 allow	 the	 replication	 and	
aggregation	 of	 results	 across	 studies.	 The	 Wearables	 for	
Epilepsy	 And	 Research	 (WEAR)	 International	 Study	
Group	 has	 joined	 forces	 from	 four	 international	 study	
groups	 and	 has	 agreed,	 as	 a	 first	 objective,	 to	 identify	 a	
set	of	methodology	standards	encompassing	study	design,	
data	acquisition,	and	reporting	to	guide	research	on	wear-
able	 devices	 for	 seizure	 detection.	 In	 this	 rapidly	 evolv-
ing	 field,	 we	 believe	 that	 a	 framework	 of	 methodology	

standards	 could	 guarantee	 that	 optimal,	 accurate,	 and	
consistent	 data	 are	 collected,	 that	 studies	 are	 generaliz-
able,	and	that	results	could	be	compared,	replicated,	and	
validated.

2 	 | 	 METHODS

An	 international	 consortium	 of	 experts	 from	 diverse	
fields	 including	clinical	research,	engineering,	computer	
science,	and	data	analytics	was	 formed	at	 the	beginning	
of	2020.	The	consortium	brought	together	four	major	re-
search	 centers	 (Mayo	 Clinic	 Rochester	 (MCR),	 Boston	
Children's	Hospital	(BCH),	King's	College	London	(KCL),	
and	Medical	Center	–		University	of	Freiburg	(UKF))	that	
have	conducted	dedicated	studies	assessing	the	usefulness	
of	wearable	devices	for	seizure	detection.

The	study	protocols	and	practical	experience	acquired	
during	 the	 development	 of	 these	 studies	 were	 discussed	
and	analyzed	during	bi-	weekly	virtual	meetings	 to	 iden-
tify	commonalities	(Figure	1),	strengths,	and	weaknesses.	
Seven	 major	 essential	 components	 of	 the	 experimental	
design	were	identified:	(1)	description	of	study	aims,	(2)	
policies	 and	 agreements,	 (3)	 study	 population,	 (4)	 data	
collection	and	technical	infrastructure,	(5)	devices,	(6)	re-
porting	results,	and	(7)	data	sharing.

Each	of	the	seven	components	was	selected	in	turn	as	
the	major	topic	of	a	virtual	meeting.	During	the	meeting,	
the	first	authors	of	this	work	assumed	the	role	of	facilita-
tors	and	stimulated	an	open	discussion	based	on	the	expe-
rience	from	each	research	center.	The	major	points	were	
then	summarized	and	shared	for	approval	with	all	the	co-	
authors	and	finally	elaborated	into	a	document	including	
consensus	recommendations.

K E Y W O R D S

devices,	epilepsy,	mHealth,	standards,	technology

Key points
•	 The	 Wearables	 for	 Epilepsy	 And	 Research	

(WEAR)	International	Study	Group	identified	a	
set	of	methodology	standards	to	guide	research	
on	wearable	devices	for	seizure	detection.

•	 Seven	major	essential	components	of	the	exper-
imental	design	were	identified	and	discussed.

•	 A	 framework	 of	 methodology	 standards	 could	
promote	 generalizability	 and	 replication	 of	
studies	and	data	sharing.
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3 	 | 	 RESULTS

3.1	 |	 Identification of study aims

The	definition	of	study	aims	and	related	methods	deter-
mine	 the	 patient	 selection,	 device	 choice,	 data	 annota-
tions,	 curation,	and	data	analysis,	 and	 should	be	clearly	
stated	 early	 in	 the	 study	 development	 process.	 Seizure	
detection	 may	 serve	 many	 different	 purposes,	 from	
closed-	loop	 treatment	 of	 acute	 seizures	 and	 impending	
status	epilepticus,8,9	 to	 retrospective	assessment	of	 clini-
cal	seizure	burden	and	assessment	of	 the	risk	of	sudden	
unexpected	 death	 in	 epilepsy	 (SUDEP),	 as	 well	 as	 the	
clinical	 device	 or	 medication	 trial	 evaluation.	 Given	 the	
unreliability	 of	 self-	reported	 seizure	 diaries,10–	12	 an	 ac-
curate	seizure	detection	device	could	be	used	to	optimize	

medical	treatment,	avoiding	undertreatment	due	to	unre-
ported	seizures,	and	minimizing	unnecessary	side-	effects	
due	to	seizure	over-	reporting.	An	accurate	seizure	detec-
tion	device	could	also	provide	objective	seizure	statistics	
in	 clinical	 trials	 of	 new	 antiepileptic	 drugs	 and	 other	
epilepsy	 treatments,	which	currently	depend	entirely	on	
patient	 self-	reported	 seizure	 diaries.13	 Offline	 detection	
could	contribute	to	the	diagnosis	of	nonepileptic	paroxys-
mal	events,	from	psychogenic	seizures14–	17	to	cardiogenic	
events.	Device	performance	needs	to	be	proven	more	ac-
curate	than	self-	reported	seizure	diaries	to	potentially	im-
prove	clinical	practice.	Seizure	detection	devices	may	also	
be	studied	for	their	potential	to	measure	disease	severity,	
for	example,	associated	with	SUDEP	risk.	Ictal	autonomic	
changes,18	 ictal	 surface	 electromyography	 patterns,19	
post-	ictal	immobility,20	and	post-	ictal	central	apnea21	are	

F I G U R E  1  Characteristics	of	the	
studies	across	the	different	centers
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all	potentially	measurable	by	wearable	devices	and	are	as-
sociated	with	post-	ictal	generalized	electroencephalogra-
phy	(EEG)	suppression	(PGES),	a	risk	factor	for	SUDEP.

The	 particular	 seizure	 semiology	 types	 targeted	 in	 a	
study	may	affect	the	study	design,	device	choice,	and	data	
annotation	 protocols.	 Generalized	 tonic-	clonic	 seizures	
and	focal	motor	seizures	with	limb	involvement	may	re-
quire	movement	or	electromyography	 (EMG)	sensor	de-
vices	and	may	prompt	placement	of	devices	on	the	body	
segment	 with	 greatest	 ictal	 movements,	 whereas	 non-	
motor	seizure	types	like	focal	impaired	awareness	seizures	
may	 require	 devices	 that	 sense	 autonomic	 biomarkers	
such	as	electrodermal	activity	(EDA)	or	heart	rate	(HR)/
photoplethysmography	 (PPG),	 or	 a	 combination	 of	 all	
these.	 Detection	 of	 daytime	 seizures	 requires	 wearable	
devices	 to	 be	 mobile	 and	 to	 be	 robust	 to	 patient	 move-
ment,	whereas	devices	for	detection	of	nocturnal	seizures	
may	be	stationary	and	attached	 to	 the	patient22,23	or	 the	
bed,24,25	or	a	camera	may	be	pointed	at	the	patient	from	a	
fixed	location.26	EEG	is	often	the	most	versatile	signal	in	
seizure	detection,	and	mobile	EEG-	based	systems	(scalp,	
ear,	 or	 sub-	scalp)	 may	 be	 able	 to	 detect	 a	 wide	 array	 of	
seizure	 types.6,27–	29	 Device	 acceptability	 and	 adherence	
by	patients	are	essential	 in	seizure	detection,	and	device	
studies	should	include	assessment	of	acceptability	in	the	
overall	study	aims.1

3.2	 |	 Policies and agreements

The	 process	 to	 obtain	 ethical	 approval	 from	 the	 institu-
tional	 review	 board	 (IRB)	 may	 be	 time-	consuming	 and	
requires	 careful	 planning.	 Essential	 steps	 include	 delin-
eating	 a	 clear	 research	 plan,	 and	 developing	 the	 study	
protocol,	 but	 also	 seeking	 agreements	 with	 device	 man-
ufacturers,	 interacting	 with	 hospital	 authorities,	 and	 ar-
ranging	monitoring	plans.

3.2.1	 |	 Informed	consent

The	process	of	obtaining	informed	consent	is	regulated	by	
principles	 embodied	 in	 the	 current	 biomedical	 research	
on	 human	 subjects,30	 which	 also	 considers	 the	 needs	 of	
vulnerable	populations	(eg,	children,	cognitively	impaired	
individuals,	and	unconscious	patients).31	Comprehensive	
information	must	be	provided	to	enable	people	to	volun-
tarily	 decide	 whether	 or	 not	 to	 participate	 in	 a	 research	
study	and	is	essential	for	valid	informed	consent	as	defined	
by	the	Guidelines	for	Good	Clinical	Practice.30	Despite	the	
low	 invasiveness	 of	 wearable	 devices,	 studies	 involving	
wearable	devices	are	subject	to	these	regulations,	and	in	
particular	 the	 transfer	 and	 sharing	 of	 anonymized	 data	

with	 other	 groups	 requires	 approval.	 It	 is	 important	 to	
include	 an	 “opt-	out”	 strategy	 to	 guarantee	 the	 right	 to	
autonomy	 to	 those	 participants	 who	 prefer	 to	 not	 share	
data.	In	particular,	sharing	anonymized	data	internation-
ally	can	be	heavily	regulated	and	may	require	specific	con-
sent	by	the	research	subject.	Moreover,	from	the	point	of	
view	of	researchers,	offering	study	participants	the	option	
to	actively	disagree	with	data	sharing	is	preferred	over	of-
fering	an	“opt-	in,”	as	the	intent	is	to	share	as	much	data	
with	 other	 researchers	 as	 possible.	 Opt-	in	 and	 opt-	out	
policies,	also	called	nudges,	have	the	tendency	to	promote	
one	choice	 in	 favor	of	 the	other,	while	 still	keeping	 this	
intervention	easy	to	avoid.32	Of	course,	this	will	also	need	
to	conform	to	local	data	protection	regulations.

3.2.2	 |	 Interaction	with	regulatory	
authorities	and	adherence	to	hospital	policies

Each	 center	 must	 be	 guided	 by	 its	 country's	 local	 poli-
cies	 and	 regulations,	 and	 additional	 approvals	 may	 be	
needed	when	testing	devices	without	existing	Conformité	
Européenne	 (CE)	 or	 US	 Food	 and	 Drug	 Administration	
(FDA)	approvals.	Such	studies	may	be	considered	clinical	
trials	or	performance	evaluation	studies,	 requiring	addi-
tional	documentation	and	in	some	cases	authorization	by	
government	regulatory	bodies.	The	rules	vary	in	different	
countries,	 and	 this	 generates	 disparities	 in	 how	 devices	
can	be	tested	and	scientific	data	acquired.

Another	important	consideration	is	 the	security	rules	
governing	 the	 computer	 network	 infrastructure	 in	 the	
hospital	environment.	Hospitals	regulate	and	limit	access	
to	internal	networks	to	protect	sensitive	data,	and	specific	
approvals	are	often	required	to	use	existing	wireless	con-
nections	or	create	new	networks.

Data	 safety	 and	 protection	 are	 important	 consid-
erations,	 especially	 with	 the	 European	 Union's	 (EU’s)	
General	 Data	 Protection	 Regulation	 (GDPR)	 governing	
data	 collection	 and	 transfer	 inside	 the	 EU	 and	 with	 in-
ternational	 collaborators.	 All	 clinical	 institutions	 based	
within	the	EU	must	follow	these	rules,	whether	collecting	
data	or	receiving	data	from	partners	outside	the	EU.

3.3	 |	 Study population

Selecting	 the	 study	 population	 to	 appropriately	 address	
the	 research	 question	 is	 crucial	 in	 study	 design.	 In	 par-
ticular,	it	is	important	to	match	the	subject	characteristics,	
epilepsy	type,	or	seizure	semiology	in	the	study	cohort	to	
the	goals	of	 the	 study.	We	developed	prospective	cohort	
studies	 in	 which	 patients	 with	 a	 diagnosis	 of	 epilepsy	
were	asked	to	wear	one	or	more	wearable	devices.	Study	
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participants	 were	 recruited	 when	 they	 presented	 for	 ep-
ilepsy	 care	 or	 in	 specific	 follow-	up	 settings,	 such	 as	 the	
EMU.

3.3.1	 |	 Inclusion	and	exclusion	criteria

As	physiological	 responses	and	signal	alterations	during	
epileptic	seizures	may	vary	across	age	groups,	 the	inclu-
sion	 of	 participants	 of	 different	 ages	 needs	 to	 be	 taken	
into	account.	For	example,	in	our	studies,	the	age	of	study	
participants	ranged	between	28 days	(BCH)	and	80 years	
(KCL).	Moreover,	at	the	stage	of	protocol	development,	it	
is	important	to	identify	those	comorbidities	that	may	in-
terfere	with	study	adherence	or	with	data	collection	and	
quality.	Patients	with	conditions	 impeding	 the	ability	 to	
participate	(cognitive,	psychiatric,	acutely	ill),	to	wear	the	
device	(skin	conditions),	or	with	frequent	vigorous	invol-
untary	movements	(eg,	chorea,	athetosis)	were	excluded	
from	our	studies.

3.3.2	 |	 Data	collected

Baseline	characteristics	of	the	included	participants	allow	
the	population	under	study	to	be	better	characterized,	the	
results	obtained	to	be	understood	and	contextualized,	and	
for	generalizability	of	the	data	to	be	discussed.	For	all	our	
study	participants,	data	collected	during	the	study	period	
included	basic	demographic	characteristics	including	age	
and	gender;	clinical	information;	and	seizure	characteris-
tics	 including	etiology,	 localization,	 type,	onset,	and	 fre-
quency	of	seizures	and	medications.

While	 in	 the	 EMU,	 patients	 were	 monitored	 for	 sei-
zures,	 which	 were	 recorded	 along	 with	 the	 sensor	 data	
from	the	wearables.

3.4	 |	 Data collection and technical 
infrastructure

3.4.1	 |	 Video	EEG	recordings	and	
seizure	annotation

Recording	data	continuously	over	days	with	the	support	
of	video-	EEG	is	essential	to	capture	an	adequate	number	
of	events	and	to	reliably	identify	and	characterize	seizures	
through	a	gold	standard.

In	 our	 studies,	 as	 part	 of	 the	 clinical	 workup,	 pa-
tients	were	admitted	to	the	EMU	and	connected	via	scalp	
electrodes	 to	 an	 EEG	 monitoring	 system	 within	 view	 of	
a	 video	 camera.	 The	 length	 of	 stay	 in	 the	 EMU	 varied	
based	on	the	patient's	clinical	care.	The	majority	of	adult	

patients	were	admitted	for	a	5-		to	10-	day	stay,	with	overall	
shorter	durations	for	children.	Some	centers	(MCR)	also	
included	ambulatory	patients	undergoing	home	video	te-
lemetry	 (HVT)	 or	 patients	 undergoing	 intracranial	 EEG	
monitoring.

Trained	 personnel	 are	 needed	 to	 perform	 standard	
video-	EEG	 monitoring,	 including	 electrode	 placement	
according	to	the	10–	20	international	system,	and	to	main-
tain	 high-	quality	 recordings.	 EEG	 recordings	 were	 fully	
reviewed,	 and	 seizure	 onset	 and	 offset	 were	 annotated,	
in	 addition	 to	 supporting	 information	 including	 seizure	
semiology	 and	 ictal	 focus	 (as	 reported	 in	 Appendix	 S1).	
Centers	 collaborating	 in	 a	 multi-	center	 clinical	 study	
(UKF,	KCL)	jointly	developed	and	adhered	to	a	review	and	
annotation	protocol	specifying	reviewing	terminology	and	
methodology	to	guarantee	consistency	in	reporting	clini-
cal	phenomena	across	patients.	This	included,	for	exam-
ple,	definitions	of	autonomic	features	such	as	tachycardia,	
which	 is	 ambiguously	 defined	 in	 epilepsy-	related	 litera-
ture;	 determination	 of	 duration	 of	 impaired	 awareness,	
which	is	not	always	actively	tested	for;	and	an	agreement	
on	how	to	consistently	store	this	information	in	a	shared	
database	for	collaboration.	The	labeled	video-	EEG	record-
ings	were	 then	 transferred	 to	a	 secure	 server	 for	 storage	
and	analysis,	and	seizure	onset	and	offset	times	were	ap-
plied	to	the	simultaneously	collected	wearable	recordings.

3.4.2	 |	 Wearable	data	collection	and	device	
integration

Data	 collection	 with	 wearables	 is	 generally	 done	 in	 one	
of	 two	 approaches:	 offline	 collection,	 where	 the	 data	
are	 stored	 locally	 on	 the	 device	 and	 then	 downloaded	
at	 a	 later	 time,	 or	 online	 collection,	 where	 the	 data	 are	
streamed	continually	via	a	wireless	connection	to	an	ex-
ternal	device.

During	the	online	collection,	the	wearable	device	usu-
ally	 has	 a	 much	 shorter	 battery	 life,	 since	 wireless	 data	
transmission	adds	significantly	to	the	overall	energy	con-
sumption.	However,	the	maximum	recording	time	in	the	
offline	collection	is	constrained	by	the	internal	storage	ca-
pacity	of	the	device.	Furthermore,	the	data	must	be	man-
ually	 downloaded	 from	 the	 device,	 potentially	 requiring	
regular	patient	participation.

During	 online	 collection,	 this	 process	 can	 be	 auto-
mated,	at	the	expense	of	potential	for	data	loss	due	to	con-
nection	problems.	An	added	benefit	to	data	streaming	is	
the	possibility	of	live	data	processing	and	visualization,	al-
lowing	caretakers	and	study	personnel	to	evaluate	data	as	
it	comes	in.	Live	data	streaming	is	also	a	key	requirement	
for	any	intervention	or	alarm	system	not	directly	built	into	
the	wearable	device.
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For	our	studies,	we	used	both	methods	in	our	data	col-
lection	 efforts.	 MCR	 and	 BCH	 used	 the	 offline	 method	
with	 their	 devices,	 recording	 to	 the	 local	 device	 storage	
for	 up	 to	 2	 days	 at	 a	 time	 and	 then	 exchanging	 devices	
to	 ensure	 uninterrupted	 recording.	 Devices	 with	 stored	
data	were	connected	to	a	clinic	computer	via	USB	cable,	
and	through	an	application	provided	by	the	device	man-
ufacturer,	 the	data	were	then	downloaded	off	 the	device	
and	uploaded	 to	 third-	party	cloud	storage.	The	raw	data	
were	then	downloaded	via	a	website	listing	all	uploaded	
recordings.

Conversely,	 at	 KCL	 and	 UKF,	 online	 data	 stream-
ing	 was	 used.	 The	 wearable	 devices	 were	 constantly	
connected	 to	 a	 companion	 device	 via	 Bluetooth,	 and	 a	
custom-	built	Android	application	was	used	to	receive	the	
raw	data	directly	from	the	wearable	device	and	upload	it	to	
a	data	storage	server	on	the	clinic	premises	(Figure	2).	All	
components	of	this	system	like	the	Android	app	and	the	
server	 framework	 are	 open-	source	 software	 available	 on	
GitHub.33	Wearable	devices	were	exchanged	twice	per	day,	
in	the	morning	and	evening,	to	allow	for	battery	charging	
given	the	shorter	battery	life	in	streaming	mode.	We	also	
had	 frequent	 problems	 with	 the	 devices’	 Bluetooth	 con-
nectivity.	 The	 wearables	 often	 disconnected	 from	 the	
companion	device,	either	due	to	the	patient	walking	out	
of	range	or	due	to	other,	sometimes	unexplained	reasons.	
This	would	 lead	to	 frequent	and	extensive	data	 loss	 (see	
Measures	of	Data	Completeness	section),	especially	if	the	
wearable	device	did	not	offer	an	on-	device	data	buffer	or	
automatic	reconnect	to	the	companion	device.

3.4.3	 |	 Synchronization	between	
wearable	and	video-	EEG	data

Time	 synchronization	 between	 an	 external	 device	 and	
the	 video-	EEG	 is	 particularly	 important	 in	 the	 field	 of	
epilepsy	research.	The	clinical	seizure	onset,	used	as	the	

ground	 truth	 in	developing	models	 for	seizure	detection	
and	prediction,	can	often	be	pinpointed	with	sub-	second	
precision	by	clinical	experts.	Thus	synchronizing	the	 in-
ternal	time	of	the	wearable	device	to	the	time	of	the	video-	
EEG	 system	 is	 essential	 for	 data	 analysis.	 Furthermore,	
depending	on	the	specific	device	used,	internal	inaccura-
cies	can	cause	small	shifts	in	the	timekeeping	between	in-
dividual	biosignal	data	streams.

There	are	two	principal	ways	of	achieving	synchroniza-
tion	between	a	wearable	device	and	a	video-	EEG	system.	
The	most	accurate	and	technically	more	advanced	way	is	
to	directly	and	precisely	adjust	the	on-	device	timekeeping	
of	the	wearables	to	the	time	used	in	the	clinical	video-	EEG	
system,	 for	 example,	 by	 some	 wireless	 connection.	 This	
will	 give	 millisecond	 synchronization	 between	 the	 two	
time	bases,	but	may	require	some	technical	set-	up	before-
hand,	and	it	might	not	even	be	available	as	an	option	if	the	
wearable	device	does	not	support	this	operation.	The	sec-
ond	way	of	achieving	synchronization	is	through	the	study	
staff,	who	can	manually	induce	a	visible	and	recognizable	
change	in	the	wearable's	recorded	signals	while	also	show-
ing	this	actionn	on	the	video	or	EEG	signal.	Alternatively,	
an	artifact	or	 label	can	be	placed	simultaneously	during	
the	device	and	EEG	recording,	and	then	be	confirmed	by	
EEG,	 as	 some	 standard	 video-	EEG	 systems	 suffer	 from	
an	 occasional	 minor	 desynchronization	 of	 the	 EEG	 and	
video.	The	data	streams	can	then	be	synchronized	retro-
spectively	 by	 adjusting	 the	 wearable	 data	 timestamps	 to	
align	 the	 events	 with	 the	 video-	EEG.	 Although	 the	 data	
streams	can	be	synchronized	to	sub-	second	precision	with	
this	method,	it	requires	manual	modification	of	the	data.

Both	 methods	 are	 susceptible	 to	 the	 internal	 drift	 of	
timekeeping	 in	 the	 wearable,	 caused	 by	 inaccuracies	 in	
the	real-	time-	clock	circuits	in	these	devices.	This	drift	can	
accumulate	over	time,	up	to	several	seconds	of	inaccuracy	
over	several	hours	of	recording.	Therefore,	it	is	advisable	
to	repeat	the	synchronization	process	periodically	during	
the	 recording.	 The	 automated	 method	 is	 more	 suitable	

F I G U R E  2  Setup	of	the	technical	
environment	for	in-	hospital	studies	on	
wearable	devices	for	seizure	detection	
(setting	epilepsy	monitoring	unit)
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for	this,	as	the	synchronization	could	be	triggered,	for	ex-
ample,	every	few	minutes.	Another	method	to	deal	with	
drifting	timestamps	directly	is	to	measure	individual	cali-
bration	parameters	for	each	device	that	is	used	in	a	study.	
Thereby,	 the	 precise	 sampling	 rate	 for	 a	 device	 is	 found	
by	 a	 calibration	 procedure,	 to	 a	 degree	 of	 accuracy	 that	
allows	 for	 a	 later	 recalibration	 of	 the	 timestamps	 in	 the	
recorded	 signals.	 Synchronizing	 the	 wearable	 data	 with	
the	video-	EEG	system	can	enable	integration	of	both	into	
a	 common	data	viewer,	which	 facilitates	a	better	under-
standing	 of	 abstract	 wearable	 data	 in	 the	 context	 of	 the	
actual	clinical	setting.

In	 our	 studies,	 we	 have	 used	 both	 methods	 to	 vary-
ing	degrees	of	 success.	MCR	used	 the	manual	approach	
in	combination	with	sample	rate	calibration,	making	use	
of	 the	 accelerometer	 (ACC)	 signal	 the	 device	 records	 to	
register	 the	 patient's	 movements.	 Whenever	 the	 device	
was	 exchanged	 for	 battery	 charging	 and	 data	 download,	
the	study	personnel	shook	the	device	for	a	few	seconds	in	
front	of	the	camera	of	the	video-	EEG	system,	resulting	in	
a	series	of	distinct	spikes	in	the	ACC	signal.	These	could	
then	 be	 used	 to	 synchronize	 wearable	 data	 signals	 with	
the	shaking	motion	in	the	video	signal,	and	to	confirm	the	
accuracy	 of	 the	 recalibrated	 timestamps.	 BCH	 also	 used	
a	manual	approach	to	synchronize	the	device	and	video-	
EEG	recordings.	Before	putting	the	device	on	the	patient,	
the	 research	 personnel	 simultaneously	 triggered	 the	 E4	
button	to	create	an	event	mark	in	the	wearable	data	signal,	
and	 the	 event	 marker	 button	 of	 the	 video-	EEG	 system.	
This	is	done	because	of	the	video-	EEG	camera,	prompting	
the	EEG	technician	 to	also	mark	on	 the	video-	EEG	that	
a	 wearable	 device	 recording	 has	 started.	 Whenever	 the	
device	 is	 removed	 from	 the	patient,	 the	 same	procedure	
is	repeated.	Later,	the	marked	events	in	each	of	the	data	
streams	can	be	aligned	to	attain	synchronization.	At	 the	
two	other	sites,	a	more	automated	method	was	employed.	
Because	 the	 devices	 are	 programmed	 to	 synchronize	
themselves	to	the	clock	of	the	companion	Android	device	
whenever	they	are	first	connected	via	Bluetooth,	it	is	only	
necessary	to	synchronize	the	Android	devices	to	the	video-	
EEG	time	base,	which	can	be	done	easily	via	a	network	
connection.	Consequently,	each	center	synchronized	their	
wearable	devices	each	time	they	were	exchanged	for	bat-
tery	charging,	with	intervals	ranging	from	twice	per	day	to	
every	2	days.

3.5	 |	 Devices

Across	the	four	study	sites,	we	used	several	different	wear-
able	 devices	 for	 data	 collection	 from	 study	 participants.	
Among	 the	 most	 prominent	 devices	 were	 Biovotion's 
Everion,	 IMEC’s sensor bracelet,	 Epitel's Epilog,	 Byteflies’ 

Dots,	 and	 Empatica's E4.	 The	 data	 quality	 and	 patient	
acceptance	 of	 some	 of	 these	 devices	 have	 been	 reported	
previously.34–	36	 In	our	studies,	only	the	Empatica E4	de-
vice	was	used	at	all	of	the	four	sites.

Wearable	devices	of	the	types	used	in	clinical	epilepsy	
studies	 can	 be	 categorized	 in	 various	 ways,	 all	 of	 which	
should	factor	into	the	decision	when	selecting	a	device	for	
a	study:

1.	 Medical	 certification:	 Wearables,	 in	 general,	 are	 em-
ployed	 in	 many	 different	 fields	 beyond	 medicine,	 so	
for	use	in	studies	as	described	here,	the	certification	as	
a	 medical	 device	 can	 be	 an	 important	 factor.	 IMEC’s 
sensor bracelet	 for	 example,	 as	 a	 prototype	 device,	 is	
not	certified	as	a	medical	device,	whereas	the	Empatica 
E4  has	 a	 European	 CE	 class	 IIa	 certification	 as	 a	
medical	 device.

2.	 Modalities:	Different	devices	record	different	biosignals	
at	different	sample	rates,	so	an	informed	decision	needs	
to	be	made	about	exactly	what	is	needed	to	facilitate	the	
outcomes	 of	 the	 given	 study.	 Multimodal	 devices	 are	
generally	regarded	as	more	effective	and	versatile,37–	39	
whereas	a	device	recording	only	one	modality	may	be	
sufficient	 for	 a	 very	 specific	 task.	 Epitel's Epilog,	 for	
example,	 provides	 only	 a	 single-	channel	 EEG	 signal,	
whereas	the	Empatica E4	records	three-	axis	accelerom-
etry	(ACC)	at	a	sampling	rate	of	32 Hz,	EDA	at	4 Hz,	
skin	 temperature	 at	 4  Hz,	 and	 PPG	 at	 64  Hz,	 which	
is	 processed	 on	 the	 device	 to	 a	 filtered	 blood	 volume	
pulse	signal.

3.	 Data	mode:	Generally,	there	are	two	modes	in	data	col-
lection,	online	or	offline,	as	described	further	in	Section	
3.4.2.	 In	most	 cases	a	given	device	 supports	only	one	
mode	 for	 recording	 data,	 so	 either	 the	 study	 protocol	
needs	 to	 be	 adjusted	 to	 support	 the	 device,	 or	 an	 ap-
propriate	device	needs	to	be	chosen	for	an	already	es-
tablished	study	protocol.	The	online	streaming	mode	is	
a	requirement	for	systems	that	should	include	any	kind	
of	 alarm	 or	 intervention.	 Byteflies’ Dots,	 for	 example,	
support	only	offline	recordings,	whereas	the	Empatica 
E4 has	the	option	to	employ	both	methods.

4.	 Battery	 life:	With	current	battery	technology,	 the	bat-
tery	 life	 of	 smaller	 devices	 or	 those	 that	 employ	 on-
line	raw	data	streaming	is	usually	measured	in	hours,	
whereas	 somewhat	 larger	 devices	 with	 offline,	 on-	
device	 data	 storage	 can	 sometimes	 be	 active	 for	 days	
without	 the	 need	 to	 recharge.	 IMEC’s sensor bracelet,	
for	 example,	 has	 a	 typical	 battery	 life	 of	 seven	 days,	
while	 the	 Empatica E4  has	 a	 manufacturer-	specified	
battery	life	of	24–	48 h,	although	in	our	studies	we	often	
observed	empty	batteries	after	half	that	time.	This	was	
in	part	due	to	the	shorter	battery	lifespan	when	the	E4	
is	used	in	streaming	mode.
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5.	 Device	 placement:	 Wearables	 are	 usually	 placed	 at	 a	
specific	part	of	 the	body,	which	can	be	 influenced	by	
the	 study	 protocol	 and	 should	 be	 considered	 when	
choosing	a	device.	In	turn,	the	placement	of	the	device	
may	affect	both	the	sensitivity	and	specificity	of	a	pro-
spective	seizure	detector.	The	Empatica E4,	for	exam-
ple,	is	worn	around	the	wrist,	while	the	Byteflies’ Dots	
can	 be	 attached	 to	 any	 part	 of	 the	 body	 by	 use	 of	 an	
adhesive	patch.

Furthermore,	 research-	grade	 devices,	 such	 as	 the	
Empatica E4,	often	have	several	advantages	and	disadvan-
tages	over	other	devices	that	are	marketed	directly	to	con-
sumer	end-	users.	Access	to	raw	data	is	a	necessity	for	many	
research	studies,	but	something	that	consumer-	grade	de-
vices	and	services	rarely	provide.	Furthermore,	companies	
offering	research-	grade	devices	are	sometimes	open	to	col-
laboration,	 for	 example,	 by	 supporting	 researchers	 with	
specialized	knowledge	of	device	capabilities.

On	 the	 other	 hand,	 research	 devices	 are	 often	 more	
expensive	 than	 their	 consumer	 counterparts	 and	 can	 be	
more	cumbersome	and	uncomfortable	to	wear,	since	the	
device's	aesthetic	design	is	not	a	priority	for	the	manufac-
turer.	 In	our	 studies,	however,	we	consistently	got	more	
positive	feedback	from	patients	on	the	wearability	of	the	
Empatica E4,	as	compared	to	the	Biovotion Everion,	which	
is	a	device	on	the	market	for	regular	consumers	to	buy.34

3.6	 |	 Reporting results

3.6.1	 |	 Usability	challenges	and	users’	
perspectives

Wearable	 devices	 are	 progressively	 becoming	 an	 avail-
able	and	innovative	tool	for	continuous	seizure	monitor-
ing.	 People	 living	 with	 epilepsy	 have	 expressed	 interest	
in	using	new	technologies	in	their	daily	life40	and	several	
unmet	needs	might	be	addressed	by	adopting	digital	solu-
tions	 into	health	care	 services.40,41	The	 research	 focused	
on	hypothetical	scenarios	has	highlighted	that	motivation	
to	use	wearables	 is	not	driven	only	by	 the	accuracy	and	
reliability	of	the	device	performance.	A	design	incorporat-
ing	 comfort	 and	 ease	 of	 use	 is	 also	 essential	 for	 accept-
ance	and	long-	term	adoption.34	Obtaining	feedback	from	
patients	 after	 direct	 experience	 wearing	 devices	 is	 the	
only	way	to	 fully	understand	the	practical	and	technical	
issues	faced.42	However,	feedback	on	device	comfort	and	
usability	 has	 been	 collected	 only	 sporadically	 in	 previ-
ous	studies,	and	information	reflecting	the	direct	experi-
ence	of	study	participants	is	missing.	The	limited	number	
of	 investigations	 exploring	 users’	 direct	 experience	 re-
ported	 improvement	 of	 quality	 of	 life	 for	 both	 patients	

and	 caregivers,42	 a	 benefit	 to	 autonomy	 and	 increasing	
independence	in	activities,23,42	as	well	as	a	generally	good	
evaluation	 of	 technology	 usability.7,23	 Barriers	 to	 use,	 as	
reported,	include	discomfort	in	wearing	the	device	during	
sleep,	technical	difficulties,	and	the	burden	of	adding	an-
other	aspect	to	routine	epilepsy	care.42	In	addition	to	the	
key	requirements	of	a	reliable	and	accurate	performance,	
a	successful	integration	of	digital	solutions	into	a	patient	
pathway	requires	acceptance	of	the	technology.	The	latter	
is	required	for	long-	term	engagement,	which	is	essential	
to	a	good	detection	performance,	and	to	optimize	the	ben-
efit	to	the	patient.	To	identify	and	avoid	potential	barriers	
to	a	long-	term	engagement	with	the	technology,	patients’	
views	and	needs	need	 to	 inform	the	development	of	 the	
technology	and	study	design,	and	users’	opinions	on	usa-
bility	and	acceptability	should	be	collected	systematically.	
Methods	to	obtain	feedback	from	study	participants	range	
from	a	focus	group	(useful	during	the	first	stages	to	guide	
research	questions	and	research	development),	interviews	
(at	 set	 time	 points	 during	 the	 study,	 for	 example,	 study	
end	 or	 in	 case	 of	 participants	 withdrawal),	 collection	 of	
participants’	observations	 (any	 time	 in	 the	course	of	 the	
study),	 and	 questionnaires	 (allowing	 direct	 comparisons	
between	subjects	and	the	identification	of	subject-	related	
factors	influencing	their	experience	in	the	study).	At	KCL	
and	UKF,	participants’	experience	and	the	perceived	ease	
of	use	and	comfort	of	the	technology	were	assessed	at	the	
end	 of	 the	 study	 using	 a	 self-	administered	 Technology	
Acceptance	Model	Fast	Form	(TAM-	FF).43	Moreover,	 in	
a	group	of	 study	participants,	 the	experience	of	wearing	
multimodal	 sensor	 devices	 was	 also	 assessed	 via	 semi-	
structured	interviews	covering	questions	on	their	experi-
ences	 and	 concerns	 using	 the	 wearables,	 their	 thoughts	
about	ambulatory	use	of	wearables,	and	their	reasons	for	
stopping	to	wear	the	device	if	applicable.44

3.6.2	 |	 Data	quality	and	completeness

The	value	of	collected	data	can	be	assessed	by	data	com-
pleteness	and	data	quality.	Data	quality	measures	evalu-
ate	properties	 like	 the	noisiness,	accuracy,	and	potential	
information	gain	of	the	data,	whereas	data	completeness	
gauges	data	loss	during	recording.	In	the	context	of	explor-
atory	research,	both	data	quality	and	completeness	are	of	
utmost	importance,	and	several	steps	were	taken	to	reflect	
that	need.	Collecting	raw,	unprocessed	data	from	weara-
ble	devices,	forgoing	any	internal	processing,	can	facilitate	
the	assessment	of	data	quality.	This	will	give	a	complete	
and	 clear	 picture	 of	 the	 suitability	 of	 the	 device	 for	 the	
task	at	hand.	Furthermore,	sharing	data	across	different	
research	 sites	 and	 groups	 can	 enhance	 the	 value	 of	 the	
data	set,	advance	the	understanding	of	data	complexities,	
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and	 facilitate	 scientific	 exploration	 of	 the	 data.	 Another	
important	tool	to	effectively	assess	data	value	is	the	use	of	
data	dashboards.	These	dashboards	usually	take	the	form	
of	a	website	that	aggregates	data	completeness	and	quality	
measures	as	new	data	come	in	and	displays	it	with	intui-
tive	charts	and	tables.	Especially	in	the	context	of	live	data	
streaming,	 they	 can	 monitor	 system	 function	 and	 user	
adherence.

Measures of data completeness
Gaps	in	the	data	can	be	caused	by	several	issues	related	to	
data	collection.	A	common	cause	of	data	loss	is	the	limited	
battery	life	of	the	device.	Charging	the	battery	takes	time	
(typically	 hours),	 and	 even	 if	 a	 second	 device	 is	 used	 to	
replace	the	one	with	an	empty	battery,	this	creates	a	small	
but	noticeable	gap	in	the	recording.

Another	 common	 source	 of	 data	 loss	 is	 connection	
problems	with	wireless	data	streaming.	With	a	Bluetooth	
connection,	 the	 maximum	 range	 between	 the	 wear-
able	 and	 its	 companion	 device	 is	 usually	 10  m	 within	
the	 same	 room.	 Whenever	 a	 wearable	 device	 is	 discon-
nected,	 it	 needs	 to	 automatically	 reconnect	 and	 transfer	
any	buffered	data,	otherwise,	any	data	collected	while	the	
device	 is	disconnected	will	be	 lost.	The	Empatica E4	de-
vice	 used	 in	 our	 studies	 does	 not	 implement	 such	 func-
tionality	in	Bluetooth	streaming	mode.	When	this	device	
loses	 its	 Bluetooth	 connection	 it	 powers	 off	 completely	
and	must	be	manually	restarted	for	the	connection	to	be	
re-	established.	This	led	to	significant	data	loss	in	the	two	
studies	that	used	the	device	in	streaming	mode.

Finally,	data	gaps	can	be	 introduced	by	human	inter-
action.	Taking	the	device	off	for	a	short	time,	for	example,	

during	a	shower	or	neuroimaging,	causes	several	minutes	
of	data	loss.	Incorrect	operation	of	the	device	can	also	lead	
to	lost	data.	Some	of	these	causes	for	data	incompleteness	
can	 be	 avoided,	 for	 example,	 by	 the	 careful	 preparation	
of	a	 study	protocol	detailing	proper	usage	of	 the	device.	
Others	are	 inevitable,	and	some	gaps	 in	 the	data	 set	are	
unavoidable.

In	the	studies	presented	here,	the	data	loss	varied	with	
the	different	sites	and	their	respective	data-	collection	pro-
tocols.	The	data	coverage	presented	here	was	determined	
in	two	different	categories:	the	overall	data	coverage	and	
the	 number	 of	 missed	 seizures	 during	 each	 patient's	 re-
cording.	 Data	 coverage	 is	 computed	 by	 counting	 the	
number	of	samples	per	modality	collected	from	the	wear-
able	 device,	 per	 patient,	 and	 dividing	 by	 the	 number	 of	
expected	samples	given	the	recording	time.	This	method	
potentially	 undercounts	 the	 data	 loss	 because	 it	 ignores	
any	loss	when	the	device	is	not	worn.	The	same	method-
ology	is	applied	to	counting	missed	seizures,	that	is,	only	
seizures	that	happened	within	the	start	and	end	of	the	re-
cording	are	counted	toward	the	expected	amount.

Among	patients	who	wore	the	Empatica E4	device	in	
the	UKF	and	KCL	sites,	 the	data	coverage	was	only	52%	
and	40%,	respectively,	with	 the	 loss	of	data	attributed	 in	
large	part	 to	 the	 live	data	 streaming	 functionality,	but	 it	
was	 also	 affected	 by	 device	 recharging	 and	 the	 patients	
bathing	 during	 their	 in-	hospital	 stay.	 Conversely,	 in	 the	
two	other	sites	that	used	the	offline	recording	mode	of	the	
device,	the	data	loss	was	<10%.

Figure	 3  highlights	 data	 completeness	 considerations	
for	a	patient	in	the	UKF	cohort.	Two	gaps	in	the	data	as	
well	as	missing	seizures	can	be	seen	in	this	example.	The	

F I G U R E  3  Spectral	entropy	of	the	blood	volume	pulse	signal	of	the	E4	device	during	the	recording	of	a	single	patient	recruited	at	the	
UKF	site.	The	signal	gives	an	idea	of	the	quality	of	the	BVP	data	for	heart	rate	calculation;	blue	means	the	signal	is	of	higher	quality,	that	
is,	contains	fewer	artifacts.	The	gaps	show	times	when	there	was	a	problem	with	the	recording	and	no	BVP	signal	was	present.	The	green	
circles	mark	seizures	during	which	wearable	data	were	recorded;	the	red	squares	mark	seizures	where	no	data	were	available
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recording	for	this	patient	is	missing	approximately	30%	of	
its	expected	data,	and	17	of	33 seizures	were	missed	as	a	
result.

Measures of data quality
Data	 quality	 is	 an	 important	 property	 for	 any	 scientific	
data	set.	The	quality	of	data	collected	from	wearable	de-
vices	can	be	degraded	by	several	issues	related	to	the	sen-
sor	 hardware	 and	 application.	 Any	 physical	 sensor	 has	
mechanical	 or	 electrical	 imperfections	 that	 can	 produce	
sensor	noise.	Imperfections	can	also	be	caused	by	external	
stimuli	introducing	an	unwanted	variation	of	the	data,	a	
so-	called	 artifact.	 These	 artifacts	 can	 sometimes	 be	 cor-
rected	 after	 data	 collection,	 but	 other	 times	 completely	
disrupt	the	underlying	data.	A	relevant	example	is	motion	
artifacts	in	the	PPG	data	collected	from	the	Empatica E4	
device.	A	PPG	sensor	works	by	measuring	the	light	reflec-
tion	of	the	skin,	which	changes	with	blood	volume,	that	is,	
with	each	pulse.	However,	light	from	an	external	source,	
for	 example,	 sunlight,	 can	 compromise	 the	 reflective	
value	measured	by	the	photodiode	of	the	sensor.	If	the	de-
vice	was	not	tightly	fastened	around	the	wrist,	the	actual	
blood	volume	pulse	data	for	that	segment	is	not	recover-
able.	This	can	be	a	significant	problem	for	data	collection	
during	 physical	 activity	 or	 during	 convulsive	 seizures.	
Another	source	of	poor	data	quality	is	inaccuracies	intro-
duced	by	the	sensor,	for	example,	caused	by	faulty	or	de-
teriorated	hardware.

To	 measure	 data	 quality,	 numerous	 methods	 can	 be	
found	 in	existing	 literature,	and	are	usually	specific	 to	a	
certain	sensor	modality.4,15,35,45,46	Discussing	the	pros	and	
cons	of	specific	data	quality	indices	is	out	of	the	scope	of	
this	report;	instead,	we	give	an	example	of	a	data	quality	
measure	 applied	 to	 the	 wearable	 device	 recordings	 of	 a	
single	patient	from	the	Freiburg	cohort.	Figure	3 shows	a	
plot	of	the	spectral	entropy	calculated	from	the	Empatica 
E4’s	BVP	signal	collected	from	a	single	patient	at	the	UKF	
site.	 Spectral	 entropy	 gives	 an	 idea	 of	 the	 quality	 of	 the	
BVP	 data	 for	 heart	 rate	 calculation.	 Lower	 values	 mean	
the	signal	 is	of	higher	quality,	 that	 is,	contains	fewer	ar-
tifacts.	 The	 signal	 quality	 is	 generally	 higher	 overnight	
when	patients	rest.	During	the	daytime,	patients	 tend	to	
be	more	active,	and	the	signal	 is	prone	to	movement	ar-
tifacts,	represented	by	higher	values	in	spectral	entropy.

3.6.3	 |	 Seizure	detection	evaluation

The	 common	 goal	 of	 most	 epilepsy-	related	 studies	 with	
wearable	 devices	 is	 to	 achieve	 robust	 seizure	 detection	
and	prediction.	Reporting	results	of	evaluations	of	these	
methodologies	 is	 an	 important	 part	 of	 any	 study	 and	
should	 follow	 a	 defined	 protocol	 and	 refer	 to	 specific	

standards.4	Sensitivity	and	specificity	are	the	two	corner-
stones	of	 reporting	 results	of	binary	classification,	espe-
cially	 in	 a	 medical	 context.	 Sensitivity,	 also	 often	 called	
recall	 in	a	machine	 learning	context,	measures	 the	pro-
portion	of	true	positives	(TPs)	to	all	expected	positive	in-
stances.	 It	must	always	be	reported	as	a	study	outcome,	
because	for	seizure	detection	it	directly	describes	the	re-
spective	methodology's	ability	to	robustly	detect	seizures	
from	 the	 wearable	 data.	 On	 the	 other	 hand,	 specificity	
measures	the	proportion	of	true	negatives	to	all	expected	
negative	 instances.	 To	 report	 measures	 like	 specificity	
based	 on	 negative	 instances	 in	 the	 context	 of	 wearable	
seizure	detection,	the	data	stream	must	be	segmented	into	
equal-	sized	 portions	 of	 either	 the	 seizure	 or	 nonseizure	
class.	Due	to	the	large	data	imbalance	of	these	two	classes	
that	 is	 usually	 observed	 in	 epilepsy	 studies,	 with	 some-
times	 multiple	 days	 of	 nonseizure	 portions	 in	 the	 data	
interrupted	 only	 by	 often	 minute-	long	 seizure	 portions,	
the	 specificity	 measure	 is	 artificially	 boosted	 to	 consist-
ently	report	values	of	>98%,	even	if	there	are	many	false	
positives	(FPs).	Because	of	this	lack	of	informative	value,	
specificity	is	often	omitted	when	reporting	on	the	perfor-
mance	 of	 a	 seizure	 detection	 system.	 Instead,	 the	 false	
alarm	rate	 (FAR)	or	positive	predictive	value	 (PPV)	can	
be	reported	as	inverse	measures	of	a	seizure	detection	sys-
tem's	ability	to	correctly	identify	nonseizure	periods.	The	
FAR	reports	the	number	of	false	detections	over	a	certain	
timespan,	 often	 chosen	 as	 a	 day	 (24  h).	 For	 example,	 a	
FAR	of	0.5/24 h	would	mean	that	the	system,	on	average,	
produces	one	false	alarm	every	2	days.	FAR	can	also	be	
separately	 reported	 for	 daytime	 and	 night-	time	 periods,	
as	false	nocturnal	alarms	may	be	much	more	disrupting	
and	less	acceptable	to	patients	and	caregivers.	The	PPV,	
also	often	called	precision	in	a	machine	learning	context,	
is	 the	proportion	of	TPs	to	all	detected	positives.	It	 thus	
gives	a	measure	of	the	number	of	FPs	to	TPs,	for	example,	
a	PPV	of	50%	would	describe	a	result	of	the	same	number	
of	FPs	as	 there	are	TPs.	At	 least	one	of	 these	measures,	
FAR	 and	 PPV,	 must	 always	 be	 reported	 as	 a	 study	 out-
come,	to	properly	convey	the	number	of	FPs	a	system	is	
likely	 to	 produce.	 One	 possible	 way	 to	 counteract	 false	
alarms	could	be	to	ask	patients	to	perform	specific	peri-
odic	 movements	 like	 brushing	 their	 teeth.	 These	 move-
ments,	 recorded	by	 the	wearable,	could	 then	be	used	 to	
adjust	a	model	to	be	more	robust	against	nonepileptic	ac-
tivities	of	daily	living.

To	visualize	the	results	of	an	evaluation	of	a	seizure	de-
tection	model,	or	to	compare	the	performance	of	multiple	
models,	the	receiver-	operating	characteristic	(ROC)	curve	
is	a	widely	used	and	accepted	tool.	 It	plots	 the	probabil-
ity	of	detection	against	the	probability	of	false	alarm	(FP	
and	TP	rates)	of	a	binary	classifier	at	varied	discrimination	
thresholds.	 Thereby,	 it	 visualizes	 the	 trade-	off	 a	 model	
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makes	between	detecting	true	events	and	producing	false	
alarms.

For	all	of	these	measures,	there	is	generally	a	trade-	off	
between	reporting	them	on	a	per-	patient	basis	and	taking	
the	 mean	 across	 patients	 or	 reporting	 the	 overall	 value	
over	 the	 whole	 applicable	 data	 set.	 Optimally,	 both	 ag-
gregations	should	be	reported	in	the	outcomes	of	a	study,	
as	 they	 often	 both	 provide	 slightly	 different	 but	 equally	
worthwhile	conclusions.

3.7	 |	 Data sharing

Free	and	open	platforms	for	sharing	data	and	facilitating	
collaboration	 are	 important	 research	 resources.	 Open	
databases	(from	which	data	can	be	explored	and	down-
loaded),	and	novel	algorithms	and	source	code	(that	can	
be	shared	between	collaborators)	are	important	tools	in	
neuroscience	projects.	Different	examples	can	be	cited,	
including	 openneuro.org,	 epilepsyecosystem.org,	 ieeg.
org,	 and	 physionet.org.	 Research	 teams	 should	 be	 en-
couraged	to	share	raw	data	and	data	processing	scripts	
to	 allow	 replication	 and	 validation	 of	 results.	 Online	
competitions	 have	 also	 been	 successful	 at	 fostering	
the	 development	 of	 high-	performance	 seizure	 detec-
tion	 and	 forecasting	 algorithms	 based	 on	 intracranial	
EEG,47–	49	and	similar	 results	with	wearable	data	could	
be	 expected.	 Moreover,	 sharing	 data,	 methodologies,	
and	results	with	partner	organizations,	like	other	clini-
cal	centers	or	even	device	manufacturers,	can	be	greatly	
beneficial	 to	the	advancement	not	only	of	the	research	
field	 of	 wearable	 seizure	 detection	 in	 general	 but	 also	
the	usability	and	development	of	new	devices	and	tech-
nologies.	This	includes	the	sharing	of	raw	data	collected	
during	studies,	as	well	as	any	scripts	and	software	used	
in	the	processing	and	scientific	analysis	of	the	data,	es-
pecially	concerning	seizure	detection.	To	facilitate	data	
sharing,	a	standardized	data	format	and	schema	should	
be	 adopted	 to	 prevent	 the	 use	 of	 different	 and	 poten-
tially	not	compatible	 formats.	This	would	promote	 the	
replication	 and	 validation	 of	 results	 in	 a	 collaborative	
manner	 and	 encourage	 the	 aggregation	 of	 data	 across	
research	 groups.	 In	 the	 long	 run,	 giving	 valuable	 and	
constructive	 feedback	 on	 device	 performance	 and	 us-
ability	to	manufacturers,	and	sharing	these	experiences	
with	other	organizations,	could	be	a	huge	boon	to	pos-
sibilities	in	the	treatment	of	epilepsy,	and	patients	with	
epilepsy	 by	 extension.	 To	 accommodate	 and	 facilitate	
the	 aforementioned	 sharing	 of	 data	 and	 experiences,	
however,	 a	 need	 for	 open	 and	 structured	 systems	 and	
forums	 exists.	 Here,	 clinicians,	 researchers,	 develop-
ers,	manufacturers,	as	well	as	patients	could	collaborate	
and	contribute	to	the	advancement	of	 the	treatment	of	

epilepsy	with	the	use	of	wearable	devices.	And	although	
strict	data	protection	rules	like	the	EU’s	GDPR	may	hin-
der	 collaboration,	 the	 authors	 express	 their	 hope	 that	
these	restrictions	will	not	jeopardize	the	major	benefits	
of	 sharing	 pseudonymized	 or	 anonymized	 data	 for	 re-
search	progress	and	patient	care.

4 	 | 	 CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE 
STUDIES

This	 manuscript	 provides	 a	 methodological	 framework	
that	could	guide	future	research	on	seizure	detection	de-
vices,	as	well	as	practical	information	from	the	experience	
of	our	groups.	We	identified	seven	essential	components	
of	the	experimental	design	for	which	we	would	like	to	pro-
vide	specific	recommendations	(Table	1).

In	 2021,	 a	 joint	 working	 group	 between	 the	
International	League	Against	Epilepsy	and	International	
Federation	of	Clinical	Neurophysiology	(ILAE-	IFCN)	has	
endorsed	a	clinical	practices	guideline,	most	importantly	
listing	 several	 specific	 areas,	 concerning	 automated	 sei-
zure	detection	using	wearable	devices,	that	are	still	in	need	
of	further	research	and	development.50	This	article	can	be	
seen	 as	 a	 first	 step	 toward	 the	 practical	 implementation	
of	studies	aimed	at	addressing	this	need.	Specifically	for	
phase	0–	3 studies,4	 the	recommendations	compiled	here	
can	serve	as	a	basis	to	develop	detailed	and	robust	study	
protocols.

We	believe	that	sharing	the	experience	of	multiple	in-
ternational	 centers	 could	 help	 clarify	 the	 often	 intricate	
process	underlying	research	in	this	field.	The	collection	of	
more	homogeneous	data	has	 the	potential	 to	enable	 the	
development	of	collaborations	across	research	groups	and	
to	boost	clinical	advancement	of	these	devices.
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T A B L E  1 	 Recommendations	for	studies	using	wearable	devices	
for	seizure	detection

1.	Study	aims

•	 Main	study	aims	should	be	identified	early	as	they	influence	
most	aspects	of	study	design

•	 Seizure	detection	purposes	include	closed-	loop	treatment	of	
acute	seizures	and/or	status	epilepticus,	assessment	of	seizure	
burden	and	severity	(toward	sudden	unexpected	death	in	
epilepsy	[SUDEP]	and	seizure	recurrence	risk	stratification),	
and	clinical	trial	outcome	evaluation,	among	others

•	 The	type	of	seizures	to	be	investigated	should	be	defined	from	
the	start,	as	this	informs	the	required	biosignals	and	therefore	
limits	the	choice	of	wearable	devices	to	be	used

2.	Policies	and	Agreements

•	 Early	involvement	of	the	key	figures	is	recommended	
to	guarantee	study	feasibility.	This	includes	device	
manufacturers,	hospital	authorities,	IT	departments,	and	
study	participants	through	informed	consent

•	 Participants’	approval	for	future	sharing	of	the	anonymized	
data	set	should	be	obtained

3.	Study	population

•	 Clinical	and	demographic	information	needs	to	be	collected	
and	reported	to	clearly	define	the	population	addressed

•	 General	seizure	semiology	should	be	specified,	for	example,	
motor	vs	non-	motor	seizures

•	 Seizure	annotation	protocols	and	accurate	description	of	the	
ictal	phenomenology	are	of	paramount	importance	to	allow	
accurate	data	analysis	and	comparisons,	especially	when	
video	cannot	be	shared	for	privacy	reasons

•	 Mutual	agreements	between	centers	on	standardized	
definitions	and	methodology	should	be	made	in	multi-	center	
studies

4.	Data	collection	and	technical	infrastructure

•	 A	clear	description	of	the	data	collection	procedures	is	
paramount	to	understand	the	results	obtained,	and	to	
uncover	and	potentially	mitigate	technical	challenges

•	 Considerable	thought	must	be	put	into	the	device	integration	
and	synchronization	effort.	Wearable	devices	have	an	
inherent	time	drift	and	need	to	be	regularly	synchronized	
with	the	video-	EEG	system.	A	Bluetooth	connection	for	
data	collection	can	have	some	benefits	such	as	live	data	
availability,	but	they	should	be	weighed	against	the	greater	
potential	for	data	loss	and	reduced	battery	life

•	 Having	a	battery	recharging	plan	ahead	of	the	study	may	
prevent	the	loss	of	data	given	wearable	devices’	short	battery	
life

•	 To	accurately	collect	seizure	details	under	the	supervision	of	
an	epileptologist	is	fundamental	to	subsequently	design	high-	
quality	studies

•	 Some	type	of	dashboard	or	other	means	of	viewing	collected	
data	should	be	used	to	keep	an	overview	of	the	data	set	
and	patient	adherence.	Furthermore,	joint	visualization	
of	wearable	and	video-	EEG	data	can	be	beneficial	for	
understanding	the	context	of	information	gained	from	the	
wearable	device

5.	Devices

(Continues)

•	 Choosing	the	preferred	device	for	a	study	can	be	difficult;	If	it	
is	possible	to	practically	test	multiple	devices	before	the	study	
starts,	this	will	remove	a	considerable	amount	of	uncertainty	
during	the	actual	data	collection

•	 Both	ease	of	technical	integration	as	well	as	data	quality	
and	quantity	measures	should	be	considered	and	tested	
thoroughly	beforehand

•	 Depending	on	study	aims	and	research	goals,	a	choice	
between	research	devices	or	even	prototypes,	and	consumer	
devices	must	be	made.	Research	devices	usually	provide	
easier	raw	data	access	while	consumer	devices	usually	offer	
better	usability	and	acceptability	among	patients

•	 Study	aims	and	research	goals	should	influence	the	choice	
of	a	device;	for	research	exclusively	on	convulsive	seizures	a	
mono-	modal	device	may	be	sufficient,	but	research	on	other	
seizure	types	may	require	multi-	modal	data

6.	Reporting	results

•	 Users’	opinions	on	usability	and	acceptability	should	be	
collected	and	reported

•	 Data	quality	and	quantity	should	be	evaluated	and	reported	
systematically

•	 The	treatment	of	artifacts	and	poor-	quality	data	should	follow	
an	objective	protocol,	which	should	be	reported	in	the	study

7.	Data	sharing

•	 Raw	data	and	data	processing	scripts	should	be	shared	to	
allow	replication,	validation,	and	aggregation	of	data	across	
research	groups

T A B L E  1 	 (Continued)
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