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Abstract—Signal segmentation is a generic task in many time
series applications. We propose approaching it via Bayesian
changepoint algorithms, i.e., by assigning segments between
changepoints. When successive signals show a recurrent change-
point pattern, estimating changepoint recurrence is beneficial for
two reasons: While recurrent changepoints yield more robust sig-
nal segment estimates, non-recurrent changepoints bear valuable
information for unsupervised anomaly detection.

This study introduces the changepoint recurrence distribution
(CPRD) as an empirical estimate of the recurrent behavior of
observed changepoints. Two generic methods for incorporating
the estimated CPRD into the process of assessing recurrence
of future changepoints are suggested. The knowledge of non-
recurrent changepoints arising from one of these methods allows
additional unsupervised anomaly detection.

The quality both of changepoint recurrence estimation via
CPRD and of changepoint-related signal segmentation and un-
supervised anomaly detection are verified in a proof-of-concept
study for two exemplary machine tool monitoring tasks.

Index Terms—Bayesian methods, online learning, signal seg-
mentation, anomaly detection

I. INTRODUCTION

For many time series applications, both finding anomalies

and a sensible segmentation of signals can be interpreted as

two sides of one coin when signals show a recurrent structure.

For example, electrocardiogram (ECG) signals behave highly

recurrent for normal cardiac behavior and thus come with

repetitive signal segments. Cardiac anomalies can then be

found both by extraction of suitable features in recurrent signal

segments and by abnormalities in this recurrent behavior itself,

i.e., changes of the signal segmentation structure [1].

Another application field with an interest in estimating

recurrent signal behavior is machine tool monitoring. When

a sensor is placed sufficiently close to the cutting tool,

similar signal segments can be observed for each processed

workpiece. This is due to the same sequence of processing

steps applied to each workpiece. Again, tracking deviations

from this recurrent behavior allows for detection of (sudden)

abnormal process alterations, while extracting features in

comparable, recurrent signal segments allows for detection of

drifting anomalies (cf., e.g., [2] for tool condition monitoring

applications).

In this study, we assign signal segments between change-
points. Changepoints are defined as variations in the gene-

rative, statistical parameters of signal models [3]. Generic

changepoint estimation can be approached with the Bayesian

Online Changepoint Detection (BOCPD) algorithm [3].

We extend the BOCPD approach by introducing a change-
point recurrence distribution (CPRD). The CPRD allows es-

timating recurrent behavior of observed changepoints and can

then be used to improve robustness of signal segmentation

by assigning segments between recurrent changepoints only.

Additionally, we show that non-recurrent changepoints yield

expressive features for an unsupervised anomaly detection.

The approach is illustrated for two real-world machine tool

data sets in a proof-of-concept study on changepoint-related

signal segmentation and unsupervised anomaly detection.

II. RELATED WORK

Popular signal segmentation approaches comprise piecewise

linear approximation methods [4], cluster-based methods [5],

[6], Hidden Markov Models [7]–[9] and algorithms involving

a penalized likelihood function of the data [10]–[12].

The BOCPD algorithm introduced in [3] allows dividing

signals into non-overlapping segments of stationary genera-

tive data distributions between changepoints. Different work

extending BOCPD to model data-generating distributions more

flexibly [13], [14] or to use changepoint information for the

sake of robust time series predictions [15] emerged quickly.

In [16], an approach explicitly dedicated to modeling

recurrence of changepoints was proposed. Here, recurrence

was defined by quasi-periodicity, i.e., by assuming periodic

recurrence of changepoints while allowing small deviations

of individual changepoints from this periodic behavior. This

assumption does not allow to model a generic recurrent (but

non-periodic) structure of the data.

Wilson et al. proposed a hierarchical extension of the

BOCPD approach in [17]. Although this approach allows

inferring an adaptive estimate of the typical frequency (hazard

rate) of changepoints it does not allow to model a recurrent

changepoint prior distribution or distinguish recurrent from

non-recurrent changepoints as desired in this work.

III. THEORETICAL BACKGROUND

A. Bayesian Online Changepoint Detection (BOCPD)

BOCPD assumes that a predictive distribution p
(
xt+1|x1:t

)
at time step t can be computed from observations x1:t (i.e.,

measurement data) and a latent run length variable rt [3]. rt is
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defined as the distance to the last changepoint having occurred

in the data. We obtain this predictive distribution by integrating

over the run length posterior distribution p
(
rt|x1:t

)
:

p
(
xt+1|x1:t

)
=

∑
rt

p
(
xt+1|rt,x(r)

t

)
p
(
rt|x1:t

)
(1)

Here, x
(r)
t is the set of observations associated with the

current run rt, i.e., the last rt observations of x1:t [13]. In

changepoint detection, the focus of interest is not on predicting

the most probable future observation xt+1, but in finding the

most probable estimate of the current run length rt via the

conditional posterior distribution

p
(
rt|x1:t

)
=

p
(
rt,x1:t

)
p
(
x1:t

) . (2)

Henceforth, this conditional posterior distribution is referred

to as run length distribution. As probability mass of the run

length distribution is highly concentrated at a few peaks,

pruning of run lengths with a probability below a threshold

(e.g., ε = 10−4) can be applied. This reduces run time from

O(
t2
)

to O(
t/ε

)
as outlined in [13].

The distribution p
(
rt,x1:t

)
can be found recursively [3]:

p
(
rt,x1:t

)
=

∑
rt−1

p
(
rt|rt−1

)
p
(
xt|rt−1,x

(r)
t

)
p
(
rt−1,x1:t−1

)

(3)

The right-hand side of Eq. 3 consists of three terms:

1) The predictive distribution p
(
xt|rt−1,x1:t

)
collapses to

p
(
xt|rt−1,x

(r)
t

)
, thus depending only on recent x

(r)
t .

2) A joint distribution p
(
rt−1,x1:t−1

)
from time step t−1.

3) A conditional prior distribution p
(
rt|rt−1

)
on change-

points (i.e., rt = 0). Adams et al. proposed to define it as

follows for efficient computation (non-zero probability

mass only for outcomes rt = 0 and rt = rt−1 + 1) [3]:

p
(
rt|rt−1

)
=

⎧⎪⎨
⎪⎩

H
(
rt−1 + 1

)
if rt = 0

1−H
(
rt−1 + 1

)
if rt = rt−1 + 1

0 otherwise

(4)

The function H(τ) is named hazard function [18]. In the

simplest case, an uninformative constant hazard function

H(τ) = 1/λ can be chosen as discussed in [3]. This results

in making changepoint estimates p
(
rt = 0|rt−1

)
independent

of rt−1. Here, λ is a constant scale parameter which has to

be defined in advance or can be treated as a further model

hyperparameter which has to be optimized [13], [14].

For sensor data it is common to assume independent and

identically distributed (iid) normal observations xt and a

Normal-Inverse-Gamma parameter prior p
(
μ, σ2|μ0, κ, α, β

)
:

xt ∼ N (
μ, σ2

)
, (5)

μ ∼ N (
μ0, σ

2/κ
)
, (6)

σ−2 ∼ Gamma
(
α, β

)
. (7)

Here, α and β are the shape parameter and rate parameter

of the Gamma distribution and κ acts as a scaling factor for
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Fig. 1: CPRD estimation. Top: DS1 envelope signal. Mid-

dle: Pruned BOCPD solution. Run length log probabilities

log(p(rt|x1:t)) depicted in gray, MAP estimates r̂t as bold

red line. Bottom: First step of CPRD for signal from top.

the variance σ2. As prior p
(
μ, σ2|μ0, κ, α, β

)
and posterior

p
(
μ, σ2|x1:t

)
form a conjugate pair for the assumptions made

above, updates of parameters
{
μ0, κ, α, β

}
yield a computa-

tionally convenient closed form solution [19].

IV. PROPOSED METHODS

A. Changepoint Recurrence Distribution (CPRD)

Due to the typical concentration of probability mass of

p
(
rt|x1:t) at a dominant peak, the most probable run length

estimate r̂t can be approximated sensibly at the maximum a

posteriori (MAP) estimate of the run length distribution, i.e.

r̂t = argmax
rt

p
(
rt|x1:t

)
(8)

According to [3], changepoints can be assigned at r̂t = 0.

However, for machine tool data with potentially smooth transi-

tions between signal segments, changepoints at these segment

borders do not necessarily lead to r̂t = 0, but to a major drop

in this most probable run length estimate r̂t. Drops in r̂t (i.e.,

where r̂t does not increase by one) can then be interpreted as

changepoints with a non-zero changepoint probability

p
(
ct|x1:t

)
� p

(
r̂t|x1:t

)∣∣∣∣
∂r̂t
∂t �=1

, (9)

where ∂
∂t denotes a derivate with respect to t. Changepoints

ct occur not only due to recurrent changes of process steps,

but also due to signal fluctuations or anomalies. This motivates

the necessity to filter recurrent changepoints from the set of all

changepoints. We propose the following approach for filtering.

Changepoint probability vectors p
(
c
(n)
t |x1:t

)
of N training

signals are summed up across time steps t = 1 . . . T (Fig. 1,

bottom). For each training signal n = 1 . . . N , the cumulative

probability mass
∑N

n=1 p
(
c
(n)
t |x1:t

)
increases at locations t of

changepoints c
(n)
t (i.e., locations t with non-zero probabilities
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p
(
c
(n)
t |x1:t

)
) while staying the same at other time steps

t where p
(
c
(n)
t |x1:t

)
= 0. Normalizing

∑N
n=1 p

(
c
(n)
t |x1:t

)
allows interpretation as an empirical probability distribution

over recurrence of changepoint positions [20]. We name this

distribution changepoint recurrence distribution (CPRD).

p
(
c
(1:N)
t |c(n)t ,x1:t

)
�

∑N
n=1 p

(
c
(n)
t |x1:t

)
∑N

n=1

∑T
t=1 p

(
c
(n)
t |x1:t

) (10)

Recurrence of changepoints c
(n)
t at locations t across signals

n = 1 . . . N is denoted by the term c
(1:N)
t . p

(
c
(1:N)
t |c(n)t ,x1:t

)
thus gives an empirical estimate how likely changepoints c

(n)
t

at locations t were present in all former N signals. This

approach thus yields a non-parametric maximum likelihood

estimate of recurrent changepoint probabilities [21].

The CPRD allows incorporating further prior information.

For instance, if times of processing step changes are available,

this deterministic prior knowledge can be utilized to comple-

ment the empirical information of observed changepoints.

B. Estimation of Future Recurrent Changepoints via CPRD

1) CPRD as informative hazard function: The CPRD can

be used to replace the uninformative hazard function H(τ) =
1/λ introduced in [3]. This allows incorporating empirical

information about the recurrence of observed changepoints

directly into the changepoint prior p
(
rt|rt−1

)
(refer to [3]

for a detailed discussion). Hence, this approach yields more

robust estimates of recurrent signal segments in future signals

by suppressing non-recurrent changepoints.

2) CPRD for filtering of BOCPD changepoints: An alter-

native approach is estimating all changepoints via BOCPD

and using the CPRD to separate recurrent from non-recurrent

changepoints in a subsequent step: By multiplying initial

BOCPD changepoint estimates p
(
c
(n)
t |x1:t

)
with the empirical

CPRD probabilities p
(
c
(1:N)
t |c(n)t ,x1:t

)
, a filtering of change-

point estimates regarding their probability of being recurrent is

obtained. This can be interpreted as applying Bayes’ Theorem:

p
(
c
(n)
t |c(1:N)

t ,x1:t

)
=

p
(
c
(1:N)
t |c(n)t ,x1:t

)
p
(
c
(n)
t |x1:t

)

p
(
c
(1:N)
t |x1:t

) (11)

As outlined in Section IV-A, the CPRD p
(
c
(1:N)
t |c(n)t ,x1:t

)
acts as a non-parametric estimate of the likelihood of

changepoint recurrence. Initial BOCPD changepoint pro-

babilities p
(
c
(n)
t |x1:t

)
are interpreted as prior estimates

of recurrent changepoints for signal n. As the goal of

the presented approach is finding non-zero probabilities

p
(
c
(n)
t |c(1:N)

t ,x1:t

)
, normalization to the prior on changepoint

recurrence p
(
c
(1:N)
t |x1:t

)
does not have to be considered:

p
(
c
(n)
t |c(1:N)

t ,x1:t

) ∝ p
(
c
(1:N)
t |c(n)t ,x1:t

)
p
(
c
(n)
t |x1:t

)
(12)

Non-zero probabilities p
(
c
(n)
t |c(1:N)

t ,x1:t

)
indicate recurrent

changepoints. Non-recurrent changepoints are then found

as symmetric set difference between BOCPD changepoints

p
(
c
(n)
t |x1:t

)
and recurrent changepoints.
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Fig. 2: CPRDs and GMM fits for data sets DS1 and DS2.

For stationary behavior of normal changepoints, estimating

the CPRD with a large number of normal training signals

results in a smooth distribution. For a smaller number of

training signals, a post-processing of the CPRD by fitting a

kernel density estimator or Gaussian Mixture Model (GMM)

can similarly increase smoothness of the CPRD and thus

yield more robust changepoint filtering results. We smooth by

fitting a GMM, as this yields meaningful features (distance of

changepoints to cluster centers, cluster membership probabili-

ties, etc.) for a changepoint-related anomaly detection.

V. PROOF-OF-CONCEPT STUDY

The benefits of changepoint recurrence estimation for signal

segmentation and unsupervised anomaly detection are studied

here for two machine tool monitoring tasks. First, we estimate

CPRDs for both data sets (Section V-B1). Then, we compare

using these CPRDs as informative hazard function (Sec-

tion V-B2) or for changepoint filtering (Section V-B3). Finally,

we illustrate how to use non-recurrent changepoints and CPRD

estimates for unsupervised anomaly detection (Section V-B4).

A. Data Sets

Data set 1 (DS1) consists of 312 normal sensor signals

(recorded for a grinding wheel with normal behavior) and 118

signals for different degrees of severity of a grinding wheel

anomaly. Data set 2 (DS2) comprises 400 normal signals and

99 signals with machine part collisions. The collisions result in

a single impulse-like artifact and thus one additional abnormal

changepoint for abnormal DS2 signals.

As changes of processing steps are best observable in signal

envelope energy, signal envelopes computed via 1
M

∑M
t=1|xt|

in each successive signal window of size M = 1024 observa-

tions xt are used as input for BOCPD changepoint estimation.

B. Results

1) CPRD Estimation: Fig. 2 shows the CPRD estimates

(black line) and their GMM fits (bold red line) for DS1 and

DS2. Fitting a GMM to the CPRD results in a smoother

probability distribution as discussed in Section IV-B.

2) CPRD as informative hazard function: Results of utili-

zing this GMM as an informative hazard function are depicted

in Fig. 3a for an exemplary, abnormal DS1 signal (top). The

abnormal changepoint at window index 355 which is assigned

when using a constant hazard function (middle) is suppressed
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by the informative hazard function (i.e., GMM fitted to CPRD)

in the bottom figure. A similar behavior is illustrated in Fig. 3b

for the abnormal changepoint at index 55 of an abnormal DS2

signal. This confirms the validity of an informative CPRD

hazard function for robust signal segmentation.

3) CPRD for filtering of BOCPD changepoints: Results of

filtering BOCPD changepoints with a GMM fitted to the DS1

CPRD are depicted in Fig. 4a. MAP run length estimates r̂t are

plotted gray-coded in horizontal direction for all signals. Thus,

each row depicts the bird’s-eye view of the MAP run length

estimate for one DS1 envelope signal. Normal data consist of

signals nr. 1 to 91. Signals nr. 1 to 60 (white overlay) are

used for estimation of the CPRD (Fig. 2a, black line). Below,

run length estimates for different degrees of grinding wheel

anomalies (separated by white lines) are plotted.

Recurrent changepoints likely under the GMM fitted to

the CPRD are depicted as blue dots. They allow dividing

signals into recurrent segments more robustly than via initial

BOCPD changepoints (both blue and red dots) similar to the

approach in Section V-B2. For all degrees of grinding wheel

anomalies, additional non-recurrent changepoints (red dots)

occur between indices 300 and 400 or indices 970 and 1040.

For DS2, abnormal machining (signals nr. 201 to 350)

frequently resulted in machine part collisions, which resulted

in additional changepoints at index 55 (red dots) (Fig. 4b).

Such variations in changepoint patterns are not detectable

by the CPRD hazard approach in Section V-B2 and support the

benefit of non-recurrent changepoints for anomaly detection.

4) Unsupervised Anomaly Detection: The discrimination

of BOCPD changepoints into recurrent and non-recurrent

obtained by the approach in Section V-B3 can be used for

an unsupervised detection of process anomalies. We consider

the following features to be useful for anomaly detection:

• NNC : Number of non-recurrent changepoints in a signal.

• DC : Average distance of BOCPD changepoints in a

signal to closest cluster centers of the GMM CPRD fit.

• MPA: Probability of having at least one abnormal

changepoint in a signal (calculated as maximum of the

probabilities of all BOCPD changepoints not to be gene-

rated by the GMM CPRD fit).

Results are summarized in Table I. Feature scores (columns

3-7) are stated as medians of normal class (N) and abnormal

(AN) classes. In DS1, different degrees of grinding wheel

anomalies yield multiple AN classes. F1 scores for anomaly

detection with each feature are stated in the last column. We

classify an anomaly for feature scores more than two normal

class standard deviations distant from the normal class median.

Scores for each feature show clear differences between

normal and abnormal classes and result in a decent predictive

quality as confirmed by the F1 scores. When we consider the

full feature set (i.e., a three-dimensional feature space), F1

scores improve to 99.0% (DS1) and 97.6% (DS2).

VI. CONCLUSIONS

This work introduces CPRD, a method to assess change-

points in time series data regarding their likelihood to be

TABLE I: F1 scores for changepoint-related features.

Data Feature N AN1 AN2 AN3 AN4 F1 score
NNC 0 3 3 3 2 87.5 %

DS1 DC 13.1 29.4 30.0 33.4 36.9 97.1 %
MPA 80.9 99.0 99.5 100 100 96.1 %

All 99.0 %
NNC 0 1 85.9 %

DS2 DC 3.8 30.6 84.8 %
MPA 87.9 100.0 83.9 %

All 97.6 %

recurrent. The CPRD can be used either as an informative

hazard function in the BOCPD algorithm or as an empirical

estimate of the changepoint recurrence likelihood in a separate

changepoint partitioning step. Both approaches allow dividing

signals into recurrent segments for subsequent extraction of

comparable feature scores.

Non-recurrent changepoints, which come as a byproduct

of the latter approach, yield information for unsupervised

anomaly detection. This is verified for three exemplary

anomaly detection features suggested in this work.

Although our experiments focus on machine tool moni-

toring, the proposed methods can be extended to other ap-

plications with a recurrent changepoint structure (e.g., ECG

analysis).
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Fig. 3: Recurrent changepoint estimation with CPRD-based hazard functions. Top: Abnormal envelope signal. Middle/bottom:

Run length log probabilities (gray) and MAP estimates r̂t (red line) for constant (middle) and GMM hazard functions (bottom).
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Fig. 4: CPRD-based changepoint filtering. Figures show MAP run length estimates obtained via BOCPD, recurrent (blue dots)

and non-recurrent (red dots) changepoints for subsets of DS1 and DS2. A white overlay marks signals for CPRD estimation.
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