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Abstract—Today’s demands regarding workpiece quality in
cutting machine tool processing require automated monitoring
of both machine condition and the cutting process. Currently,
best-performing monitoring approaches rely on high-frequency
acoustic emission (AE) sensor data and definition of advanced
features, which involve complex computations. This approach is
challenging for machine monitoring via embedded sensor systems
with constrained computational power and energy budget.

To cope with constrained energy, we rely on data recording
with microelectromechanical system (MEMS) vibration sensors,
which rely on lower-frequency sampling. To clarify whether these
lower-frequency signals bear information for typical machine
monitoring prediction tasks, we evaluate data for the most generic
machine monitoring task of tool condition monitoring (TCM).

To cope with computational complexity of advanced features,
we introduce two intelligent preprocessing algorithms. First, we
split non-stationary signals of recurrent structure into similar
segments. Then, we identify most discriminative spectral differ-
ences in the segmented signals that allow for best separation of
classes for the given TCM task. Subsequent feature extraction
only in most relevant signal segments and spectral regions enables
high expressiveness even for simple features.

Extensive evaluation of the outlined approach on multiple data
sets of different combinations of cutting machine tools, tool types
and workpieces confirms its sensibility. Intelligent preprocessing
enables reliable identification of stationary segments and most
discriminative frequency bands. With subsequent extraction of
simple but tailor-made features in these spectral-temporal regions
of interest (Rols), TCM typically framed as multi feature classi-
fication problem can be converted to a single feature threshold
comparison problem with an average F1 score of 97.89%.

Index Terms—Tool condition monitoring, non-stationary sig-
nals, segmentation, mixture model, Internet of things (IoT)

I. INTRODUCTION

To maximize efficiency in modern workshops’ processing
sequences, the processing time has to be reduced to a mini-
mum under the constraint of optimal workpiece quality. The
most important influencing factor for workpiece quality is
condition of the cutting tool, which gradually becomes dull
by processing of workpieces and has to be sharpened again.

Today, workpiece quality is typically monitored via manual
inspection by the machine’s operator. This is suboptimal, as
manual inspection takes time in which workpieces could be
processed and can be quite subjective. Automatic monitoring
of process quality leads to a more stable quality of workpieces
while freeing the operator from manual quality inspections.
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Machine monitoring involves measuring physical properties
of the processing sequence. Industrially established monitoring
systems typically rely on high-frequency AE recordings (up
to several MHz) [1] and evaluation of the AE root mean
square (RMS) signal [2]. As the ultimate goal of our research
is to develop an integrated multi-sensor system with built-in
algorithms, we aim to monitor tool condition based on signals
recorded with MEMS vibration sensors, which have a smaller
sampling frequency and are thus expected to have lower energy
demands.

Furthermore, we want to study the benefit of intelligent
preprocessing techniques to address computational constraints
of embedded sensor systems and complexity of given signals.
Signals show recurrent structure due to reoccurring sequences
of processing steps for all workpieces. Furthermore, signals
behave non-stationary across these successive processing steps
but stationary in each single processing step. As segments
reoccur for all signals, identifying recurrent segments allows
to extract features (i.e., computable properties of underlying
signals) in parts of signals where they are most similar.

Currently, most monitoring applications for non-stationary
machine tool signals rely on feature extraction for complete
signals [3] and often involve costly computations e.g. of dis-
crete wavelet transform (DWT) [4] or artificial neural networks
(ANNs) [5] which are challenging for sensor systems with
hard computational constraints. This computational burden
might be reduced by intelligent preprocessing, i.e. finding
relevant signal segments and most discriminative frequency
bands automatically in a one-time bedding-in process of the
cutting machine tool. Afterwards, results of detecting most dis-
criminative Rols both in time domain (TD) via segmentation
and frequency domain (FD) via frequency band selection can
be used to extract simple but meaningful, tailor-made features
only in these Rols. In this way, intelligent preprocessing in-
volves a one-time additional computational burden but reduces
the running computational cost and thus energy consumption
introduced by feature extraction.

The benefit of intelligent preprocessing shall be evaluated
for the TCM task and verified with data sets for common
parameter variations. As the majority of data were recorded at
centerless external cylindrical (CEC) grinding machines, we
discuss the grinding process in the following section.
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Fig. 1. Process of external cylindrical grinding [6].

II. CENTERLESS EXTERNAL CYLINDRICAL GRINDING

The arrangement of CEC grinding machine parts is depicted
in Fig. 1. The workpiece is situated between grinding wheel
and regulating wheel on the workpiece support. The grinding
wheel approaches the workpiece and starts the machining
of the workpiece. Workpiece support and regulating wheel
decelerate the workpiece. When approaching the workpiece,
the grinding wheel feed (velocity of moving grinding wheel
to workpiece) is reduced when assuming to be close to contact.
This phase of reduced feed (caused by uncertainty about
workpiece contact) is referred to as air grinding.

Due to processing of the workpieces, the grinding wheel’s
surface gradually becomes dull. To preserve high quality of the
processed workpieces, the grinding wheel has to be sharpened
(dressing) by removing the topmost grinding wheel layer by a
dressing tool. Both dressing after a fixed number of processing
cycles and dressing subject to visual inspections of workpieces
are suboptimal regarding consumption of grinding wheels
and subjectivity of the visual inspection, respectively. Thus,
automatically finding the optimal point in time when dressing
is needed is beneficial regarding processing efficiency.

III. DATA

This study’s data were recorded at different cutting machine
tools using MEMS vibration sensors. The vibration sensors
have a single degree of freedom and sample at a rate of
62.5 kHz. Sensors were mounted at different places of interest
and connected via a gateway system. For TCM, the workpiece
support proved to be a suitable measurement place.

Workpieces of different geometry and dimensions were
processed with grinding wheels of different profile to verify
generalizability of the suggested algorithms. Details are listed
in Table I. While data sets DS1 to DS4 cover expected data
variance by change of grinding wheels and workpieces, DS5
contains data of several month to incorporate unexpected
variance not considered by parameter variations of former data.

All data records consist of an air grinding phase and a
grinding phase. For some data sets, the grinding phase can be
separated into different phases resembling the processing steps
applied to the workpiece. Two DS2 sensor signals for a sharp
and a dull grinding wheel and their corresponding short-time
Fourier transform (STFT) spectrograms are shown in Fig. 2.
Differences in sharpness can be observed best in amplitude of

TABLE I
DATA SETS AND PARAMETER VARIATIONS

Data set | Records Machine type Tool type | Workpiece
DS1 320 CEC grinding 1 1 1
DS2 97 CEC grinding 1 2 2,3
DS3 1921 CEC grinding 2 3 4
DS4 280 CEC grinding 2 4 5
DS5 26770 CEC grinding 3 5,6,7 6,7
DS6 84 Turning 8 8
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Fig. 2. Exemplary DS2 vibration sensor signals and corresponding STFT
spectrograms for a sharp (left) and a dull (right) grinding wheel.

the TD signal’s first contact phase and in FD by concentration
of energy in different frequency bands. Thus, identifying both
process phase segments and frequency bands with largest
discriminative differences in spectral energy between signals
for sharp and dull suggest to be important preprocessing steps
to extract meaningful, tailor-made features.

IV. RELATED WORK
A. Time Series Segmentation

Many algorithms for time series segmentation rely on
piecewise linear approximation (PLA) [7]. These algorithms
aim to reduce complexity of signals while preserving rel-
evant information by representing segments of successive
data points by linear approximations. However, for the given
signals with deterministic segment structure (segments re-
flect process phases), PLA-based algorithms lead to overly
complex segmentation results (more segments than process
phases assigned). Furthermore, PLA-based algorithms do not
lend naturally to model selection, i.e. selection of the model
explaining the given data best without involvement of the ma-
chine operator. For the given signals with recurrent segments
reflecting process phases, this model selection step is crucial.

Hidden Markov models (HMMs) are widely used models
for time series classification and come with inherent seg-
mentation of the signals [8]. HMMs are suited for a wide
range of temporally structured prediction tasks by allowing
to incorporate prior knowledge into the learning process of
state transition probabilities a;;. Learning a left-to-right (L2R)
structure resembles the given signals by imposing constraints
on state transitions to follow a strict temporal order. By
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Fig. 3. 4-state-example of the proposed L2R postprocessing architecture.
Here, states model the process phases we aim to detect. a;; is the probability
to transition from state s; to state s;.

allowing a transition a4 from the last state to the first we
are able to mimic the recurrent structure of our data (Fig. 3).

Thus, HMMs lent themselves naturally for the given time
series segmentation. While costly one-time training can be
implemented on a connected gateway system with higher
computational power, online prediction of streaming data on
the sensor system with HMMs involves solving a complex
Dynamic Programming problem (i.e., computing the Viterbi
path). Gaussian mixture models (GMMs) are computationally
less expensive and model class membership by probabilistic
means similar to HMMs. However, they do not encompass
temporal dependencies of successive data points in time series.
Thus, after predicting most likely process phase cluster mem-
bership with the GMM, we postprocess these cluster estimates
by an additional finite state machine (FSM) like depicted in
Fig. 3 to mimic the HMM’s L2R structure.

B. Features

Among others, typical TCM features involve measures
based on autoregressive moving average (ARMA) models [4],
Wavelet-based methods [9], and sparse dictionary learning
[10]. A comprehensive overview of features is given in [4].
Lately, most of research is dominated by ANN techniques, e.g.
self-organizing maps (SOMs) [11] and deep neural networks
(DNN5s) [5]. These advanced features are necessary to address
non-stationary complexity of the signals. In this study, we aim
to sustain expressiveness of these features while reducing com-
putational burden by extracting simple but tailor-made features
in automatically detected process phases and frequency bands.

V. METHODS
A. Detection of Process Phases

The proposed phase detection algorithm is summarized in
Algorithm 1. Based on extraction of features in successive
signal segments of 1024 samples, we train a GMM to identify
clusters in each TD signal. We chose features MeanAbspp =
% Zf\il |z;| (x; being i-th signal sample) and Powerpp =
ﬁ Z?il U? (U; being i-th spectral magnitude).

The learning task for GMMs is to find the proportions 7
as well as mean p and covariance structure 3 for each of
a mixture of Gaussian distributions [12]. To find the optimal
number of mixture clusters matching the (unknown) number
of process steps, we compare Akaike information criterion
(AIC) [13] and Bayesian information criterion (BIC) [14].
Both criteria consist of two terms: a goodness-of-fit term and

a term penalizing model complexity. While AIC measures
complexity only by the number of model parameters %k, BIC
incorporates the sample size N into the penalty term:

AIC = —21og L(0) + 2k, (1)
BIC = —2log L(0) + klog(N), (2)

where L represents the likelihood function and 6 = (7, i, X2)
the set of learned model parameters. Both criteria identify the
GMM explaining feature score clusters in the most sensible
way, but do not allow to incorporate temporal information
inherent to successive feature vectors. We make use of an L2R
FSM (cmp. Fig. 3) to incorporate this information. In order
to define the temporal order of FSM states s; (representing
the deterministic sequence of processing steps) we need to
identify the corresponding GMM clusters. We do this for
each cluster by computing the median value of all segments’
temporal indices associated with this cluster. Thus, the order of
clusters’ median values reflects the order of processing steps.
This allows to reduce the space of admissible state transitions
and thus constrain transitions to follow a temporal L2R order.

B. Frequency Band Selection

The proposed frequency band selection algorithm is summa-
rized in Algorithm 2. Discriminative differences in distribution
of spectral energy for differently labeled signals (dull/sharp)
can be found by computing the lo-distance (Euclidean dis-
tance) of their respective fast Fourier transform (FFT) spectra.

Labels (sharp/dull) are allocated via an additional sensor at
the dressing motor. For signals recorded directly before dress-
ing, the grinding wheel is assumed to be dull, while for signals
recorded directly after dressing, the grinding wheel is assumed
to be sharp. This procedure yields pairs of signals labeled
sharp and dull, for which single-sided spectra are computed via
FFT. Computing the squared difference between each of these
spectral pairs yields their /5-distance. Smoothing and ensemble
averaging of [y-distance curves allows to compute reliable
estimates of discriminative differences in spectral energy.

C. Tailor-made Features

Based on segmentation of signals into process phases (cmp.
Algorithm 1) and determination of frequency bands reflecting
the condition of the grinding wheel (cmp. Algorithm 2) we
subsequently extract the feature MeanAbspp across most
relevant segments and frequency bands for each signal.

VI. RESULTS
A. Detection of Process Phases

In Fig. 4, DS2 results for detection of number of process
steps and corresponding GMM clusters are depicted for two
features extracted in 1024 sample segments measuring both
TD energy (MeanAbsrp) and FD energy (Powergp).

GMMs are trained for a number of cluster components
between 1 and 10. AIC and BIC estimates are shown in the left
part of Fig. 4. Assigning the optimal number of clusters in the
elbow point of AIC and BIC plots like suggested in [15] results
in an estimate of the best-fit model for a number of three



Algorithm 1: Process Phase Detection

Input: TD signal currSig, information criterion IC

Output: Process phase transitions in currSig

/+ Identify clusters in currSig */

for each 1024 sample segment currSeg in currSig do
featMat(:,1) = featl(currSeg);
featMat(:,2) = feat2(currSeg);

end

scaledFeat = scale(featMat);

for a number of mixture components nComp 1 to 10 do
GMM(nComp) = trainGMM(featMat,nComp);
vallC(nComp) = IC(GMM((nComp));

end

GMMSel = GMM(minAngle(vallC));

clustEst = max(posterior(GMMSel,scaledFeat));

/+ Tie phase tags to clusters */

for all clusters nClust of GMMSel do
medIndex(nClust) =

median(indices(clustEst==nClust));

end

sequClust = sort(nClust,medIndex);

/+ L2R FSM: Enforce temporal order of
cluster estimates */

fsmMdl = defineL2R(nClust,sequClust);

fsmEst = fsmMdl(clustEst);

phaseTrans = transitions(fsmEst);

Algorithm 2: Frequency Band Selection

Input: TD signal segments detected by Algorithm 1,
and corresponding labels (dull/sharp).
Output: Frequency bands capturing discriminative
information of labeled TD signal segments
currSegDull and currSegSharp.
for all pairs (currSegDull,currSegSharp) do
specDull = singleSidedSpec(currSegDull);
specSharp = singleSidedSpec(currSegSharp);
spec += (specDull - specSharp)?;
end
specMags = find(spec > mean(spec));
Rol = find(length(specMags) > length(spec)/100);

clusters. Unlike [15], we introduce finding the elbow point by
searching for the smallest angle between connections of each
index/value-tuple (number of clusters, AIC/BIC score) with
its predecessor and successor tuple. Phase borders assigned
with the best-fit GMM match the differences in TD envelope
amplitude and FD energy distribution (cmp. left part of Fig. 5).

B. Frequency Band Selection

Spectral discriminative Rols for wheel condition classes dull
and sharp in DS2 are shown in the upper right subfigure
of Fig. 5. The spectrum was normalized to its maximum
magnitude (red dot). Rols are marked with gray rectangles and
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Fig. 4. GMM model selection results for DS2. Left: Best fit for AIC and
BIC is found for three clusters (black circles). Right: Scores for features
MeanAbstp and Power g p. Equi-probability estimates for mixture com-
ponent membership found with the best-fit GMM are plotted as contour lines.
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Fig. 5. Intelligent preprocessing results for DS2. Left: Signal of class dull,
corresponding STFT spectrogram and phase borders (gray lines). Right: l2-
distance curve (blue line) for two representatives (bottom right) of classes dull
(sec 1...17) and sharp (sec 17...34) and assigned Rols (gray rectangles).

match differences in spectral distribution of the spectrograms
in the lower right subfigure of Fig. 5. Rols are defined relative
to the spectrum’s mean (dashed gray line), i.e. where the [-
distance curve (blue line) is above the spectrum’s mean for a
period of at least 312.5Hz (1 % of the spectrum’s width).

C. Benefit of Intelligent Preprocessing for Feature Extraction

After computation of Rols, TD signals were filtered
in passbands defined by Rol borders. Afterwards, feature
MeanAbspp was computed like introduced in section V-A
in signal segments detected by Algorithm 1.

The benefit of intelligent preprocessing for DS2 becomes
apparent in Fig. 6. By extracting feature MeanAbsyp only in
most discriminative frequency bands and process phase (right
subfigure) a monotonic feature score trend between examples
of classes dull (red) and sharp (blue) can be established. Also,
labeled data points (red, blue) are separated clearly compared
to when MeanAbspp was extracted for the complete spectral
range and across signals comprising all process phases.

For multi-contact DS4 signals, the benefit of process phase
segmentation over simple contact detection is depicted in
Fig. 7. Best results regarding feature score trend and separation
of signals labeled dull and sharp are obtained when extracting
feature scores only in the last process phase 4, where full
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Fig. 6. Benefit of intelligent preprocessing for single-contact DS2 data.
Left: Feature MeanAbsTp (gray) for complete signals and frequency range.
Dressing times are plotted as vertical dashed lines. Right: MeanAbstp
extracted in most relevant process phase and discriminative frequency bands.
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Fig. 7. Benefit of intelligent preprocessing for multi-contact DS4 data. Scores
for feature MeanAbsrp are plotted for phase 2 (left) and phase 4 (right).

contact between grinding wheel and workpiece yields best
transmission of energy from the former to the latter. Results
for first contact phase 2 are plotted on the left for comparison.

Benefits for all data sets are summarized in table II. Two
performance measures are listed. Monotonicity of the feature
score trend is measured with root mean squared error (RMSE)
between feature scores and the fit of a trend function to these
data. As evaluations revealed restricted exponential growth of
feature score trends (saturation effects by restricted dulling of
grinding wheel), we fit to the function y = a — (a — b)e™*
with y being feature scores and = the measurement indices.
Monotonicity of feature scores allows assessing tool condi-
tion based on simple threshold comparison. Performance of
threshold classification is measured via F1 score. Results for
tailor-made features based on intelligent preprocessing exceed
results for non-preprocessed features for all but one data set.

TABLE 11
PERFORMANCE MEASURES: RMSE, F1 SCORE

Data W/o intell. preprocessing | W/ intell. preprocessing
set RMSE F1 score RMSE F1 score
DSI1 0.0299 100 % 0.0392 100 %
DS2 0.3195 93.68% 0.0858 100 %
DS3 0.3288 88.95% 0.1969 92.99 %
DS4 0.2200 74.30% 0.1305 100 %
DS5 0.2803 94.14% 0.2227 94.33%
DS6 0.4484 75.00% 0.3182 100%
Average | 0.2734 87.68% 0.1798 97.89 %

VII. CONCLUSION

In this study, we validated the benefit of identifying spectral-
temporal regions of interest (Rols) in non-stationary signals for
subsequent definition of simple but meaningful tool condition
monitoring (TCM) features. To identify Rols, we have con-
tributed and validated two intelligent preprocessing techniques.

For detection of process phases (via GMMs), AIC and
BIC proved suitable to identify best-fit GMMs. Incorporating
information about sequentiality of data points by utilizing an
L2R FSM increased robustness of process phase estimation.

Automatic selection of discriminative frequency bands (via
ensemble-averaged l5-distances of labeled FFT spectra) led to
Rols matching corresponding STFT spectrograms.

Subsequent extraction of feature MeanAbsrp only in
discriminative process phases and frequency bands allowed
to increase monotonicity of the feature score trend (from an
average RMSE of 0.2734 to 0.1798) and improve separability
of labeled signals with a threshold classifier (from an average
F1 score of 87.68% to 97.89%).
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