
Breathing In-Depth: A Parametrization
Study on RGB-D Respiration
Extraction Methods
Jochen Kempfle* and Kristof Van Laerhoven

Ubiquitous Computing, University of Siegen, Siegen, Germany

As depth cameras have gotten smaller, more affordable, and more precise, they have also
emerged as a promising sensor in ubiquitous systems, particularly for detecting objects,
scenes, and persons. This article sets out to systematically evaluate how suitable depth
data can be for picking up users’ respiration, from small distance changes across the torso
over time. We contribute a large public dataset of depth data over time from 19 persons
taken in a large variety of circumstances. On this data, we evaluate and compare different
state-of-the-art methods and show that their individual performance significantly depends
on a range of conditions and parameters. We investigate the influence of the observed
torso region (e.g., the chest), the user posture and activity, the distance to the depth
camera, the respiratory rate, the gender, and user specific peculiarities. Best results hereby
are obtained from the chest whereas the abdomen is least suited for detecting the user’s
breathing. In terms of accuracy and signal quality, the largest differences are observed on
different user postures and activities. All methods can maintain a mean accuracy of above
92% when users are sitting, but half of the observed methods only achieve a mean
accuracy of 51%while standing.When users are standing and additionally move their arms
in front of their upper body, mean accuracy values between the worst and best performing
methods range from 21 to 87%. Increasing the distance to the depth camera furthermore
results in lower signal quality and decreased accuracy on all methods. Optimal results can
be obtained at distances of 1–2m. Different users have been found to deliver varying
qualities of breathing signals. Causes range from clothing, over long hair, to movement.
Other parameters have shown to play a minor role in the detection of users’ breathing.

Keywords: respiration sensing, depth imaging, rgb-d, depth-based breathing estimation, remote respiration
measurement

1 INTRODUCTION

Respiration is the physiological process of our body to exchange carbon dioxide with oxygen.
Inhalation mainly happens through actively contracting the diaphragm and increasing the thoracic
cavity, while exhalation typically occurs as a passive process due to the elasticity of the lungs. In
contrast to most other vital body functions, respiration can be controlled consciously. Unconscious
breathing on the other hand is controlled by the respiratory centers of the brainstem that regulate the
respiratory rate mainly depending on the pH of the blood. Monitoring a subject’s respiration plays an
important role in medical diagnosis and treatment Cretikos et al. (2008) as it tends to not only change
with physical exercise, but also with a range of conditions like fever and illness Parkes (2011). Beyond
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medical applications like sleep assessment or asthma therapy, in
sports and fitness applications as well as in mindfulness and
meditation exercises the respiratory rate often is used to assess a
subject’s performance. Likewise, in these scenarios the user often
is required to maintain a specific breathing pattern and needs to
rely on external feedback that might be improved given a suitable
sensing device.

Conventional sensors like mask-like spirometers, respiration
belts worn around the chest, or skin-based
photoplethysmography, but also more recently proposed
methods utilizing body-worn inertial sensors, like Haescher
et al. (2015), require physical contact to the user’s body and,
over longer time periods, tend to become uncomfortable or
restraining for the person to wear. Especially in fitness
applications, but also in scenarios where users perform
breathing exercises for stress reduction, like for instance
meditation, such devices should be easy to set up, comfortable
to wear, non-obtrusive, and not cause distraction as these
conditions might lower their acceptance.

Several methods have been proposed to estimate a person’s
breathing through ambient sensing, eliminating the need of any
body-worn devices. Methods based on a depth camera picking up
the tiny changes in distance of the chest or abdomen during
respiration hereby have shown promising results. Yet, most
proposed methods are designed for certain, well-defined
scenarios and lack a systematic evaluation of important
parameters and conditions, such as distance to the camera, the
observed body region, or the user introducing subtle body
movements while for instance standing upright. Furthermore,
user studies often are conducted with only a few participants and
a quantitative comparison to different methods barely is available.
It therefore remains widely unclear how the existing methods
perform under various conditions and how they compete. In our
previous work, Kempfle and Van Laerhoven (2020), we proposed
a new method that overcomes many limitations of current state-
of-the-art depth-based respiration estimation methods, which
does not require the user to lie down or sit still and is robust
against small body movements and the user occasionally
occluding its upper body with its arms. An example of this
method in action is presented in Figure 1. A feasibility study
was presented that shows this approach outperforms existing
methods in scenarios where users are standing or occluding

themselves, but a more in-depth analysis of the impact of
many important parameters and conditions and a discussion
under which conditions which method is to be preferred still is
missing.

This article provides a detailed and systematic analysis for the
performance of the most common techniques, and discusses the
circumstances under which any of these methods has the most
advantages to be used. We test against key parameters, including
the observed user’s body region, the user’s pose and activity level,
the distance between user and the camera, and the user’s
respiratory rate.

The contributions of this paper can be summarized as:

• A benchmark dataset comprising depth data of the torso
from 19 participants (12 male, 7 female), each recorded at
three different conditions, namely sitting, standing, and
standing with self occlusion, taken from different
distances, at two respiratory rates of 10 or 15 breaths per
minute.

• An in-depth evaluation and comparison of six different
state-of-the-art depth-based breathing estimation methods,
covering estimation accuracy and error, and signal quality
in terms of Pearson correlation coefficient and signal-to-
noise ratio.

• Results on the influences on each method’s performance for
key parameters: 1) the observed torso region, 2) whether the
user is sitting, standing, or standing with self occlusions, 3)
the distance to the depth camera, 4) the respiratory rate, 5)
the gender, and 6) user-specific influences.

A repository of all depth estimation and evaluation code in this
article, along with the benchmark dataset, is made public in order
to support further research on this topic as well as the
reproduction of our results.

2 RELATED WORK

To date, several approaches exist to measure respiration from a
distance, either optically or with the use of RF-antennas. Optical
methods hereby initially used standard RGB and near-infrared
cameras and, more recently, increasingly take advantage of depth

FIGURE 1 | An example of depth-based respiration estimation, taken from a distance of 2 m. The different frames of a depth recording are drawn on the (A),
starting at 2.5 s with an equal spacing of 5 s. The breathing signal as estimated from a model-based approach is drawn on the (B). Red markers indicate the time points
at which the respective frame above the marker was captured. In general, the user can be anywhere in the frame, and the model-based approach allows the user to
perform activities that self-occlude the torso. An overview of the model-based as well as various other types of state-of-the-art depth-based respiration estimation
methods will be presented in Section 3.
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cameras as sensing devices. While RF-based approaches for
remote respiration estimation are an interesting research field
on their own, in this section we will focus on optical and depth-
sensing methods only. A good primer on RF-based methods for
instance is given in Wang et al. (2016) where with the Fresnel
model the underlying principle of these methods is presented.
Recent literature reviews with a more detailed overview of
contactless respiration measuring methods in general, and for
depth-based methods in special can be found in Massaroni et al.
(2020) and Addison et al. (2021), respectively.

2.1 Non-Depth Optical Methods
Non-depth optical methods most commonly compute optical
flow to extract the respiration signal from a video stream, such as
techniques presented in Nakajima et al. (1997), Nakajima et al.
(2001), and Kuo et al. (2010), but also approaches using image
subtraction techniques exist, such as Tan et al. (2010). In Bauer
et al. (2012), the result of an optical flow based method is
compared to that of a method using a depth sensor with
surface registration from Bauer et al. (2011) with the finding
that the respiration measurement based on optical flow delivers a
more accurate respiratory rate estimate compared to mere Time
of Flight (ToF) depth measurements. According to Keall et al.
(2006), human breathing mainly occurs along the superior-
inferior direction, supporting above finding and giving some
advice for upcoming algorithms.

2.2 Depth-Based Methods
The measurement principle of depth-based respiration
estimation relies on observing the change in distance of the
chest or abdomen towards the depth sensor during respiratory
cycles. Inhalation increases the torso volume and will bring these
regions closer to the depth camera while exhalation will revert
this effect. The change of distance for normal breathing typically
is in the range of millimeters to a few centimeters, depending on
the person and observed body area. Due to the small distance
changes caused by breathing, depth-based methods are
susceptible to even slight body movements, especially towards
the camera. In most of the related work, the observed person
therefore needs to keep still by for instance sitting on a chair with
back support or by lying down.

Early versions of depth-based methods from Penne et al.
(2008) and Schaller et al. (2008) fixed a plane on the chest
and the abdomen each of a person lying on a horizontal
surface and measured the Euclidean distance of the these
planes to the supporting surface plane. Over time, the distance
changes of the planes reflect the person’s breathing movements.

Instead of attaching a plane, Noonan et al. (2012) initially
compute the mean orientation of a fixed 10 cm × 20 cm
rectangular selection on the center of the person’s thorax over
10 successive image frames. The motion component along this
surface normal then becomes the person’s respiration estimate.

To obtain more reliable estimates, previous work has also
suggested to explicitly model respiration using principal
component analysis (PCA). The PCA model is acquired from
a certain number of successive depth images of a predefined area
of the user’s torso. Wasza et al. (2012) for example computes a

PCA model of the user’s torso and applies the varimax rotation
such that the obtained model has more relevance to respiration
than the model from the standard PCA. Its principal axes were
found to feature local deformations that are highly correlated to
thoracic and abdominal breathing. Martinez and Stiefelhagen
(2012) track the dots of a Kinect v1 IR projector on nine sleeping
study participants at an optimal view and distance (2 m) of the
sensor and apply a PCA to the resulting trajectories. An average
trajectory then is calculated from a subset of the 16 strongest
components that match certain criteria, like passing the Durbin-
Watson-test or comprising a frequency range of 0.02–1 Hz.

A common method is to place fiducial markers on the chest
and abdomen to define the regions where to extract the depth
measurements from Wijenayake and Park (2017) for instance
used white markers visible in the RGB data in combination with
an Asus Xtion PRO RGB-D camera to compute a PCA model
from the first 100 depth frames using the depth readings inside
the region defined by the markers only. The first three principal
components of such a patient-specific model then are used to
reconstruct a noise-free surface mesh. The change of volume of
such a mesh has shown strong correlation to spirometer data.

Other works use the shoulder and hip joints as delivered by the
Kinect SDK’s joint detection to define the region of interest. Aoki
and Nakamura (2018) for instance uses the depth data within
these Kinect joint positions to explicitly model a so called quasi-
volume of the user’s chest by using Delaunay triangulation with
linear interpolation. This so called quasi-volume is shown to be
proportional to the air volume as measured by a spirometer of 6
male study participants. Soleimani et al. (2017) in addition to
computing the respiration signal with a volume based approach
also computes the signal by taking the mean of the respective
depth values and compares both outcomes. It has been shown
that the volume-based approach was less accurate while being
computationally much more expensive. Since the depth camera
does not see the back of the user, volume-based methods bound
the volume at a certain constant distance threshold to the back.
The volume is computed by integrating over the distances of the
single surface vertices to the back boundary, with the integral
basically being a weighted sum. As the surface vertices reflect the
depth measurements, the mean of the respective depth pixel
values therefore approximates a value that, apart from subtracting
the distance threshold, is proportional to the volume. Due to their
low computational complexity, the majority of the proposed
respiration estimation methods are based on computing the
mean, as will be shown below.

A early mean-based prototype for capturing a person’s
respiration with a Kinect v1 sensor is presented by Xia and
Siochi (2012). The mean of all depth values within a hand-
annotated rectangular selection comprising the chest is
computed to obtain the average distance of the chest to the
depth camera for every received depth frame. The key idea is, that
the chest elevation during breathing is expected to cause most
depth pixels, and thus the average among all pixels, to correlate
with the breathing motion. Benetazzo et al. (2014) use the
shoulder and hip joints as delivered by the Kinect SDK to
determine the region of interest. All depth values within that
region are averaged per frame, followed by a weighted average of
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four successive mean values to reflect the respiration data over
time. This work is the first to provide an evaluation of different
parameters for a mean-based approach. It includes sampling rates
being varied between 5, 7, and 9 Hz, different orientations (0° or
25°), three different light intensities, and variable clothing worn
by the observed person (sweater, jacket, and T-Shirt). The
evaluation however is approach-specific and results show that
the parameters tested have in the end little effect on the proposed
algorithm’s performance.

Centonze et al. (2015) and Schätz et al. (2015) use a depth
camera to observe the respiration of sleeping persons and classify
different sleep states (being awake, in REM, or non-REM) by
using features that contain the frequency and the regularity of the
breathing. The respiration signal is obtained from the average of
the depth values within the hand-annotated chest region.
Furthermore, in Schätz et al. (2015) also the averages of pixel-
wise depth differences over two successive depth frames are
computed, and Centonze et al. (2015) applies linear
interpolation between two successive depth frames to by-pass
non-equidistant sampling caused by the depth camera.

With the addition of the 2D RGB data component that is
available in many depth cameras, extra biophysical information
can be extracted. Procházka et al. (2016) in addition to the
respiratory rate also estimates the heart rate by using a built-
in RGB and infrared camera to detect the slight changes around
the mouth caused by blood pressure changes for each heart beat.
The respiratory rate is, as in previous work, obtained by averaging
all depth pixels within a rectangular selection at the torso. Both
signals are band-pass-filtered with the respective cut-off
frequencies set in such a way that the frequency components
that are not part of breathing or the heart rate are rejected.

In one of our earlier works, Kempfle and Van Laerhoven
(2018), we evaluated a typical mean-based approach,
i.e., averaging the depth values inside a certain window, in a
small study comprising 7 participants sitting in a chair with back
support. The evaluated parameters include the distance to the
depth camera, the window location and size, the respiratory rate,
and the sampling rate of the Kinect v2 used, with the outcome
that all parameters have their specific influence on the signal
quality.

All depth-based methods described above are only evaluated
on study participants that are required to either lie down or to sit
still. In a previous study, Kempfle and Van Laerhoven (2020), we
proposed a new, difference based approach that does not need a
user to lie down or remain sedentary, but can tackle interference
with swaying movements introduced while staying. Furthermore,
the method is capable of dealing with partial occlusion events that
for instance may be caused by gesticulating with the arms in front
of the body. Our method assumes in contrast to most of the above
approaches that the depth camera is at an unknown distance to
the user and that the user’s position is not known beforehand.
Additionally, users are not limited to having to lie down or
remain sedentary without moving, but instead can be standing
upright and move their arms and hands in front of their chest and
abdomen area.

From above mentioned depth-based methods, we selected the
most used ones to compare them against our difference based

method on a study dataset from 19 participants. The chosen
methods first are detailed in the next section.

3 METHODS OVERVIEW

From the related work we compiled three recent methods for
depth-based remote respiration estimation. These are based on 1)
performing a principal component analysis, 2) computing the
mean of a certain area, and 3) taking the difference of a barely
breathing correlated region from the mean of a highly affected
region using a torso surface model. From these three distinct
approaches, we derived overall six variants to be systematically
compared in our study, using the performance measures
described in Section 4.2. The methods under consideration
are the PCA, Mean Raw, Median Raw, Diff Mean, Diff
Median, and Diff Model. These methods and their particular
details are described in the following, after a short introduction
on how the region is selected that will be used to extract the
breathing signal from and that will be common for all methods.
We hereby focus on an indoors setting where a user is facing a
depth camera, that also tracks the user’s body joints. These body
joints, namely the neck, the hip, and both left and right shoulder
joint positions as estimated by the Kinect v2 framework, are used
to define the breathing relevant region of interest. The hip and
shoulder joint positions hereby define the anchor points of the
torso window which subsequently is subdivided into the chest
and abdomen regions. All three regions will be examined for their
suitability of extracting a respiration signal and thus are sampled
from by all methods independently. The neck joint on the other
hand only serves as the anchor point for a barely respiration
affected reference area at the throat and thus will only be used by
difference based methods that use this region to subtract the
motion component from the breathing signal. With the distinct
body regions being defined, we now step into the details of the six
different methods. An overview of all methods can also be found
in Figure 2.

PCA
Methods based on performing a principal component analysis are
a common approach to compute the respiration signal from
depth images. As mentioned above, we use the hip and shoulder
joint position estimates to find the respective region of interest.
Due to the PCA computation requiring a predefined number of
pixels, the window’s size needs to be fixed to certain extents. The
size is given from the shoulder and hip joint positions of the very
first frame. The fixed window, however, is free to move and will be
anchored on the left shoulder joint position from the respective
frame. Fitting the PCAmodel is done with the first 180 frames, or
the first 6 s of the capture sequence. The respiration signal
afterwards is given from the first component of the PCA
model and, for the evaluation, will be computed from all
frames, including the first 180 frames.

Mean Raw and Median Raw
Mean basedmethods form themajority of the current state of the art.
The respiration signal is extracted by, for each frame, computing the
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mean of all depth valueswithin a given region of interest as defined by
the hip and shoulder joints. This region, for each frame, is free to
change in size and position, which, in addition to the simple
computation of the mean, is a big advantage of this method. The
Median Raw method basically is the same as the Mean Raw, but
instead of the mean, computes the median of the given region of
interest. We argue that the median, especially in the case of surface
deformation or occlusion, will be more robust than the mean. All
three methods described so far are likely to be sensitive to motion,
occlusion, and window misalignment.

Diff Mean and Diff Median
In our previous work, we found that motion artifacts caused by even
small whole body movements, like swaying while standing, have a
significant impact on the respiration signal quality. For the mean-
basedmethod, this condition decreases the accuracy of the respiratory
rate estimation by up to 50%. To overcome suchmotion artifacts, our
proposed difference based methods try to subtract the motion from
the actual respiration movements of the body. They rely on
subtracting the signal of a reference area that barely is affected by

breathing from a signal of one of the highly breathing correlated
regions at the chest, abdomen, or the entire torso. The region around
the throat was found to be minimally affected by breathing while
serving as a good reference for motion artifacts of the upper body.
Both, the Diff Mean and the Diff Median therefore compute the
mean or the median of the given region of interest and this far are
identical to the Mean Raw or Median Raw, respectively. In a second
step, themotion reference signal as given by the 90th percentile of the
region around the throat, is subtracted from the previously computed
respiration signal. The region at the throat is determinedwith the help
of the neck and shoulder joints. Both methods are derived from the
model-based method we proposed in our earlier work. Their
advantage is that they do not need a model, are easy and fast to
compute, comprise a mechanism to counteract motion artifacts, and
that the window comprising the observed torso region is free to
change in size and position from frame to frame.

Diff Model
To compensate for noise, window misalignment, and especially
occlusion, in our previous research, we proposed a method that is

FIGURE 2 |Overview of the methods used. The example is taken from a distance of 3 m, with the user standing upright and performing regular self occlusions with
a cup in his hands. The process starts with the camera’s depth input frame and the estimated joint positions of the user (top left). Both are either forwarded to amodel as
proposed in Kempfle and Van Laerhoven (2020) (bottom left) to reconstruct the torso surface and find the regions of interest (bottom mid) or the joint positions are
used directly to find the regions of interest (top mid). In the latter case, the torso surface is redrawn for comparison purposes to the model output (middle images).
The model is able to filter out most of the noise and to recover occluded torso regions. The regions of interest are the throat (red), the chest (blue), the abdomen (green),
and the torso (chest and abdomenwindows combined, including the region in between both, not drawn in the images). The depth pixel values within the different regions,
in this example the values of the chest and, depending on themethod, the throat region, are used to compute a single respiration state value. The respiration signal then is
given by the history of these values. On the right are the plots of the resulting breathing signals of the different methods. From top to bottom: The signal of the PCA, Mean
Raw, Diff Mean, Median Raw, Diff Median, and the Diff Model. The PCA uses the first 180 input frames (6 s) to compute the principal components, the respiration signal
then is computed from the first component of the PCAmodel. The Mean Raw and Median Rawmethods compute the mean or the median of the depth values within the
given torso region, for instance the chest as shown here. The Diff Mean and Diff Median methods on the other hand use the 90th percentile of the throat region depth
values as reference for the user movement and subtract it from the respective values obtained by their Mean Raw or Median Raw counterparts. Their signals contain less
distortions stemming from body movements, like swaying. The Diff Model method does the same, but computes the difference from the mean of the selected region of
the model output. Its breathing signal is much smoother and barely contains distortions or spikes stemming from motion artifacts and occlusion events.
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able to counteract these issues by low-pass filtering the data,
fitting the window to the most reasonable body area, and by
detecting and recovering occluded regions with an image in-
painting technique. This method computes an internal model of
the torso surface area spanning from the throat to the hip and that
is based on the currently and previously captured depth images
and body joint positions. Themodel outputs an aligned, occlusion
recovered, and noise reduced depth image of the torso that can be
used for extracting the respiration signal as described by above
methods. We go for the difference-based approach and subtract
the 90th percentile of the throat region from the mean of the
respective region of interest. The regions hereby again are
computed from the joint positions. This method is more stable
against noise, window misalignment, motion artifacts, and
occlusion, but also has higher computational complexity and,
in the current form, requires a fixed window size for the torso
region that needs to be initialized in the beginning.

4 STUDY DESIGN

The performance of the six different methods introduced in
Section 3 and how they compare to each other under a series
of variable settings, including changing the distance to the depth
camera, different breathing rates, different user postures, and
using a variety of study participants to date remains unknown.
The goal of this study therefore is to evaluate all methods on a
common dataset and with expressive performance measures. In
this section, we first present the details and recording parameters
of our dataset and after that, we introduce four different
performance measures to yield quantitative results about the
accuracy and signal quality of the different methods.

For the recordings, participants are asked to position
themselves comfortably in front of a Kinect v2 depth camera

at different distances as marked on the floor, facing the depth
sensor, and to follow a paced breathing visualization. This
visualization serves the purpose to make the recordings
independent of user specific breathing behaviours, such that
it does not interfere with the influence of the different other
parameters. Participants did not wear any sensors to exclude
effects on the breathing behaviour, for instance due to
distraction. Ground truth is obtained from the respective
settings in the paced breathing tool. The depth sensor is
fixed to the height of 1.40 m for all recordings and recording
was done in a well-lit indoors environment where two adjacent
walls with large windows along the entire length of the walls
cause challenging lighting conditions. The orientation of the
camera was fixed at an angle of 25° towards the floor for the
sessions while sitting and at an angle of 0° while standing, so that
the participants’ entire torso was visible in all depth frames,
especially at small distances. Our capturing tool records the raw
depth frames and the respective body joint estimates as given
from the Kinect SDK and stores the data of each session in a
separate file. Figure 3 shows some examples of the depth data
from a distance of 2 m for all participants while sitting, along
with some examples while standing upright with occlusions
(holding a cup in front of the torso and performing drinking
gestures).

4.1 Study Participants and Protocol
For the experiments, we have locally recruited 19 participants that
were not diagnosed with respiratory illnesses, 12 of them male
and 7 of them female. During the recordings, they were wearing
their regular indoors clothing, ranging from tops, T-shirts,
sleeved shirts, collared shirts, sweatshirts to woollen pullovers
and hoodies. Each participant was beforehand shown the depth
imaging equipment and was briefed on the study goals and the
research questions.

FIGURE 3 | In our study, 19 study participants (12 male, 7 female, all participants aged between 22 and 57 years old) were asked to sit or stand in front of a depth
sensor and follow a breathing visualization. All participants were recorded for 20 sessions, each at 4 different distances from the depth camera, two different paced
breathing rates, and for the three conditions sitting, standing, and standing with occlusion. Shown are exemplary depth data taken at a distance of 2 m from some
participants while sitting (A), and while holding a cup and performing drinking gestures (B), leading to regular occlusions of the torso.
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The 19 participants were told to sit through 20 recording
sessions for about 5 min each for a number of parameters,
interspersed with short 5 min breaks:

1) In a first condition, participants were asked to sit in an
adjustable office chair in front of the depth sensor. The
height of the chair was fixed to 0.5 m, but its back support
could be reclined and did not need to be used (i.e., participants
could lean back or not, as they preferred). To fix the distances
between chair and depth camera, markers were taped to the
floor to define the exact positions where the chair had to be
placed. Participant were asked to face the depth camera and to
keep the arms away from the chest area (e.g., on the chair’s
armrests) such that the participant’s upper body was fully
visible to the depth sensor.

2) In a second condition, the participants were instructed to
stand in an upright position following the same rule as in the
first session, i.e., to keep their arms away from the torso
region. The goal of this session is to observe the torso’s motion
while the observed person is standing relatively still, but does
not have the support of a chair’s seating and back surfaces.
Having to stand upright for several minutes tends to introduce
a range of motions that are unrelated to the breathing
movements of the torso region; Some participants did
move their arms in different positions during the
recordings (for instance, switching between hands on the
back and hands in the pockets) or repositioned themselves
to a more comfortable posture, making it potentially
challenging to extract a respiration signal from these data.

3) A third condition introduced frequent occlusions by
instructing the participants to hold a cup of tea in front of
their torso while standing upright. At the start of the session,
participants were recorded for 20 s while holding their cup
away from the torso. For the remainder of the session,
participants were instructed to occlude their stomach and
chest regions with the cup by performing drinking gestures.
Such self-occlusions also occur when gesticulating, but the
drinking gestures were found to be particularly challenging
due to their relatively slower speeds of execution and the
larger, additional occlusion of an in-hand object. Participants
were not required to hold the cup in a particular hand and
some participants moved the cup with both hands at the same
time to the mouth.

For each participant, these conditions were recorded at
distances of 1, 2, 3, and 4 m between participant and depth
camera. For conditions 1) and 2) the recordings were repeated
at two respiration rates, 0.17 and 0.25 Hz, obtained through
paced breathing. Condition 3) was recorded at 0.17 Hz. For the
paced breathing, participants were asked to adhere to a paced
breathing visualization shown on the display. The intention is
to guide participants’ respiration at a stable rate to make
the recordings independent of user specific breathing
behaviours and more comparable with respect to the
different parameters. The recording was started after about
2 min, to give the respective participant a chance to adapt his or
her respiration rate to the given target frequency. Overall our

dataset comprises 380 unique recordings with over 9.5 h of such
respiration data.

4.2 Performance Measures
Overall, we compute four different performance measures: The
accuracy, the precision, the correlation to the ground truth, and
the signal-to-noise ratio (SNR). The accuracy describes, how
accurate the respiratory rate can be computed from the
breathing signal as obtained from the respective method. The
precision describes, how far the respiratory rate is off from the
ground truth, the correlation describes how similar the signal is to
the ground truth, and the SNR describes the quality of the signal,
i.e., how well the breathing signal stands out of the noise and thus
how well it can correctly be extracted.

For the computation of the accuracy, the breathing signal is
shifted to frequency domain with the Fast Fourier Transform
(FFT) using a moving window approach. The moving window
has the length l and is moved over the signal with the step size s,
splitting the signal up into different equally sized segments.
These segments will have a certain overlap that can be defined
by both windowing parameters l and s. If the dominant
frequency within the range of 0.1 Hz (6 breaths/min)–1.5 Hz
(90 breaths/min) of such a segment is equal to the ground truth
frequency, this segment is considered a correct estimate. The
number of correct estimates divided by the overall number of
segments of a single session’s respiration signal for a given
algorithm is the average accuracy for this session (user, distance,
etc.) and algorithm. Its computation formally is stated in
Equations 1, 2.

acc x,ωref( ) � 1 if argmax
0.1< ω

2π<1.5
F x{ } ω( )( ) � ωref

0 else

⎧⎪⎨⎪⎩ (1)

Accuracy x( ) � 1
N

∑N
i�0

acc xi·s, xi·s+l[ ],ωref( ), x � x0 . . . , xn (2)

Due to the frequency binning of the FFT, the window length is
a crucial parameter for the accuracy computation. A narrow
window length yields a good time resolution, providing many
segments to test the signal against the ground truth, but can not
provide a fine frequency resolution as a broad spectrum of
frequencies will fall into the same frequency bin. This
effectively lowers the precision of the accuracy measure since
this whole spectrum will be considered a correct estimate. To
yield a precision of one breath per minute, a window covering 60 s
of data would be required. A wide window length on the other
hand generates fewer signal segments, effectively reducing the
resolution of the accuracy measure. Furthermore, due to their
length, signal distortions or short periods of frequency deviations
may be shadowed or cause the entire segment to fail the test
against the ground truth.

To make the accuracy measure more expressive, we introduce
a measure for the frequency estimation error that tells how far the
estimated respiratory rate is off from the ground truth frequency.
For this, in a first step the frequency resolution locally is increased
by interpolating the dominant frequencies using Quinn’s second
estimator. The difference of the refined, more precise dominant
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frequency and the ground truth frequency then becomes the
estimation error as again formally defined in Equation 3. The
error first is computed for each window used in the accuracy
computation separately and the different windows’ errors are
averaged afterwards to yield the mean error of the whole sequence
of a single recording.

E x,ωref( )� 1
N

∑N
i�0

|argmax
0.1< ω

2π<1.5
Quinn2 F xi·s,xi·s+l[ ]{ } ω( )( )( )−ωref|

(3)

The similarity of our method’s estimated breathing time
series to a given ground truth signal is assessed by
computing their Pearson correlation coefficient (PCC) as
given in Eq. 4:

rxy � ∑n
i�1 xi − �x( ) yi − �y( )�����������∑n

i�1 xi − �x( )2
√ ������������∑n

i�1 yi − �y( )2√ (4)

To ensure a high confidence of the PCC, it is computed on the
whole, fixed length of the signal. With its several thousand
samples, even the 99% confidence intervals are narrow and
only a small fraction apart from the computed PCC value.
Also, we are interested in an expressive quality measure of the
overall signal, even if the signal locally may show a higher PCC.
The ground truth is given as a sine signal obtained from the
frequency settings of our paced respiration setup.

The signal quality is measured in terms of the signal-to-
noise ratio (SNR) as defined in Equation 5. A higher SNR
value means that the respiratory signal more significantly
stands out from the noise and therefore is easier to extract
from the data. The SNR also is computed on the signal as a
whole.

SNRdB � 10 · log10
PSignal

PNoise
( ) (5)

5 EVALUATION

In this section, the influence of various parameters on the six
different methods (also see Section 3) are investigated. The
parameters under consideration are the region of interest
(chest, abdomen, or the entire torso), the condition (sitting,
standing, or standing with occlusions), the distance of the
participant to the depth camera (1–4 m), the user’s breathing
rate (10 or 15 breaths per minute), and the gender. Additionally,
we summarize some user dependent observations we made
during the evaluation at the end of this section. In all
following accuracy and error evaluations, a fixed FFT window
length of 48 s is used. It has the advantage that both, the 0.17 and
0.25 Hz frequencies from our paced breathing setup can
accurately be resolved by a simple rectangular windowing
function such that no frequency leakage occurs at the target
frequencies. The window is moved over the signal with a step size
of one breathing cycle, i.e., with 6 s at 0.17 Hz (10 bpm) and 4 s at

0.25 Hz (15 bpm). Overall, the windowing yields a frequency
resolution of about 0.02 Hz or 1.2 breaths per minute and 7 or 10
distinct windows to test for the accuracy. The signals furthermore
are evaluated on the raw output of the algorithms, i.e., there is no
filtering applied to the signals in the following results. An example
of the output signals will be given in Figure 4 and is discussed in
Section 5.1. The following sections then, beginning with an
examination of the three different torso regions, will each
separate out a single parameter and, using the previously
proposed performance measures, show its influence on the
results of all methods when applied to our dataset (also see
Section 4).

5.1 Visual Inspection
Figure 4 depicts an example of the signals obtained from the
various methods, with the different distances at 1, 3, and 4 m in
the columns, and with the conditions sitting, standing, and
standing with occlusion in the rows. For all conditions and
methods, with increasing distance an increase of the overall
noise level can be observed. Especially the difference based
mean and median methods are strongly affected by noise,
since both methods rely on subtracting two noisy signals,
which increases their overall noise level. The Diff Model
method has a built-in low-pass filter to prevent this effect
from happening. For this reason, it has the cleanest output
signal among all methods, but still shows some smaller
distortions at higher distances. The PCA method, although
only using the strongest component, was not able to separate
out the noise from the signal.

While the sitting condition can be managed by all methods,
standing introduces small swaying movements, typically in the
range of a few centimeters or less, which may introduce severe
signal distortions for all non-difference based methods, as shown
in this example. The breathing cycles, to some extent, are still
visible in the distorted signals, but other frequency components
clearly dominate. The difference basedmethods are able to reduce
the motion components and are barely affected by them.

The large spikes caused by occlusion events, as seen in the
bottom plots, cause even more severe signal distortions and make
it difficult to obtain a good signal. The Diff Model can internally
detect and recover occluded body parts and is the only method
that is not or barely affected by occlusion. The median based
methods can partially deal with occlusion or at least can limit the
spikes to a certain extent.

5.2 The Influence of the Torso Region
From our previous work in Kempfle and Van Laerhoven (2018), we
know that the choice of the torso region to be observed plays a crucial
role for the Mean Raw method in the detection of the respiration
signal. For other methods, this influence yet is unknown, so in the
following we will investigate the role of the torso region for all
methods mentioned above and compare their performance to each
other. Figure 5 depicts the accuracies, errors, Pearson correlation
coefficients (PCC), and signal-to-noise ratios of the different
methods when applied to the chest, abdomen, or the entire torso.
All 380 recordings, comprising different users, distances, respiratory
rates, and conditions (sitting, standing, and standing with occlusion),
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are combined in these plots. The observations made here thus show
each method’s overall performance on the respective region.
Furthermore, we did not find a single parameter combination

that is more beneficial on a different body region other than
suggested by these plots. The choice of the window position
affects the performance of all other parameter settings in the

FIGURE 4 | The respiration signals from the methods PCA, Mean Raw, Median Raw, Mean Diff, Median Diff, and Diff Model, as well as the ground truth, obtained
from the chest at a distance of 1 m (A), 3 m (B), and 4 m (C) for the conditions sitting (top), standing (middle), and standing with occlusion (bottom). All signals are zero
centered and normalized with respect to the mean and standard deviation of their first 240 frames (8 s) and, for better visibility, are stacked vertically in the order as
mentioned above. With increasing distance, the noise level of all methods increases. The Diff Model hereby is the least affected method and the other difference
based methods are affected the most. Standing introduces significant signal distortions for non-difference based methods. Occlusion events, visible as large spikes in
the bottom plots, can only be handled by the Diff Model method.

FIGURE 5 | From (A–D): The respiratory rate accuracy, errors in breath per minute, Pearson Correlation Coefficient w.r.t. the ground truth signal, and signal to noise
ratio of the different methods. Plots are separated by the chest, abdomen, and torso region with all conditions (sitting, standing upright, and occlusion), distances
(1–4 m), and respiratory rates (10 and 15 bpm) combined. Accuracy and error metrics use a Fast Fourier Transformwindow with a length of 48 s. The colored bars show
the averages, while overlay box plots show median (middle parts) and whiskers marking data within 1.5 IQR. All algorithms perform best on the chest region, while
the abdomen especially for the difference based methods causes high performance drops.
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same or in a similar way. The condition, to some extent, has an
influence on the choice of the window position as for instance in the
occlusion scenario the abdomen was occluded for longer time
periods and more often than the chest. This, however, does not
change the observed trend and we refer to Sec. 5.3 for more details
on the influence of the condition. In this section, we will focus on the
overall performance of the different methods at the different body
regions.

Chest
At the chest, the PCA and Mean Raw methods show with a mean
accuracy of about 62% (median 90%) and a mean error of above
2.3 bpm (median about 0.4 bpm) the lowest performance values,
but with the PCA performing a little bit better than the Mean
Raw. The Median Raw achieves with a mean accuracy of 69%
(median 100%) and a mean error of 1.66 bpm (median 0.17 bpm)
slightly better performance values and seems to be more robust
than both previous methods (also see Sec. 5.3). The Diff Mean
likewise is with an average accuracy of 80% (median 100%) and a
mean error of 2.0 bpm (median 0.08 bpm) outperformed by its
Diff Median counterpart, which has an average accuracy of 89%
(median 100%) and amean error of 0.87 bpm (median 0.06 bpm).
Both methods clearly benefit from subtracting the motion
component obtained from the throat, since without the
subtraction, both are identical to the Mean Raw or Median
Raw respectively. The highest performance is achieved by the
Diff Model method. At the chest, it has a mean accuracy of 94%
(median 100%) and a mean error of 0.3 bpm (median 0.06 bpm).
The box-plot overlays of the accuracy plots furthermore reveal
that the Diff Median and the Diff Model are able to correctly
estimate the respiratory rate of the majority of the 380 samples,
except for the outliers marked as circles. There are some
differences, however. While the Diff Model’s accuracy is only
about 5% above that of the Diff Median, its mean error is almost
three times lower.

In terms of signal quality, the PCA and the Mean Raw show a
median Pearson Correlation Coefficient (PCC) of about 0.22, and
a median signal-to-noise ratio (SNR) of about 18 dB. The Median
Raw achieves with a median PCC of 0.32 and a median SNR of
21.5 dB slightly better values. The Diff Mean likewise is with a
median PCC of 0.39 and amedian SNR of 23 dB outperformed by
the Diff Median with its median PCC of 0.5 and median SNR of
26 dB. The Diff Model achieves with a median PCC of 0.75 and a
median SNR of 32 dB a notably higher PCC and SNR than all
other methods.

Abdomen
At the abdomen, the PCA, Mean Raw, and Median Raw show
with a mean and median accuracy of about 53% and a mean error
of about 2.3–2.8 bpm (median 1.4–1.6 bpm) a similar
performance. Compared to the chest, the Median Raw thus
has a higher performance loss than the other two methods.
The Diff Mean and the Diff Median also show a similar
performance. Their mean accuracy lies at about 62% (median
85–89%) and their mean error at about 2.4 bpm (median
0.4–0.7 bpm). Both methods, but especially the Diff Median,
show the highest loss in performance as compared to the

chest. The Diff Model’s performance also significantly lowers
at the abdomen, but with a mean accuracy of 79% (median 100%)
and a mean error of 1.1 bpm (median 0.1 bpm) it still
outperforms all other methods. In terms of signal quality, all
methods, except for the Diff Model, show a median PCC in the
range of 0.16–0.19 and a median SNR in the range of 15–17 dB.
The Diff Model on the other hand has a median PCC of 0.49, and
a median SNR of 26 dB.

Torso
The torso region includes both, the chest and the abdomen, and
likewise yields intermediate results between both other regions.
The difference based methods hereby again outperform the other
methods and end up more favourably than at the abdomen. The
Diff Model furthermore with a mean accuracy of about 89% only
loses about 5% as compared to the chest, while both other
difference based methods lose about 10% in accuracy. Also it’s
mean error of about 0.5 breaths per minute is considerably lower
and closer to the error at the chest than that of the other methods.

Summary
Overall, the chest region is the optimal choice, since it yields,
regardless of the method used, the highest accuracy, lowest errors,
highest PCCs, and highest SNRs. The abdomen has shown to be
the least suitable region for detecting the respiration signal and, in
relation to the other regions, marks the lower bound on all
performance metrics.

We argue that all methods benefit from a larger signal
amplitude that, during breathing, stems from a greater
expansion of the chest than of the abdomen. Another aspect
that needs to be considered is that during the occlusion condition,
the abdomen was the body region that was occluded most of the
time which further lowers the detectability of the respiration
signal.

Comparing the different methods among themselves shows
that the Diff Model method, regardless of the observed body
region, overall is superior to all other methods, followed by the
Diff Median and the Diff Mean. The accuracy box plots
furthermore suggest that, except for some outliers, the Diff
Model as well as the Diff Median methods can at the chest
optimally estimate the respiratory rate. The weakest methods are
the PCA and the Mean Raw. The difference based methods,
however, comprise larger performance drops at the abdomen or
torso than the other methods, which means they are more
susceptible to the choice of the body region. We argue that
the difference based methods perform comparably worse on
the abdomen due to the spatial distance of the abdomen to
the throat, where the reference region for subtracting the
motion components is located. A swaying motion has a larger
amplitude at the throat than on the abdomen and additionally the
upper body can, to a certain extent, move independently from the
lower body, whereas the chest motion can be assumed to be
similar to the throat motion.

On all body regions, the Diff model has a notably better signal
quality than all other methods. One reason for the Diff Model’s
higher PCC and SNR is, as suggested by its accuracy and error
values, that the true breathing signal can better be estimated by
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this method, but this alone does not explain the relatively big
difference to the Diff Median. The main reason is that the Diff
Model method uses a low-pass filtering technique and thus is able
to model the torso surface with a significantly reduced noise level.
From the improved torso surface reconstruction it then can
extract a much cleaner respiration signal.

Since the chest has been shown to be the most suited region for
extracting the respiration signal, we will focus on this region in
the following sections. Beginning with the influence of the
condition, we will step by step provide a deeper insight into
the specific influence of each single parameter on the overall
performance of the different methods.

5.3 The Influence of the Condition (Sit,
Stand, Occlusion)
The methods proposed in previous works primarily have been
evaluated in scenarios where the study participants were lying
down or sitting still. We argue that in a more realistic scenario the
observed person should also be allowed to stand in front of the
camera, possibly performing regular self-occlusion gestures. For

this reason, we assess in this section the performance of the
different methods for the three conditions sitting, standing, and
standing with self-occlusions by performing drinking gestures
with a cup. Figure 6 plots the accuracies, errors, PCC values, and
signal-to-noise ratios of the different methods against the three
mentioned conditions. As stated above, we will primarily focus on
the chest, but for completeness, in Figure 6 we also append the
evaluation data of the abdomen and the torso. Where
appropriate, we will point to specific findings that in our view
are strongly influenced by the condition as well as by the observed
torso region and thus could not be considered in full detail in the
previous section.

Sitting (Chest)
Sitting still (or lying down) barely introduces motion artifacts and
all methods in previous work have been evaluated for a static
scenario like sitting or lying down. So, as expected, all methods
can deal with the sitting condition without problems. The mean
accuracy stays above 92% for all methods and the box plots fully
remain at 100% with only a few outliers spread across the plot.
The Median Raw performs with a mean accuracy of 96.5% and a

FIGURE 6 | From (A–D): The respiratory rate accuracy, errors in breath per minute, Pearson Correlation Coefficient w.r.t. the ground truth signal, and signal to noise
ratio of the different methods. Plots are separated from top to bottom by the chest, abdomen, and torso region and by the sitting, standing, and occlusion condition, with
all distances (1–4 m) and respiratory rates (10 and 15 bpm) combined. Accuracy and error metrics use a Fast Fourier Transform window with a length of 48 s. The
colored bars show the averages, while overlay box plots show median (middle parts) and whiskers marking data within 1.5 IQR. Sitting results for all methods in a
much clearer signal than standing upright, with standing and occlusion (holding a cup and performing drinking gestures, right measures) performing worse than just
standing upright.
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mean error of 0.15 bpm better than all other methods, closely
followed by the Diff Model and the Diff Median with a mean
accuracy of 95.5 and 95%, and a mean error of 0.24 and 0.49 bpm
respectively. In terms of signal quality, the Diff Model
outperforms the other methods with a median PCC of 0.88
and a SNR of 35 dB. The PCA, Mean Raw, and Median Raw
all comprise a median PCC of 0.81 and a SNR of 32 dB, while the
remaining difference based methods form the lower bound with a
median PCC of 0.7 and a median SNR of about 30 dB, both with
wide spread box plots. We argue that the latter two methods
suffer from subtracting two noisy signals, hence increasing the
overall noise level. The Diff Model with its built-in low-pass filter
behaviour can reduce the noise sufficiently well and, moreover,
also has a better signal quality than the non-difference based
methods.

Standing (Chest)
Standing introduces slight motion artifacts that mainly are caused
by small, unconscious swaying movements while keeping
balance, but sometimes they also stem from the user relieving
a leg, moving an arm by for instance taking the hands out of the
pockets, or by changing its posture in general. The non-difference
based methods, i.e., the PCA, Mean Raw, and Median Raw, can
not compensate for these motion artifacts which leads to a mean
accuracy of about 51% (median in the same range) and a mean
error of about 3.1–3.8 bpm (median 1.8–2.1 bpm). The Diff Mean
and Diff Median are able to subtract the motion components and
thus can better deal with the standing condition. Their mean
accuracy lies at about 93% (median 100%), and their mean error
ranges from 0.4 to 0.46 bpm. The Diff Model outperforms all
othermethods with amean accuracy of 96% (median 100%) and a
mean error of 0.22 bpm. In terms of signal quality, the non-
difference based methods show a median PCC of 0.21 and a
median SNR of 17 dB. The Diff Mean and Diff Median have a
median PCC of about 0.6 and a median SNR of about 29 dB, and
the Diff Model finally has a median PCC of 0.78 and a median
SNR of 33 dB.

Occlusion (Chest)
The drinking gestures cause even more body movements than
standing alone and furthermore introduce regular self-occlusions
through the arms and the cup held in the hands. The PCA and
Mean Raw can not compensate for any of these events and
therefore only have a mean accuracy of about 21% (median
0%) with relatively large mean errors of 4.4–4.7 bpm (median
3.4–3.8 bpm). Their median PCC is at about 0.13 and their
median SNR at about 13–14 dB. The Median Raw, to some
extent, is more robust against deviating occlusion pixels and
shows a mean accuracy of 45% (median 43%), a mean error of
1.9 bpm (median 1.8 bpm), a median PCC of 0.21, and a median
SNR of 17.5 dB. The difference between using the mean or the
median to extract the respiration signal in the presence of
occlusion gets even more apparent when the body movement
gets suppressed as by the Diff Mean and Diff Median methods.
The Diff Mean performs even worse than the Median Raw. It has
a mean accuracy of 33% (median 14%), a mean error of 7.5 bpm
(median 5.3 bpm), a median PCC of 0.13, and a median SNR of

13 db. Its median counterpart on the other hand has a mean
accuracy of 69% (median 93%), a mean error of 2.5 bpm (median
0.26 bpm), a median PCC of 0.28, and a median SNR of 20 dB.
This finding strongly encourages the use of the median instead of
the mean to estimate the breathing signal in the presence of
occlusions. The Diff Model can detect and recover occluded body
regions and therefore again outperforms all other methods. It has
a mean accuracy of 87% (median 100%), a mean error of
0.62 bpm (median 0.12 bpm), a median PCC of 0.61, and a
SNR of 29 dB.

Dependency on Body Region
The overall influence of the body region already was explained in
Sec. 5.2, so in this section we will focus on the interdependency of
the condition and the body region. We will try to provide the
most important information about this interdependency on a
higher level, without going through all different performance
values in detail. For reference, all performance measures can be
found in Figure 6. At the abdomen and at the entire torso, but
especially at the abdomen, all performance measures drop when
compared to the chest. The decrease in performance, however, is
less marked during the sitting condition. Here, the Median Raw
and the Diff Model can deal with the different body regions the
best, while the Diff Mean shows the largest performance losses.
During standing, the PCA, Mean Raw, and Median Raw show a
weak performance on all regions. The Diff Mean and the Diff
Median, while comprising a high performance at the chest, are
strongly affected at the other body regions, mostly at the
abdomen. The Diff Model can deal with the standing
condition well when looking at the chest or the entire torso,
but struggles at the abdomen. The difference based method’s
decrease in performance during the standing condition is likely
caused by the spatial distance of the reference region at the throat
to the respective body region, like the abdomen. For the occlusion
condition, we will only look at the Diff Median and the Diff
model. While the Diff Median gets severely affected at the torso
and even more at the abdomen, the Diff Model can maintain an
acceptable performance at the torso, but also struggles at the
abdomen. During the occlusion condition, the methods do not
only have to deal with the participants standing upright, as before,
but also with a mug being held in one or both hands and being
moved in front of the torso. Since the hand by most participants
and most of the time was held in front of the abdomen and only
occasionally was moved over the chest while performing a
drinking gesture, the abdomen, but also the torso are prone to
comprise a lot more motion artifacts than the chest.

Summary
While all methods are able to achieve high performance values
during the sitting condition, a completely different picture is
drawn at the other conditions. Standing introduces small motion
artifacts which the PCA, Mean Raw, and Median Raw methods
can not compensate for. These motion artifacts thus interfere
with the respiration signal and consequently their performance
decreases significantly. The Diff Mean, Diff Median, and Diff
Model are able to subtract the motion components from the
signal and can, at least at the chest, maintain a comparably high
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performance as compared to the sitting condition. During the
occlusion condition, the PCA and Mean Raw, as well as the Diff
Mean again experience a significant drop in performance as
compared to standing alone, while the Median Raw does not
show such a high decrease in performance. As the median
typically is more robust against outliers, the methods using the
median have a higher chance of not seeing an occlusion or of only
suffering from it at a fraction of the time. Consequently, the Diff
Median is able to deal with the occlusions better than all methods
mentioned above, but still it is heavily affected by the hand
movements. The Diff Model on the other hand can handle the
occlusions much better, but, to some extent, also experiences a
drop in performance.

5.4 The Influence of Distance to the User
There are two important factors that influence the breathing
estimation when changing the distance of the user to the depth
camera. First, with increasing distance the body region appears
smaller on the image frame and fewer depth pixels are available
for extracting the respiration signal. Secondly, the noise level of
the depth camera’s pixel readings increases with distance.
Consequently, with increasing distance of the user, a lower

signal quality can be expected due to the decreasing amount
of breathing related depth pixels available for averaging out the
increasing noise. Another aspect is that in close proximity not all
body joints may be visible, and on far distances the body joint
estimation may not work due to too few body features being
distinguishable on the smaller body appearance. For the Kinect
SDK, the highest distance is at about 4–4.5 m, and a minimum
distance of 1 m has been shown to be sufficiently far away during
our experiments.

In this section, we will evaluate the influence of an increasing
distance on the breathing estimation. Figure 7 depicts the
accuracies, errors, PCC, and SNR values at the chest of the
different methods at distances ranging from 1 to 4 m. The
plots are separated into the three conditions sitting, standing,
and occlusion. This ensures to not confuse the influence of the
distance with a performance dependency on the condition and
enables us to show the particular differences among conditions.

Sitting
While sitting, all methods can maintain a median accuracy of
100% at all distances and except for the Diff Mean at 4 m, also all
method’s box plots fully remain at an accuracy of 100% with only

FIGURE 7 | From (A–D): The respiratory rate accuracy, errors in breath per minute, Pearson Correlation Coefficient w.r.t. the ground truth signal, and signal to noise
ratio of the different methods at the chest. Plots are separated from top to bottom by the sitting, standing, and occlusion condition and by the distance between 1 and
4 m, with all respiratory rates (10 and 15 bpm) combined. Accuracy and error metrics use a Fast Fourier Transform window with a length of 48 s. The colored bars show
the averages, while overlay box plots show median (middle parts) and whiskers marking data within 1.5 IQR. The breathing rate is detected slightly less accurately
and the PCC and SNR values decrease when the user is further away from the camera. The Diff Model method remains robust for different distances and conditions.
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a few more outliers at higher distances. Their mean accuracy
likewise is highest at close distances, but decreases in varying
amounts towards higher distances. At distances of 1 and 2 m, all
methods show a mean accuracy of about 96–97%. Their mean
error at 1 m lies between 0.09 and 0.12 bpm (medians at about
0.04 bpm) and increases at 2 m to about 0.12–0.15 bpm (medians
at about 0.05 bpm). From 3 m onwards, in terms of accuracy and
error, a small but noticeable performance drop can be observed
for most methods. The Median Raw hereby is minimally affected
by the distance and is able to maintain a mean accuracy of about
97% and a maximum mean error of about 0.19 bpm at 4 m. The
PCA,Mean Raw, and Diff Mean are affected themost and show at
3 m a mean accuracy of about 91–92% with a mean error between
0.86 bpm for the PCA to 1.6 bpm for the Mean Raw (all medians
at about 0.06 bpm). At 4 m, their performance values lower to a
mean accuracy of about 85% (Diff Mean) to 88% and a mean
error of 1.3 bpm for the PCA to 1.9 bpm for the Diff Mean (all
medians at about 0.09 bpm). The Diff Median shows a mean
accuracy and error of 94% and 0.6 bpm at 3 m, and 91% and
1.1 bpm at 4 m, and the Diff Model achieves 95% and 0.3 bpm at
3 m, and 93% and 0.4 bpm at 4 m, respectively.

In terms of signal quality, the PCC and SNR values also drop
with increasing distance, but on a much larger scale than the
accuracy, and with extending box plots towards higher distances.
The median PCC of the PCA, Mean Raw, and Median Raw drop
from a value of about 0.87 at 1 m to about 0.66 at 4 m, and their
SNR drops from 35 db to about 29 db. The Diff Mean performs
worst on higher distances with a median PCC ranging from 0.89
at 1 m to 0.34 at 4 m, and a median SNR from 36 to 22 db. It is
closely followed by the Diff Median with a median PCC range
from 0.89 at 1 m to 0.45 at 4 m and a median SNR range from 36
to 25 db. The Diff Model is least affected by the distance and
spans from a median PCC of 0.92 at 1 m to 0.78 at 4 m and a
median SNR from 38 to 33 db.

Overall, the influence of the depth camera’s increasing noise
level at higher distances can best be observed in a seated position
where the respiration signal is not disturbed by motion artifacts.
When looking at the unfiltered PCA, Mean Raw, or Median Raw
methods, their PCC and SNR values get worse on higher distances
whereas the Diff Model method with its inherent low-pass
filtering remains more stable over all distances. The Diff Mean
and Diff Median methods on the other hand decrease the most in
signal quality due to computing the difference of two noisy
signals, hence amplifying the overall noise. Both methods
show the importance of low-pass filtering the depth values
when using a difference-based approach for computing the
respiration signal.

Standing
The standing condition introduces random body movements, for
instance swaying while keeping balance, which have a dominating
influence on all non-difference based methods. Since the
influence of the standing condition is not predictable and may
vary in between different distances, the results of these methods
have to be taken with caution. For this reason and because the
non-difference based PCA, Mean Raw, and Median Raw show
similar performances on all measures, we refrain from listing

them separately, but instead summarize their general trend. Their
mean accuracy is with about 59% highest at 1 m, drops to about
45% at 3 m, and interestingly increases again at 4 m to about 49%.
This increase likely is caused by some participants moving less at
4 m, which also is supported by the other methods that do not
show such an increase. Their mean error increases from about
2.5 bpm (median 1.1–1.7 bpm) at 1 m to about 3.5 bpm (median
2.2–3.0 bpm) at 3 m. At 4 m, the PCA and Median Raw have a
mean error of about 3.5 and 3.3 bpm, and the Mean Raw of about
4.4 bpm (all medians at about 2.2 bpm). The Diff Mean and Diff
Median show a similar mean accuracy on all distances that
decreases from 97% at 1 m to 86% at 4 m. Their mean error
increases from 0.18 bpm (median 0.06 bpm) at 1 m to 0.78 bpm
for the Diff Mean and to 0.95 bpm for the Diff Median (all
medians 0.08 bpm) at 4 m. The Diff Model also starts with a mean
accuracy of 97% and a mean error of 0.18 bpm (median
0.06 bpm) at 1 m, but it only lowers to 95% and 0.4 bpm
(median 0.07 bpm) at 4 m. The difference based methods’
accuracy box plots furthermore fully remain at 100% at all
distances.

The median PCC and SNR values of the PCA, Mean Raw, and
Median Raw methods lie between about 0.25 and 20 dB at 1 m
and 0.16 and 15 dB at 4 m, all indicating a poor signal quality. The
Diff Mean and Diff Median start with a median PCC and SNR of
0.81 and 34 dB at 1 m and drop to about 0.38 and 23 dB at 4 m,
which is a similar trend as for the sitting condition. With
increasing distance, the Diff Model also loses in signal quality,
but with a median PCC and SNR between 0.86 and 36 dB at 1 m,
and 0.72 and 31 dB at 4 m, it performs significantly better than
the other methods. Being able to maintain a better signal quality
especially at higher distances also explains its higher accuracy as
compared to the other difference based methods.

Occlusion
With the introduction of self-occlusion events, it is barely possible
to draw any conclusions about the influence of the distance on
methods that are not able to deal with those. The reason is that
random amounts, extents, and times of the occlusions on top of
random movements caused by staying enter the breathing signal
in an unpredictable way. Recordings at higher distances might
comprise less motion artifacts and thus are likely to yield better
performance values than recordings from close distances, or vice
versa. These random signal distortions therefore are likely to
shadow any effects of the distance when not counteracted.

The PCA and Mean Raw have a mean accuracy below 25% at
all distances and the Median Raw shows values between 42 and
48% randomly distributed between 1 and 4 m. The Diff Mean has
a maximum mean accuracy of about 51% at 2 m which to both
sides degrades to below 35% down to about 13% at 4 m. Except
for the Median Raw, all these methods have a mean error above
3.7 bpm, a median PCC below 0.17, and a median SNR below
16 dB. The Median Raw performs better than above methods and
shows a mean error of between 1.7 bpm (3 m) to 2.1 bpm (2 m), a
median PCC of about 0.21, and a median SNR of about 18 dB
across all distances. The Diff Median, as already described in Sec.
5.3, can deal with the occlusion scenario much better. Starting
with a mean accuracy of 62% (median 71%) at 1 m, it achieves up
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to 78% (median 100%) at distances from 2 to 3 m, and falls down
to 60% (median 71%) at 4 m. Its mean error decreases from
2.4 bpm (median 1.0 bpm) at 1 m to 14 bpm (0.15 bpm) at 3 m
and increases to 4.1 bpm (median 0.93 bpm) at 4 m. Its median
PCC and SNR likewise increase in between 1 and 3 m from 0.25 to
0.32 or from 19 to 22 dB and have a reduced value of 0.22 or 18 dB
at 4 m. The Diff Model, in contrast to the other methods, is able to
detect and recover occluded areas. It has a mean accuracy of about
90% at 1 m, 92% at 2 m and drops to about 80% at 4 m, with all
median accuracies at 100%. Its mean error at 1 m is 0.77 bpm
(median 0.1 bpm) and gradually increases from 0.33 bpm
(median 0.1 bpm) at 2 m to 0.88 bpm (median 0.15 bpm) at
4 m. Its median PCC and SNR drop from 0.64 to 29 dB at 1 m
to 0.5 and 26 dB at 4 m. All methods show a decreased
performance at 1 m as compared to a distance of 2 m, which
to some extent is likely to be caused by the randomness of the
occlusion gestures. Another explanation may be that the
occluding hand and mug block at a closer distance more
infrared rays emitted by the depth sensor and cast a shadow
on nearby pixels. An additional reflection of the emitted infrared
rays from the mug towards the body furthermore influences a
certain non-occluded area on the body surface.

Summary
The optimal distance to measure the breathing signal has been
shown to be in the range from 1 to 2 m, with a tendency towards
2 m in case of occlusion events. A greater distance hereby mainly
affects the signal quality as can best be observed for all methods
when looking at the PCC and SNR values of the sitting condition.
While sitting, the respiration signal is not disturbed by motion
artifacts and thus only competes against the increasing noise level
of the depth camera at higher distances. The reduced signal
quality due to the increasing noise then in return has an effect
on the accuracy and error rate. The type of the condition,
however, has a much stronger influence than the distance. All
methods that are not designed to deal with motion artifacts or
occlusion show on all distances a significantly reduced
performance by means of accuracy, error, and signal quality
(also see Section 5.3). Due to the randomness of these signal
distortions, for these methods it furthermore is barely possible to
draw any conclusions about the influence of the distance, while
the methods that can deal with the respective condition show a
similar trend as observed for the sitting condition. In the
occlusion scenario, a distance of 1 m has shown to be less
optimal as compared to a distance of 2 m, which we assume is
due to increased shadowing and reflection effects caused by the
occluding hand and mug from the depth camera’s infrared
emitter upon the body surface.

5.5 The Influence of Respiratory Rate
We recorded the sitting and standing sessions at two different
respiratory rates of 10 breaths per minute (0.17 Hz) and 15
breaths per minute (0.25 Hz), both obtained from our paced
breathing setup. In this section, we try to asses and quantize the
influence of the respiratory rate on the different methods’
performances, namely the accuracy, error, PCC, and SNR. The
performance values are taken from the chest region, include all

distances, and are separated into the conditions sitting and
standing. The results for the two different respiratory rates are
depicted in Figure 8.

Sitting
While sitting, and at a respiratory rate of 10 bpm, theMedian Raw
and the Diff Model achieve the highest performance with a mean
accuracy of about 94% and a mean error of 0.25 bpm. They are
followed by the PCA and Diff Median with a mean accuracy of
92% each, and a mean error of 0.39 and 0.63 bpm respectively.
The Mean Raw and Diff Mean show the lowest performance with
a mean accuracy of about 91 and 90%, and a mean error of about
0.72 and 0.78 bpm, respectively. At 15 bpm, the highest mean
accuracy and lowest mean error of about 100% and 0.06 bpm is
achieved by the Median Raw, closely followed by the Diff Median
with 98% and 0.35 bpm, and the Diff Model with 97% and
0.24 bpm. The remaining methods have a mean accuracy of
about 95%, with the mean error of the PCA being at
0.82 bpm, of the Mean Raw at 0.95 bpm, and of the Diff Mean
being at 1.0 bpm. Furthermore, at both respiratory rates, all
methods’ accuracy box plots fully remain at 100% and all
methods show a median error of about 0.05 bpm. At 10 bpm,
however, much more outliers can be observed in the error plot,
with most of them falling in the range of up to an error of about
4.5 bpm, hence decreasing the respective methods’ mean
accuracy at the 10 bpm breathing rate.

In terms of signal quality, the PCA, Mean Raw, and Median
Raw have a median PCC and SNR of about 0.85 and 35 dB at
10 bpm, and 0.8 and 30 dB at 15 bpm. The Diff Mean and Diff
Median show a lower signal quality with values of 0.7 and 31 dB at
10 bpm, and 0.73 and 29 dB at 15 bpm. The Diff Model has on
both respiratory rates the highest median PCC and SNR with
values of 0.89 and 37 dB at 10 bpm, and 0.88 and 34 dB at 15 bpm.

Standing
While standing, the non-difference based methods, as explained
in Sec. 5.3, are heavily influenced by that condition and show a
low performance, but a strong influence of the respiratory rate
can be observed. The mean accuracy of the PCA, Mean Raw, and
Median Raw at 10 bpm is with about 62% (median 86%) much
higher than at 15 bpm where it only is at about 41% (median 20%
forMedian Raw, 30% others). The mean error likewise is for these
methods with about 1.4–1.5 bpm (median 0.7 bpm) lower at
10 bpm than at 15 bpm where it is above 4.7 bpm (median
above 5.0 bpm). Likewise, their median PCC and SNR at
10 bpm indicate with values of 0.25 and 19 dB a better signal
quality than at 15 bpm which in contrast shows lower PCC and
SNR values of 0.15 and 15 dB.

The difference based methods are not or only barely affected
by the standing condition. The Diff Mean, Diff Median, and Diff
Model methods show a mean accuracy of about 93% and a mean
error of 0.25 bpm at 10 bpm. At 15 bpm, the Diff Mean and Diff
Median have a slightly lower mean accuracy of about 92% and a
higher mean error of 0.55 and 0.67 bpm, respectively. The Diff
Model on the other hand achieves at 15 bpm a higher mean
accuracy of 98% and a lower mean error of 0.17 bpm. On both
respiratory rates, the difference based methods furthermore show
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a median error of 0.06 bpm and have their accuracy box plots
being fully at 100%. The median PCC and SNR values of the Diff
Mean and Diff Median are at about 0.64 and 29 dB for the 10 bpm
and at about 0.59 and 28 dB for the 15 bpm rate. The Diff model
has the highest PCC and SNR values of 0.8 and 33 dB at 10 bpm,
and 0.75 and 32 dB at 15 bpm.

Summary
All methods appear to have a lower signal quality at 15 bpm as
compared to 10 bpm as indicated by both, the Pearson correlation
coefficient and the signal to noise ratio. All methods’mean accuracy
values on the other hand are higher at 15 bpm during the sitting
condition and for the Diff Model during the standing condition. A
likely reason for this is that more signal periods fall within the 48 s
FFT window at 15 bpm than at 10 bpm, making the 15 bpm signal
component stronger and easier to detect in frequency domain, at
least during the sitting condition with weak frequency components
stemming from motion artifacts. Since the differences in accuracy
are not that big, they might, however, also be caused by one or a few
users. For the other cases, we argue that the higher respiration
frequency interferes stronger with other body movement and thus
can not be detected that easily, but it also is likely that the relatively
relaxed low respiration frequency of 10 bpm (0.17 Hz) did not
introduce as many motion artifacts as the faster one or was
easier to maintain during the recording.

5.6 The Influence of Gender
We consider the gender an important distinguishing feature
between different users. Male and female users do not only
differ in body shape, but also typically show distinct

differences in their clothing styles. Both these characteristics
influence the torso appearance on the depth data and thus can
be assumed to also have an influence on the respiration
estimation. To assess gender-specific differences on all
methods’ performance, we split the participants into a male
and a female group, each containing 12 male or 7 female
participants, respectively. Figure 9 depicts the accuracy, error,
PCC, and SNR of the different methods for both groups, again
divided into the three conditions sitting, standing, and occlusion.

Sitting
While sitting, the male users show a mean accuracy of about 95%
(box plots fully at 100%) and amean error of 0.19–0.34 bpm (median
0.05 bpm) for all methods. In the female group, the PCA,Mean Raw,
and Diff Mean achieve the lowest mean accuracy of about 90–92%
and mean errors between 1.29 and 2.0 bpm (medians at 0.07 bpm),
whereas theMedian Raw achieves with values of 100% and 0.06 bpm
(median 0.05 bpm) the highest performance. The Diff Median and
Diff Model show a mean accuracy of about 96% and a mean error of
0.74 bpm (median 0.06 bpm) and 0.31 bpm (median 0.05 bpm),
respectively. The accuracy box plots for all methods, like on the
male group, nonetheless fully remains at 100%.When zooming out of
the female’s error plot, we see a few outliers, probably from a single
person, with values of up to 30 bpm that, in combination with their
smaller group size, cause the mean error of the PCA,Mean Raw, Diff
Mean, Diff Median to be much higher as compared to the
male group.

In terms of signal quality, the PCC and SNR of the non-
difference based methods are with values of 0.84 and 33 dB higher
for the male group than compared to the female group with PCC

FIGURE 8 | From (A–D): The respiratory rate accuracy, errors in breath per minute, Pearson Correlation Coefficient w.r.t. the ground truth signal, and signal to noise
ratio of the different methods at the chest. Plots are separated from top to bottom by the sitting and standing condition and by the respiratory rate of 10 bpm or 15 bpm,
with all distances (1–4 m) combined. Accuracy and error metrics use a Fast Fourier Transform window with a length of 48 s. The colored bars show the averages, while
overlay box plots showmedian (middle parts) and whiskers marking data within 1.5 IQR. The higher respiratory rate show a slightly better accuracy over all methods
when sedentary, but a lower signal quality (PCC and SNR values) on both conditions.
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values of 0.71–0.77 and a SNR of about 31–32 dB. The difference
based methods on the other hand show a lower signal quality on
the male group. Here, the PCC of the Diff Mean and the Diff
Median have a value of 0.68 and a SNR of 29 dB as compared to a
PCC of 0.72 or 0.8 and a SNR of 31 dB or 32 dB. The Diff Model
achieves the highest signal quality with PCC and SNR values of
0.88 and 35 dB for the male, and 0.9 and 37 dB for female group.

Standing
The standing condition, as already mentioned in Sec. 5.3, is
challenging for the non-difference based methods. All of them
show a mean accuracy of about 48% (medians slightly below) and
mean errors between 3.2 and 3.7 bpm (median 2–2.5 bpm) for the
male, and about 58% (median 63–74%) and 2.6–2.9 bpm (median
1.5–1.7 bpm) for the female users. Their median PCC and SNR
values are slightly higher for the female users, but are all below
0.27 and 20 dB. In contrast to that, all difference based methods
have accuracy box plots that fully remain at 100% and median
errors below 0.07 bpm. The Diff Mean and Diff Median methods
show similar values per group. Their mean accuracy and mean
error values lie at about 90% and at 0.51–0.55 bpm (medians

0.07 bpm) for the male, and at about 98% and at 0.21–0.30 bpm
(medians 0.05 bpm) for the female group. The Diff Model has a
mean accuracy of 93% and a mean error of 0.31 bpm for the male,
and 100% and 0.06 bpm for the female group.

In terms of signal quality, the Diff Mean and the Diff Median
show PCC and SNR values below 0.58 and of about 28 dB for the
male, and below 0.7 and about 31 dB for the female users. The
Diff Model has a median PCC and SNR of 0.74 and 32 dB for the
male, and 0.8 and 33 dB for the female group.

Occlusion
As a general trend during the occlusion condition, we see that all
methods show a higher performance on the female users than on the
male group. The PCA, Mean Raw, and Diff Mean methods hereby
perform worse than the other methods and can be considered to be
more susceptible to occlusions than the Diff Model or both median
based methods. Due to the randomness of the occlusion gestures and
considering the different group sizes (12 male, 7 female), it
furthermore is hard to derive an influence of the gender for all
methods that are susceptible to occlusion events. For this reason, we
refrain from drawing any conclusions about the influence of the

FIGURE 9 | From (A–D): The respiratory rate accuracy, errors in breath per minute, Pearson Correlation Coefficient w.r.t. the ground truth signal, and signal to noise
ratio of the different methods at the chest. Plots are separated from top to bottom by the sitting, standing, and occlusion condition and by the gender of the participants,
with all distances (1–4 m) and all respiratory rates (10 and 15 bpm) combined. Accuracy and error metrics use a Fast Fourier Transformwindowwith a length of 48 s. The
colored bars show the averages, while overlay box plots show median (middle parts) and whiskers marking data within 1.5 IQR. Except for the sitting condition, all
considered methods perform significantly better on the female participants, mostly due to unbalanced group sizes (12 male, 7 female) and highly variable results for the
male participants (user 9, male, had problems in adhering to the breathing visualization, also see Sec. 5.7).
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gender on the PCA, Mean Raw, and Diff Mean methods. Also the
median based methods have to be taken with care, but since they
show reasonable results and big differences on both groups, we will
examine both methods more closely. TheMedian Raw jumps from a
mean accuracy of 30% (median 14%) and a mean error of 2.1 bpm
(median 2.2 bpm) on the male group to 72% (median 100%) and
1.5 bpm (median 0.26 bpm) on the female group. Its accuracy and
error for the female group are even better than its performance during
the standing condition, but the occlusion condition also only was
recorded at a respiratory rate of 10 bpm, which we know from Sec.
5.5 to yield higher performance values. The Diff Median similarly
performs better on the female group where it shows a mean accuracy
of 85% (median 100%) and a mean error of 0.9 bpm (median
0.15 bpm) as compared to values of 60% (median 71%) and
3.4 bpm (median 1.0 bpm) on the male group. In terms of
accuracy, the Diff Median performs on the female group even
better than all other methods on the male group. The Diff Model
achieves for the female participants with a mean accuracy of 94%
(median 100%) and amean error of 0.41 bpm (median 0.08 bpm) the
highest performance among all methods and groups, whereas for the
male participants it yields values of 82% and 0.75 bpm (median
0.15 bpm).

When looking at the signal quality measures, it can be observed
that for the female users also a higher signal quality can be obtained
by all methods. On the female group, the Median Raw’s PCC and
SNRmedian values are at 0.34 and 22 dB, and on themale group they
are at 0.15 and 15 dB. Similarly, theDiffMedian hasmedian PCCand
SNR values of 0.35 and 22 dB on the female, and 0.21 and 17 dB on
the male group. Despite the relatively good accuracy and error
performance, these PCC and SNR values suggest a rather low
signal quality. In terms of signal quality, the Diff Model stands
out from the rest. It has median PCC and SNR values of 0.68 and
30 dB for the female, and 0.56 and 28 dB for the male users.

Summary
On first sight, it seems like all methods work better on the female
participants than on the male ones, especially in the standing and the
occlusion scenarios. Themale group, however, is with 12 participants
almost twice as big as the female group. With only 7 female
participants in our dataset, it is consequently hard to pinpoint
whether the user’s gender could play a role in the performance of
breathing rate estimation. Due to the relatively small and unbalanced
group sizes, it is likely that the performance is biased towards the
female group. Also, in our dataset, in contrast to some male
participants, all females had clothing that did not cover the throat.
So at least in our dataset the gender-specific differences might not be
caused by the gender itself but by gender specific clothing styles (also
see Sec. 5.7). Furthermore, we found a single male user that had
difficulties in adhering to our paced breathing setup and, due to the
small group size, lowers the overall performance of the whole male
group. The influence of single users and specific properties like their
clothing styles will be elaborated in the next section.

5.7 The Influence of the User
In this section, we try to assess the influence of the single users on
the performance of the various respiration estimation methods.
The results of this section are meant to give some context to the

different evaluation outcomes from previous sections and should
not be seen as definitive results, but rather as an indicator for
future research questions.

There is a whole set of user-specific parameters that may
directly or indirectly influence the measurements. These include
size and weight, age, gender, clothing, up to long hair reaching to
the chest area, but also the preferred breathing rhythm and style,
e.g., abdominal breathing, or simply the ability to stand still for a
while. Since our dataset focuses on having a high user variance in
order to achieve meaningful results in above parameter
evaluations, we did not explicitly categorize our participants
by these parameters. Furthermore, we did not pursue a
systematic evaluation by for instance asking the users to wear
a specific set of different clothing styles. Consequently, each
participant shows a rather unique subset of user-specific
parameters. Due to the big parameter space and the limited
number of participants, it therefore is difficult to draw final
conclusions about user-specific influences, as mentioned at the
beginning of this section.

Our attempt to nevertheless gain an insight into user specific
parameters thus is as follows: If we can identify a user that,
regardless of the method used, performs worse than other users,
this user may exhibit a specific reason for why he or she influences
the respiration estimation. Furthermore, previous evaluations
hide the contributions of single participants to the average
values and box plots. By inspecting the data on a per user
basis, we can obtain more detailed information about the
composition of these plots, like if a lower performance is
caused by all participants similarly, or if one or a few
participants with exceptionally low performance values cause a
significant decrease on the averages.

Figure 10 depicts for each participant the accuracy against the
error, split up into the three conditions and averaged over all
distances and respiratory rates. The single users are color-coded
and marked with a dot for male, and with a plus for female users.
Ideally, all user markings are at the upper left corner of the plots,
where they indicate a high accuracy and low error on average.

Sitting
While sitting, almost all users show for all methods on average a
high accuracy and a low error close to 100% or 0 bpm,
respectively. Most notably, users 9 and 15 stand out on all
methods. User 9 hereby shows a constant accuracy of 50%
and an error of about 1.5–2 bpm for all methods. After
inspecting this user’s depth videos, we figured out that user 9
did not or did only poorly maintain the respiratory rate given
by our breathing visualization on all almost recordings, as will
also be seen on the other conditions. User 15 shows varying
accuracies between 50% and about 80% and high errors of up to
10 bpm on all methods, except for the Median Raw where she
achieves 100% and close to 0 bpm error. The decreased
performance is caused by poor infrared reflection properties of
her clothing and her long hair partly covering her chest at
distances from 3 m upwards as depicted in Figure 11. The
Median Raw is able to achieve a high performance due to the
median being more robust against this kind of noise where less
than half the pixels are affected.
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Standing
While standing, the PCA, Mean Raw, and Median Raw have
difficulties in estimating the respiration as discussed in Sec. 5.3.

The additional motion artifacts cause a wide, diagonally
distributed spread of the user’s performances towards low
accuracy and high errors. We therefore focus on the

FIGURE 10 | The mean accuracy (y-axis) over the mean error (x-axis) for all individual users, captured from the chest using a Fast Fourier Transform window with a
length of 48 s. Accuracy and errors are averaged over all distances (1–4 m) and all respiratory rates (10 and 15 bpm) for the methods (from left to right): PCA, Mean Raw,
Median Raw, Diff Mean, Diff Median, and Diff Model, each divided into the conditions sitting, standing, and occlusion. Each user is associated with a unique color where
circles mark male and plus signs mark female users. Please note the different scales on the x-axis (errors). Ideally, all users are located at the top left corner,
indicating a high accuracy and low error. This is for most participants achieved by all methods during the sitting condition. On other conditions, the Diff Model method
achieves the best performance. The accuracy and errors can be seen to vary widely for certain participants, with especially user 9 standing out on all conditions and
methods due to poorly adhering to the breathing visualization.

FIGURE 11 | Example images from the recordings of (A–F) user 1, user 5, user 10, and user 17. Their clothing is particularly challenging for different types of
methods. Difference based methods have difficulties when the throat is partially covered by a collar (user 1, user 5, and user 17), resulting in a poor motion reference
signal obtained from the throat region. Clothing with bad infrared reflection properties (user 15, left) and garments loosely hanging from the chest or the shoulders (user
15, right) or similar clothing that causes many surface deformations over time, like ribbons reaching to the chest area (users 1 and 5), are likely to interfere with the
respiration signal obtained from all methods. Also hair covering the body surface (user 15, left) or users moving a lot or bending to either side (user 10) are likely to cause
signal distortions.
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difference-based methods where most participants again show a
high accuracy of almost 100% and low error close to 0 bpm,
especially for the Diff Model. On this condition, most notably
users 1, 5, 9, and 15 stand out from the rest. User 9 again did only
poorly maintain the given respiratory rate, and user 15 was
recorded on a different day with a different, but nevertheless
challenging dress: a cardigan with an open front hanging loosely
from the shoulders as depicted in Figure 11. The Diff Model can
compensate for the garment’s movement during breathing due to
its capability of detecting and recovering such occlusion events.
Users 1 and 5 both have in common that they are wearing a
hooded sweater that partly covers the throat region (see
Figure 11) where the motion reference signal is extracted
from. Especially at higher distances, this region resolves to
only a few pixels and a moving collar (due to chest expansion
while breathing) is likely to interfere.

Occlusion
During the occlusion condition, except for the Diff Model, all
methods show a wide spread of the users’ accuracy and error
averages, with the PCA,Mean Raw, and Diff Mean only achieving
a maximum accuracy of about 60% or 75% on a few participants.
The Diff Median performs significantly better with most users
above 70% up to 100%. Compared to the Diff Model that is able to
shadow occlusion events, it however can not compete, so we will
focus on the Diff Model only. Here we see users 5, 9, 10, 16, and 17
deviate most significantly from the other users which in contrast
to those all lie in the range from 90 to 100% and below 1 bpm.
User 5 again is likely to only achieve an average accuracy of about
60% due to the hooded pullover with the collar covering the
throat region, and user 9 again had difficulties to adhere to the
breathing visualization. User 10, in contrast to other users,
occasionally shows strong movements to either of both sides
while relieving a leg. These movements directly affect the
respiration signal and lower the performance, most likely due
to window misalignment caused by bending the upper body to
the side or by the quickness of the leaning movement. For user 16,
we found that the drinking gestures were not fully executed with
the cup often remaining for longer time periods in front or close
to the throat region which decreases the performance at distances
of 3 and 4 m where this region is only a few pixels wide. User 17 is
wearing a shirt with a collar that also partly covers the throat (see
Figure 11) and we found that the decreased performance solely
stems from the distance at 4 m, again likely due to the lower
resolution at higher distances with only a few pixels available to
sample the motion signal from the throat region.

Accuracy Distribution
While Figure 10 depicts the average accuracy of individual users,
in Figure 12 a histogram of each user’s contribution is drawn.
The users again are color-coded and their number of recordings
that fall within a certain accuracy range with 10% steps are
stacked on top of each other such that each user’s individual
contribution as well as the overall amount of recordings with an
accuracy that falls inside that bin is visualized.

During the sitting condition, the majority of the users are
within the 90–100% accuracy range for all methods, with only

user 9 constantly having a significant part in the 0–10% range due
to him not properly adhering to the breathing visualization. The
same applies to the difference-based methods during the standing
condition, but with a few participants’ partly showing up in lower
accuracy ranges. For the other methods, only a few participants
and only a fraction of their recordings (about 30% of the
recordings) reach the 90–100% range, and a significant part
(about 20–25% of the recordings) is located in the 0–10%
range or close to that. During the occlusion condition, the
0–10% accuracy range becomes the dominant region for the
PCA, the Mean Raw, the Median Raw, and the Diff Mean
methods. Only the Median Raw shows a significantly higher
peak (about 25% of the recordings) in the 90–100% bin as
compared to its intermediate accuracy ranges that mostly stem
from users 7 and 13. For the Diff Median, about 50% of the
recordings and most of the users are located in the 90–100%
accuracy range with no significant peak in other ranges. The Diff
Model outperforms all other methods, with about 76% of the
recordings and almost all users being in the 90–100% range.
Moreover, the 0–10% accuracy bin almost completely is covered
by user 9, the user that did not adhere to our breathing
visualization, and the next peak with a comparably high
impact (about 6–7% of the recordings) is in the 50–60%
accuracy bin.

Summary
In conclusion, it could be seen that in the cases where the method
in use is suited for the condition, like the difference-based
methods during standing or the Diff Model in the occlusion
scenario, a decreased performance on any method mostly stems
from a few individual users. Most notably, user 9 stands out from
the rest on all methods and all conditions. This user did not or did
only poorly maintain the respiratory rate given by our breathing
visualization and thus decreases the performance measures of all
methods by a certain amount, especially when comparing the
male to the female group.

For other users we mainly found the clothing style to be the
most likely reason for a decreased performance. Examples are
clothing with poor IR reflection properties, or loose garment or
ribbons hanging from the chest or shoulders. A collar that partly
covers the throat region is likely to affect the difference-based
methods because it tends to move during breathing and interferes
with the motion reference signal extracted from the throat region.
Apart from our observations, there might also be more clothing-
related factors, like strong surface deformations, that affect the
estimation of the respiratory rate. For a full understanding of the
influence of clothing, however, a separate, systematic study where
the same participants are recorded with a set of different cloths
needs to be conducted. Other user-specific influences that
possibly affect the breathing estimation are long hair reaching
to the chest (see Figure 11, fifth from the left) and movements
such as changing the leaning angle to either side (see Figure 11,
second and third from the left).

A detailed and systematic evaluation of user-dependent
influences, for instance evaluating different clothing styles, is
required in the future to fully understand the particular
influences. This will enable the implementation of an adaptive
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method that for instance considers multiple body regions and
rejects strongly influenced parts.

6 DISCUSSION

In light of the above results, this section will discuss the
limitations, assumptions and requirements for the methods,
the data, and the evaluations.

Comparison of State-of-the-art
Depth-Based Respiration Estimation
Methods
With the PCA, Mean Raw, and Diff Model (see Sec. 5), we
evaluated and compared the majority of current state-of-the-art
methods under a variety of different settings. Additionally, we
proposed using the median instead of the mean, and we leveraged
the model based approach to a more lightweight version where

only the difference based approach is used instead of computing a
whole torso model. These modifications yield three more
methods, namely the Median Raw, the Diff Mean, and the
Diff Median.

One approach we left out is to first create a mesh model of the
torso surface and use that mesh to compute the change of volume.
Since the back of the torso is not visible to the depth camera, in
related works a certain, constant depth threshold is used to form a
plane that bounds themesh to the back. This means that any torso
movement also will change the mesh volume. Bounding the mesh
to the back thus basically is equivalent to computing a weighted
sum of the depth values. With this restriction, and from the
findings that the volume-based approach is less accurate while
being computationally much more expensive as conducted by
Soleimani et al. (2017), we omit explicitly computing a mesh.
Instead, we rely on computing the mean or the median of the
torso depth pixels to approximate the change in torso elevation
that, when multiplied by the torso width and height, would give
us a torso volume approximation, too. With the difference based
approaches, furthermore a dynamic threshold to the back is

FIGURE 12 |Histogram of the accuracy distribution of the single participants, with the breathing signal captured from the chest and using a Fast Fourier Transform
window with a length of 48 s. Histograms are divided into the different methods (A–F) PCA, Mean Raw, Median Raw, Diff Mean, Diff Median, and Diff Model, and into the
conditions (top to bottom) sitting, standing, and occlusion. The x-axis indicates the accuracy value divided into 10 bins and the y-axis indicates the percentage of
recordings that achieve this accuracy. The contributions of the individual participants are color-coded and stacked on top of each other. Ideally, all individual
accuracy contributions are located in the rightmost bin, indicating that the respiratory rate can correctly be estimated on all recordings. A high bar in the 90–100%
accuracy bin can be achieved by all methods during the sitting condition and by the difference based methods during the standing condition. During the occlusion
condition, the 0–10% accuracy bin is dominant for all methods, except for the Diff Median and the Diff Model, which have 50% or 76% of the recordings in the
90–100% bin.
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modelled that is able to leverage most of the motion artifacts
entering the mean or median approximations. Although we
consider the state-of-the-art volume based approaches’
performance to be in the range of the Mean Raw, explicitly
modelling a 3D torso surface and fitting it to the depth data may
have great potential for depth-based respiration estimation. A
systematic evaluation of the volume-based methods thus would
be beneficial for extending these methods and for further research
in this direction.

In our work, some limitations apply to the PCA method. As
suggested from the related work, and to achieve a run-time
respiration estimation, the first 180 frames are used to build
the PCA model. Since it is unclear which principal component to
select algorithmically, only the one with the highest eigenvalue is
used, making the PCAmethod susceptible to motion artifacts that
happen within the first 180 frames. A solution could be to
perform an offline PCA on the whole signal and to manually
select the most reasonable component, but motion artifacts are
likely to enter the estimated breathing signal anyway.
Furthermore, Wasza et al. (2012) suggest to apply a varimax
rotation to the PCA components to feature local deformations
that differentiate between thoracic or abdominal breathing. Their
study, as well as all other studies on PCA based methods,
however, was performed on participants lying still in supine
position and wearing tight clothing with no folds, thus letting
the method only deal with the two breathing styles and noise. We
do not apply a varimax rotation in our method since we
additionally have to deal with motion artifacts, clothing-related
surface deformations, and occlusions which we believe do pose
the major limitation to all PCA based methods in more realistic
scenarios, at least when we can not carefully inspect and select the
correct principal components manually.

While purely mean or median based methods are
computationally the most efficient, these methods perform
poorly in the presence of any body movements. Using the
median instead of the mean, however, allows to shadow
occlusion events to a certain extent. The susceptibility to
movement and occlusion also applies to the PCA method.
According to related work on PCA based methods,
participants are required to wear tight clothing with no folds
and to keep still by for instance lying in supine position.We argue
that the reason for these restrictions are that movement, surface
deformations, and occlusion will dominate the principal
components. This will hinder an otherwise valid PCA model
to be used for a correct estimation of the respiration signal. It also
has to be mentioned that this method is computationally
expensive and furthermore requires a certain amount of
reliable training data at the beginning and for each user
individually.

Limitations of our Dataset and Evaluations
Our dataset was recorded with the intention to be as realistic as
possible, yet it should be applicable to existing respiration
estimation methods and it should allow a comparison of those
among each other, independent of user-specific or external
influences. Thus it was recorded under certain assumptions
and with certain study design decisions that limit the

applicability of our results to more general scenarios. The
assumptions and decisions being made are:

• The user generally faces the depth camera and only is
rotated by a small amount to either side. Only a single
user is recorded at the same time.

• The user is sitting or standing upright at a fixed position
with a distance of 1, 2, 3, or 4 m to the depth camera. The
user does not lean excessively to either side, bend the upper
body forwards or backwards, or moves towards the camera
or to any other location.

• Upper body motion is restricted to a small amount, like
swaying while keeping balance, repositioning movements to
either side, e.g., when switching from one leg to another, or
small body rotations. Rotating the body actively away from
the depth camera is not allowed and fast body movements
are not present, except for moving the arms during the
occlusion scenario.

• The user may occlude its upper body with one or both hands
and with an in-hand object (a mug) arbitrarily during the
occlusion condition.

• Users are adhering their respiratory rate to a breathing
visualisation with fixed frequency. This is not a realistic
setup, but eliminates the influence of user-specific breathing
styles and paces. Also a fixed respiratory rate makes the
benchmarking of the different methods easier and better
comparable, even across different users.

• The users are wearing a big variety of regular indoor
clothing. To reflect more realistic indoor scenarios, users
were not asked to wear specific cloths nor were the
recordings repeated on a set of different clothing types.
Some users, however, are wearing different clothing on
different recordings. Also, yet there is no systematic
classification of the clothing styles.

Our datset, with 7 female and 12 male participants, is not
balanced, so a comparison of both groups likely contains bias.
User 9 had difficulties in adhering to the paced breathing setup
and other users might occasionally also show deviations. Ground
truth was not recorded explicitly, but is obtained from the paced
breathing. Accuracy, error, and signal-to-noise evaluations are
obtained by comparing the measured respiratory rate to the
ground truth frequency as given by the setup of the paced
breathing visualisation. The FFT window length is fixed to
48 s and the window moves with a step size of one breathing
cycle (4 s or 6 s) as given by the respective breathing rate setup.
The performance values are likely to change with different FFT
parameters. The Pearson correlation coefficient is obtained by
comparing the measured breathing signal to a sine wave of the
respective frequency.

7 CONCLUSION

How well can ubiquitous devices monitor the breathing of their
users through built-in depth cameras? This article has
investigated key conditions we can expect applications to work
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in, using an extensive dataset from 19 users. Our key findings can
be summarized as:

• The observed torso region influences both performance and
signal quality for all methods: Under all circumstances, our
results confirm that the chest is the ideal region for
capturing the respiration signal. The abdomen region
yields the lowest performance and signal quality,
especially in the standing and occlusion scenarios.

• User condition (sitting, standing, or occluding their torso)
affect performance and signal quality significantly for all
methods. Non-difference based methods tend to fail when
persons are standing or move their arms in front of their
torso. When users are standing, all difference-based
methods show good performance values. In the presence
of occlusions, the Diff Model and the median methods are
recommendable.

• Different users deliver varying qualities of breathing signals,
with few users performing significantly worse than most
other users. Some users move a lot, longer hair can be a
problem, and clothing can play a role: Some clothing poorly
reflects infrared light, some garments have ribbons in front
of the chest that interfere with the breathing detection.
Difference based methods have difficulties when the
throat area is covered by a collar that moves while breathing.

Other parameters were found to play a minor role. The
distance between user and depth camera has less influence on
performance, but a strong influence on the signal quality.
Optimal distances are in the range of 1–2 m, with higher
distances causing more noise in the respiration signals. During
occlusions, 2 m led to the better results. The respiratory rate has
only little effect: Higher rates are easier to detect, likely due to
more breathing periods falling within a fixed-length FFT window.
The signal quality for the higher respiratory rates was over all
methods slightly reduced, though. Gender-dependent differences
in the respiration estimation are due to unbalanced and the rather
small group sizes hard to interpret.

The Diff Model showed best accuracy and signal quality
results across all scenarios. In some use cases, however, other
methods do have their benefits: If users are sitting, the non-
difference based methods perform equally well and only show a
slightly decreased signal quality. The Mean Raw and the Median
Raw hereby benefit from being computationally much less
expensive and do not require a fixed size of the torso
window. When the user moves closer or further away from
the depth camera, these methods do not need to reinitialize a
model. The same applies to the Diff Mean and Diff Median
when users are standing. Using the median hereby has been
shown to be superior to using the mean for extracting the
breathing signal. PCA does not yield better performance
values than the Median Raw and is about in the range of the
Mean Raw, but requires an expensive training phase that is
susceptible to any deformation or movement larger than or in
the range of the breathing related chest or torso expansion.

Using PCA thus should only be considered for use cases with
tight clothing and no body movements, and where for instance a
detailed torso surface model needs to be reconstructed. In use
cases with negligible body motion and no occlusion, like in a
sitting condition, and especially when computation time is
limited like on an embedded system, the use of the Median
Raw is recommended. The same applies to the Diff Median in
the case of a scenario with motion artifacts, like when persons
are standing. The breathing signal in this case should be low-
pass filtered, especially on higher distances. Using the Diff
Model during standing as well as in the presence of
occlusions, however, yields better results.

This paper’s anonymized dataset with depth data and
respective body joints locations, as well as our method’s source
code and the python experiment scripts that were used for
validating our proposed method are available to support the
reproduction of our method and results, and can be obtained by
contacting the first paper author or visiting https://ubicomp.eti.
uni-siegen.de/home/datasets.

All subjects gave their informed consent for inclusion before
they participated in the study. The study was conducted in
accordance with the Declaration of Helsinki, and was
approved by the Ethics Committee of the University of Siegen
(ethics vote #ER_12_2019).
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