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IBSync: Intra-body
synchronization and implicit
contextualization of wearable
devices using artificial ECG
landmarks

Florian Wolling* and Kristof Van Laerhoven

Ubiquitous Computing, Department of Electrical Engineering and Computer Science, University of

Siegen, Siegen, Germany

With a smaller form factor and a larger set of applications, body-worn

devices have evolved into a collection of simultaneously deployed hardware

units, rather than into a single all-round wearable. The sensor data, logged

by such devices across the user’s body, contains a wealth of information

but is often di�cult to synchronize. Especially the application of machine

learning techniques, e.g., for activity recognition, su�ers from the inaccuracy

of the devices’ internal clocks. In recent years, intra-body communication

emerged as a promising alternative to the traditional wired and wireless

communication techniques. Distributed wearable systems will notably benefit

from its advantages, such as a superior energy e�ciency. However, due

to the absence of commercially available platforms, applications using this

innovative technique remain rare and underinvestigated. With IBSync, we

present a novel concept in which artificial landmark signals are received

by body-worn devices on touching, approaching, or passing certain areas,

surfaces, or objects with embedded transmitter beacons. The landmark

signals enable both the wearables’ intentional or incidental synchronization as

well as the implicit contextualization using supplementary information about

the beacons’ situational context. For the detection of the landmarks, we

propose to repurpose the on-board ECG sensor front-end available in recent

commercial wearable devices. Evaluated on a total of 215min of recordings

from two devices, we demonstrate the concept’s feasibility and a promising

synchronization error of 0.80±1.79 samples or 6.25±14.00ms at a device’s

sampling rate of 128Hz.

KEYWORDS

intra-body communication (IBC), synchronization, context awareness,

electrocardiography (ECG), wearable devices

1. Introduction

The last two decades showed numerous wearable devices entering the market and

targeting the wearer’s continuous ambulatory and non-invasive monitoring. With a

smaller form factor and a larger set of applications, these body-worn devices have,

however, evolved into a collection of simultaneously deployed hardware units, rather
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than into a single all-round wearable. Worn close or even

directly attached to the body surface, the devices log sensor data

which contains a wealth of information. The synchronization

of such distributed, multi-device systems is, however, often

difficult. As stated by Ohmura et al. (2006) and Wang

et al. (2019), traditional signal processing but especially the

application of cutting-edge machine learning techniques, e.g.,

for activity recognition, suffer from the inaccuracy of the

devices’ internal clocks and the recordings’ unmatched time.

Most commercial, off-the-shelf devices do not support the

online synchronization during operation by default because it

would require specific hardware and interfaces, which would

exceed their small energy budget. As detailed by Barth et al.

(2008), Mare and Kotz (2010), and Naganawa et al. (2015),

the available methods, based on Bluetooth and other popular

wireless protocols, suffer from the general inefficiency of radio

transmission due to a lossy air channel and, particularly in

wireless body area networks (WBAN), a vicinity to the water-

rich tissue. Originated in research on human activity recognition

by Bannach et al. (2009), the existing methods of Bennett et al.

(2015a), Bennett et al. (2015b), Wang et al. (2019), and Ahmed

et al. (2020) allow for the alignment of measurements offline,

after the recording. However, the performed synchronization

actions, i.e., gestures and motion patterns, are not incidental

but rather tend to be cumbersome and obtrusive. As discussed

in Lu et al. (2020) and our previous work in Wolling et al.

(2021b), they furthermore suffer from inaccuracies due to soft

tissue deformation as well as delays in the motion sequences and

inertia of the body parts. The achieved accuracy is typically in the

range of 250ms in Wang et al. (2019) down to 46ms in Ahmed

et al. (2020).

In general, accelerometers and inertial measurement

units (IMU) became very popular instruments and are

commonly used for the signal classification in human activity

recognition. However, to distinguish motion patterns which

result in similar signals, the data is often not rich enough.

Supplementary material about the context could help to

improve the inference. With the term implicit HCI, Schmidt

et al. (2000) described “a shift [...] from explicit interaction

[...] toward a more implicit interaction based on situational

context.” According to Schmidt (2000) and Berlin et al. (2010),

the knowledge of the object grasped can, therefore, help to also

interpret interactions and the user’s intention. To detect objects,

equipped with passive RFID tags, the prototypes of Schmidt

(2000), Philipose et al. (2004), Fishkin et al. (2005), and Berlin

et al. (2010) use wrist-worn RFID readers. In this way, the

combination of inertial sensor data and the context information

of the object grasped improve the classification of activities and

help to minimize the labeling efforts, as presented by Wang

et al. (2007). The wearable RFID readers tend, however, to be

obtrusive and the large coils require a certain quality to achieve

a sufficient range to reach the tags.

In recent years, a novel yet promising approach emerged

that makes use of the limited volume of the human body as

a transmission medium: intra-body communication (IBC). It

is somewhat located between traditional wired and wireless

communication techniques. The fundamentals were first

described in the dissertation (Zimmerman, 1995) and

the ensuing publication (Zimmerman, 1996). Since then,

many researchers developed optimal electrode settings and

modulation schemes, and the developed prototypes range from

an implementation on experimental PCBs, such as in Große-

Puppendahl et al. (2014), Moralis-Pegios et al. (2015), and

Wolling et al. (2017), to the use of own chip-casted, high-level

ASICs as in Song (2007), Chung et al. (2015), and Cho et al.

(2016). High data rates of up to 2MBit/s at 0.2mW in Song

(2007) or even 80MBit/s at 8.9mW in Cho et al. (2016) have

been reported. As discussed in Große-Puppendahl et al. (2017),

the accompanied grounding issues limit, however, the reliability

of the presented solutions outside the laboratory environment.

Moreover, these approaches often remain closed-source and,

besides the discontinued attempt BodyCom from Microchip1,

they are not made commercially available. Consequently,

academic research still focuses rather on the development of

transceiver circuits, accompanied with advances in reliability,

energy efficiency, and data throughput. Applications benefiting

from this novel technique have, however, not yet been

thoroughly explored. From our previous research in Wolling

et al. (2021a) aside, to our knowledge, two very essential,

possible applications of IBC have not yet been investigated: the

synchronization and the contextualization of wearables and

their measurements.

In this paper, we propose to repurpose the single-lead

ECG sensors, integrated in recent off-the-shelf wearables, to

detect artificial landmark signals. Those are either consciously

or implicitly and incidentally induced into the user’s skin

by touching, approaching, or passing certain areas, surfaces,

or objects with embedded beacons. In close proximity, the

signals are capacitively induced into the skin and propagate

in the tissue as harmless displacement currents. In this way,

landmarks are made available throughout the entire body

surface, which serves as a limited transmission channel that is

hence more efficient than air. Considering the limitations of the

utilized analog ECG front-end, we present a suitable modulation

scheme and evaluate the proposed signal processing pipeline

for the landmark detection and demodulation. We demonstrate

the method’s general feasibility on the base of two possible

applications as examples in which the landmark signal is used

to either synchronize two devices or to provide the context of

measurements.

With our presented contributions, we do not intend to

compete with cutting-edge research in IBC, especially not in

terms of data throughput and efficiency. Instead, we aim for the

1 Application Note AN1391 of BodyCom fromMicrochip Technologies,

Inc.: http://ww1.microchip.com/downloads/en/AppNotes/00001391C.

pdf (2022-02-28).
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use of accessible, commercially available devices to pave the way

for applications that, when finally made available, can directly be

translated to future single-chip solutions, specifically designed

for IBC.

2. Related work

According to their domain, the following related work

is split up into four sections. First, the state of the art in

electrocardiography (ECG), synchronization techniques, and

contextualization for wearable devices are presented. Then, the

relevant research in wireless body area networks (WBAN) and

intra-body communication (IBC) are summarized. Each section

closes with the statements most relevant for this work.

2.1. Electrocardiography

Electrocardiography (ECG) is the gold standard to monitor

a patient’s heart activity and to diagnose heart diseases in clinical

settings. Every contraction of the heart is initiated through

electrical action potentials which polarize the myocardal muscle.

Its electric field accumulates, spreads in the tissue, and is

therefore detectable at the skin surface. The typical ECG

waveform with its prominent QRS complex is monitored

applying traditional lead systems, introduced by Einthoven

et al. (1950) and Holter (1961), and summarized by AlGhatrif

and Lindsay (2012), with up to 12 wired wet gel electrodes

that capture the electric potential differences across the limbs

or torso. The progress in miniaturization does not only

enable more convenient but also more energy efficient mobile

devices, as surveyed in Zheng et al. (2014). Nevertheless,

the conventional ECG leads remain inapplicable and too

uncomfortable for the continuous monitoring in long-term

ambulatory assessments. The first wearable ECG devices, such

as in Karvonen et al. (1984), had the shape of a chest strap and

used dry electrodes to resemble lead I across the heart. Starting

with the crowdfunded Mio Alpha and the Scosche Rhythm in

2013, elaborated in Kyriacou and Allen (2021), these devices

were then successively replaced by more convenient, wrist-worn

devices that primarily apply the cheap and easy-to-implement

optical photoplethysmography (PPG). However, according to

Castaneda et al. (2018), PPG cannot yet compete with ECG in

terms of accuracy. As a result, wrist-worn devices gradually offer

the special feature of a supplementary single-lead ECG sensor to

enable the monitoring of heart activity at the medical grade. As

described in Beach et al. (2018) and Avila (2019), the user has to

touch an electrode with a finger from the opposite arm to form

the lead I with potentials from either side of the heart. However,

as described in Chi et al. (2010), the use of dry electrodes

inevitably results in a considerably weaker signal that, according

to Casson (2014) and Ha et al. (2014), typically ranges from tens

to hundreds of µV. According to Harland et al. (2002), the used

differential amplifier thus requires a high input impedance in the

order of several M� to not load the fragile signal. Introduced by

Neuman and Webster (1978), detailed in Winter and Webster

(1983), and reviewed in Sun and Yu (2016), a common technique

to improve the common-mode rejection ratio (CMRR) is an

actively driven electrode, often termed as driven-right-leg (DRL)

circuit or body bias, that allows to suppress common-mode

interference such as 50 / 60Hz humming noise from the power

line. Nevertheless, the single-spot measurement of ECG at the

wrist, without closing the wide lead I, remains a challenge. With

the front-ends available today, according to Beach et al. (2018),

the signal-to-noise ratio (SNR) at the wrist quickly drops to less

than 0 dB, which makes the differentiation of the desired signal

from the noise floor de facto impossible. However, advances

by Harland et al. (2002), Chi et al. (2011), and Rachim and

Chung (2016), present promising circuits, with a very high input

impedance beyond several G�, that might be a first step toward

solving this issue. In the next few years, the required ECG

sensor front-end will hence become standard in wearables and

therefore inherently enable the methods presented.

2.2. Synchronization

The network time protocol (NTP) of Mills (1991) and

the precision time protocol (PTP) of Lee and Eldson (2004)

have established as popular and reliable methods to obtain

a precise universal time base in both wired and wireless

distributed systems. In contrast to large computer networks,

body-attached distributed systems often require only a local

synchronization, relative between the nodes. As stated by

Elson et al. (2002), referring to Lamport (1978), in most

applications the “causality is more important than absolute

time.” The available synchronization techniques can be grouped

into the two classes of online and offline methods. The

online synchronization at runtime requires the continuous

coordination and tuning of the devices’ local clocks.

Advances in conductive textiles, such as in Poupyrev and

Gong (2016), would, of course, easily enable sharing a master

clock. Nevertheless, wireless radio communication still remains

the preferred technology in wearable applications. Not only

the methods applied in wireless sensor networks (WSN), as

surveyed in Sundararaman et al. (2005) and Lasassmeh and

Conrad (2010), but in particular those running on wearable

devices, as discussed in Zheng et al. (2014), primarily focus on

energy efficiency. As discussed in Barth et al. (2008), Mare and

Kotz (2010), and Naganawa et al. (2015), radio transmission,

applying e.g., the popular Bluetooth in Roberto Casas (2005),

Ringwald and Romer (2007), and Pflugradt et al. (2014), suffers

largely from a variable path loss, shadowing effects due to the

devices’ direct attachment to the water-rich human body. Offline
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synchronization methods, in contrast, use external events to

align recorded signals in a post-processing step.

Originated in research on activity recognition, Bannach et al.

(2009) established the idea of aligning time series through the

correlation of synchronization actions such as clapping, shaking,

or jumping. It already achieved a synchronization error of about

0.3 s for more than 80% of the data. Based on this fundamental

concept, more sophisticated approaches use specific motion

patterns, e.g., in Bennett et al. (2015a), Bennett et al. (2015b),

Wang et al. (2019), and Lu et al. (2020), or even cough events as

in Ahmed et al. (2020). These achieved typical synchronization

errors ranging from 250ms down to 46ms. Beyond that,

Vaz et al. (2015) proposed the correlation and alignment of

physiological signal channels by means of the inherently present

white noise. The achieved sub-ms accuracy is, however, bought

dearly through high sampling rates of 2 and 20 kHz.More signal-

specific, Li and Tan (2010) used the “naturally synchronized”

rhythm of the heartbeat to schedule the time slots in a time

division multiple access (TDMA) protocol for medium-access

control (MAC). In our previous research on PulSync, in Wolling

et al. (2021b), we used the uniqueness of the heart rate variability

(HRV) interval function as a fingerprint to correlate and align

sensor recordings from multiple wearable devices. In this way,

we achieved a synchronization error of 0.71± 3.44 samples or

2.86± 11.43ms at 250Hz.

2.3. Contextualization

In the late twentieth century, research in human-computer

interaction (HCI), such as by Want et al. (1999), aimed at

“seamlessly bridging the gulf between physical and virtual

worlds.” At that time, also the interest of psychologists in

experience sampling motivated computer-assisted methods to

replace the traditional pen-and-paper procedures and to get

a “window into [a user’s] daily experience and behavior,”

as detailed by Barrett and Barrett (2001). Such approaches

require, however, the reliable classification of activities of daily

living (ADL) and the unobtrusive detection of interactions

with objects, as described by Philipose et al. (2004). With

the emergence of microelectromechanical systems (MEMS),

accelerometers became affordable and wearable sensing devices

enable since then the recognition of activities of limited sets.

However, the obtained information is often not rich enough

to distinguish similar activities that show confusable signal

patterns. According to Berlin et al. (2010), the knowledge of

the object grasped can, however, help to classify activities, to

interpret interactions, and to “reason on the intention of the

user,” as stated by Schmidt (2000). As presented by Wang

et al. (2007), this knowledge allows the interpretation of the

way objects are used, and can, moreover, help to minimize

the labeling efforts. In course of this development, Schmidt

et al. (2000) introduced the term implicit HCI which describes

“a shift [...] from explicit interaction [...] toward a more

implicit interaction based on situational context.” Accordingly,

not only the location but especially the awareness of the

situational context brings advantages in the interpretation

of observations and the inference of sensor signals. Toward

this concept, different projects aimed to identify the objects

grasped to support the more reliable and precise classification of

activities. First approaches, such as by Smith et al. (2003), used

barcodes to tag objects. Following research used radio-frequency

identification (RFID) tags instead, attached to certain objects,

tools, or even the environment, e.g., at a doorknob in Berlin et al.

(2010). Different wearable setups then combined inertial sensors

for activity recognition and RFID readers to simultaneously

detect the objects’ tags. The yet wired and bulky prototype

of Schmidt (2000) allowed to trigger different applications by

handling tagged objects, read through a coil sewn into a work

glove. The lighter iGlove in Philipose et al. (2004) used a reader

coil in the palm while the iBracelet in Fishkin et al. (2005) as

well as the prototype of Berlin et al. (2010) applied a PCB coil

worn around the wrist instead. Most RFID tags are passive and

receive the energy, required for data transmission, from the

reader coil through electromagnetic induction, so no battery

is needed. The reader requires, however, a coil with a certain

quality for a long range, which is not available in commercial

devices. The proposed use of ECG sensors for the detection

of object identifiers, broadcasted as landmark signals by long-

lasting active beacons, might hence be a promising alternative.

2.4. Intra-body communication

Due to a considerable amount of fully developed,

standardized, small, and affordable modules, conventional

radio communication, using protocols such as Bluetooth,

ZigBee, and Wi-Fi, remains the most popular technique applied

in research prototypes as well as commercial wearable devices.

In most applications, fixed cable joints but also wires embedded

and woven into clothing, such as presented in Poupyrev

and Gong (2016), are not yet a serious alternative since the

attachment and linking of devices tends to be interference-

prone, inflexible, and uncomfortable. As discussed in Donker

(2009) and Antonescu and Basagni (2013), the nodes of wireless

body area networks (WBAN) are thereby usually attached to or

at least worn close to the skin and their radio modules suffer

considerably from the immediate vicinity to the water-rich

body, shadowing, and motion.

A novel alternative has been presented first in the

dissertation (Zimmerman, 1995) and the ensuing publication

(Zimmerman, 1996), introducing the term intra-body

communication (IBC). In following research, it is also referred

to as body-coupled or body channel communication (BCC) and,

designated as human body communication (HBC), it is included

in the IEEE 802.15.6 of the IEEE Standards Association (2012)
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for WBAN since 2012. As an intermediate principle between

the traditional wired and wireless techniques, it uses the

human body as an alternative transmission medium to provide

information throughout the user’s skin surface, and thus shows

advantages over both. In contrast to the busy air, Donker (2009)

and Kibret et al. (2014) state that the body channel is free, its

limited distribution volume improves the energy efficiency of

signal propagation, and the abruptly decaying near-field outside

the body is less susceptible to eavesdropping. As surveyed

by Naranjo-Hernández et al. (2018), there exist two primary

principles for the signal induction: the original capacitive

coupling and galvanic coupling. Reviewed by Tomlinson

et al. (2019), other approaches using electromagnetic fields,

e.g., Koshiji et al. (2012) or Park and Mercier (2015), and

transdermal ultrasound, as discussed in Galluccio et al. (2012),

remained exotic and rather unpopular. Since the applicable

principle is inherently given by the wearable devices used in

this work, only the relevant capacitive coupling approach is

elaborated in the following.

For capacitive coupling, two stacked electrodes form a

parallel plate capacitor of which one faces the skin and couples

to the body while the other one provides a delicate return

path through the environment and earth ground, as detailed in

Große-Puppendahl et al. (2017). To emit a signal, the transmitter

changes the potential difference among its electrodes and hence

modulates the quasi-electrostatic field of the user’s body. This

variation induces a tiny current flow, spreading in the tissue, and

in turn causes a small potential difference among the electrodes

of the receiver, which can be detected using a sensitive circuit.

As discussed in Tomlinson et al. (2019), the slight displacement

current in the order of pA does not pose a health risk to

the user. Besides the applied coupling principle, the channel

characteristics, robustness, and efficiency largely depend on the

selected frequency band. The electrical properties of the tissues,

conductivity and dielectric permittivity, respectively, exhibit a

considerable frequency dependency which results in the human

body showing a transmission behavior similar to the one of

a high-pass filter. The effect of different tissue compositions

on the transmission characteristics have been investigated,

modeled, and simulated in diverse studies, surveyed in Naranjo-

Hernández et al. (2018). As stated by Mazloum (2008), also

the electrode size and distance play an important role while

“using an electrode with a larger area specifically at TX will

result in less propagation loss.” Furthermore, Mazloum (2008)

and Kibret et al. (2014) discussed that the most suitable

frequency band ranges from 100 kHz up to 50MHz, limited

through the resonance of the human body or parts of it.

Research of Bae et al. (2012) also explains the three frequency-

dependent transmission mechanisms: quasi-static near-field

coupling (predominating below 40MHz), reactive induction-

field radiation (maximal at 40MHz), and surface wave far-field

propagation (predominating beyond 40MHz).

An important aspect for this research is stated by Harikumar

et al. (2012): “Low frequencies in the range of few Hz are

susceptible to electromagnetic interferrence and demand very

high input impedance amplifiers.”

As alreadymentioned by Zimmerman (1995) and elaborated

in Große-Puppendahl et al. (2017), capacitive coupling suffers

primarily from the delicate return path through earth ground,

the environment which is susceptible to changes and provides a

highly variable loss. If both devices are floating, the transmitter

as well as the receiver, and do not share a common potential,

the SNR, associated with signal amplitude and quality, decreases

significantly. However, a stationary transmitter with a link to

earth ground consequently results in a significantly higher SNR

and less complex circuits that, as stated in Donker (2009), “can

be done by graduate students with limited budgets” as presented

inMoralis-Pegios et al. (2015) and our previous work ofWolling

et al. (2017).

There has also been prior research in repurposing off-

the-shelf devices for applications similar to ours. On the one

hand, fingerprint sensors of smartphones and touchpads of

laptops have been utilized as transmitters in Hessar et al. (2016),

achieving a data rate of up to 50 bps by triggering the active

sensors’ operation, and hence the generation of electromagnetic

interference (EMI). On the other hand, touchscreens of tablet

computers have been used as receivers to distinguish users

at 4 bps in Vu et al. (2012) and for the continuous user

authentication at 12 bps in Holz and Knaust (2015) by means

of wrist-worn transmitters.

In our prior work (Wolling et al., 2021a), we have first

demonstrated that the analog front-ends of conventional,

wearable ECG sensors can be repurposed to detect and decode

artificial landmark signals. In this article, we do not only present

more details but also new findings and advanced evaluation

results.

3. System implementation

The exemplary scenario, applied in scope of this paper,

is illustrated in Figure 1. It consists of a transmitter beacon,

embedded into a desktop, and two off-the-shelf wearable devices

with integrated ECG sensor front-end, repurposed as the

receiver for the artificial landmark signals. In the following

sections, the used hardware, modulation scheme, signal

processing pipeline, and proposed applications are explained.

3.1. Stationary transmitter beacon

In order to easily assemble and deploy beacons at a larger

scale, the transmitter circuit is kept simple. The general-purpose

input / output (GPIO) pin of a conventional MSP430FR5969
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FIGURE 1

Exemplary scenario of IBSync for the synchronization and

contextualization of wearable devices: microcontroller (MC)

with transmitter electrode (TX) embedded into a desktop;

information implicitly and incidentally provided to two sensing

devices (RX) worn at the wrists; artificial landmark signal (red),

capacitively induced into the human body; detection by means

of repurposed analog ECG sensor front-ends; weak return paths

(blue) to close the circuit; MC is grounded via environment, the

earth ground.

microcontroller 2 from Texas Instruments directly drives the

signal electrode and hence modulates its surrounding quasi-

static electric field. Unlike for antennas in radio frequency (RF),

there are no special requirements on the electrode since rather

low frequencies are applied. It is made from metal foil and has a

relatively large size of 16× 32 cm2 to provide a sufficiently wide

contact face.

As illustrated in Figure 1, the investigated scenario shows

the electrode fixed under the front edge of a conventional

desktop. It is intended to couple to the user’s arms through a

1.5 cm plate of wood and plastic. A second ground electrode,

to close the circuit, is not required since the beacon is

supplied by and hence grounded through a USB link to

a computer, in turn connected to mains. In this way, the

environment serves as a large, virtual ground electrode and

only a single transmitter electrode is required. As previously

mentioned in Section 2.4, cutting the beacon’s link to earth

ground would largely affect the simplified setting, considerably

attenuate the signal amplitude, and hence degrade the SNR

at the receiver. Keeping the transmitter grounded, therefore,

has the advantage that no additional power amplification

stage is required, to boost the transmitter’s output amplitude

to tens of V as originally done by Zimmerman (1995). To

ensure a precise timing, the computer is also employed to

regularly, every 2.5 s, instruct the microcontroller to send

a landmark signal. In future scenarios, however, this task

could independently be performed by the microcontroller itself.

Precise timing could then be obtained from a high-quality

real-time clock, or even absolute time from the internet. To

generate the landmark signal, a pulse train is generated by

2 Datasheet of the MSP430FR5969 from Texas Instruments, Inc.:

https://www.ti.com/product/MSP430FR5969 (2021-06-16).

switching the pin between 0 and 3.3V. As reasoned below in

Section 4.1, the applied modulation frequency f0 is tuned to

20Hz.

3.1.1. Signal modulation

By toggling the GPIO pin, the beacon generates a pulse

train of a certain pattern to encode the information to

be transmitted. Figure 2 illustrates the applied scheme for

a single landmark packet. Each packet consists of eight

pulses as a preamble, one gap and one pulse as delimiter,

eight pulses or gaps as symbols to represent the 8 bit of

data, again one pulse and one gap as delimiter, and finally

four pulses as a terminator. The preamble, terminator,

and two delimiters form a constant packet frame which

embraces the variable data segment. As common, the data

byte is transferred with the most significant bit (MSB) first.

Figure 3 illustrates that the generation and transmission

of rectangular waves is not ideal in terms of bandwidth

and efficiency since the energy spreads in a wide frequency

band and the effective signal magnitude within the desired

band decreases considerably. Nevertheless, the on-off-

keying (OOK) modulation scheme is reasonable since

it is simple and easy to implement with a conventional,

cheap, and low-power microcontroller. When coupling

to the user’s body, the beacon capacitively modulates the

quasi-electrostatic field and, as discussed in Tomlinson

et al. (2019), induces a harmless displacement current in

the order of pA. Due to the human body’s transmission

characteristics and the applied preprocessing at the receivers,

described below in Section 3.2.1, the rectangular wave is

detrended and smoothed. As shown in Figure 9 later on,

it resembles a rounded, quasi-sinusoidal wave, centered at

the baseline.

3.2. Wearable receiver

There exist no commercial IBC transceiver modules yet.

Therefore, we propose the use of the analog front-ends (AFE)

from the emerging single-lead ECG sensors available in recent

wearable devices such as smartwatches or fitness trackers. The

AFEs offer themselves to be repurposed for the detection of

artificial landmark signals since they are carefully designed with

regard to both energy efficiency and the sensitive detection of

tiny potential differences.

In the experiments, two off-the-shelf MAXREFDES101# 3

devices fromMaxim Integrated, which is since 2021 a subsidiary

of Analog Devices, have been used. The reference designs have

3 Product website of the MAXREFDES101# from Maxim Integrated,

Inc.: https://www.maximintegrated.com/en/design/reference-design-

center/system-board/6779.html (2021-06-16).
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FIGURE 2

Simulated, synthetic illustration of the signals at the transmitter: 8 pulses preamble (green), gap and pulse as delimiter (blue), 8 pulses or gaps to

encode the data in OOK scheme (violet) with the MSB first, pulse and gap as delimiter (blue), and 4 pulses terminator (green). Modulation

frequency f0 of 20Hz.

FIGURE 3

Simulated, synthetic frequency spectra of an ideal, continuous square wave with f0 of 20Hz and 50% duty cycle [(A), blue] and of a landmark

signal with 2.5 s intervals, 1.2 s active period, and an incrementing 8bit data segment [(B), green]. In both cases, the even harmonics of f0 are

zero. For the discontinuous landmark signal, the spectrum spreads around the odd multiples of f0. The energy contained in the DC component

at 0 as well as in f0 and its harmonics decreases considerably (note the y axes).

the shape of a wristwatch and, besides IMU, PPG, and body

temperature sensors, they include an AFE for bio-impedance

and biopotential measurements, enabling the ECG monitoring.

The devices grant access to the sensor configuration, the source

code of their firmware, and the raw measurements. The on-

board MAX300014 AFE consumes only 95 µA at 1.8V while

providing both, a very high input impedance > 1G� and a

CMRR > 100 dB. In this way, it enables the unloaded detection

of the tiny voltage drop that is caused by the displacement

current between the electrodes. Sampled at a rate fs of 128Hz,

the raw measurements can directly be recorded to the 32MB

flash memory. As depicted in Figure 4, the devices’ casing

shows three electrodes of which two virtually form the parallel

plate capacitor required for capacitive coupling in the proposed

application. The positive input (ECGP) at the front is kept

floating and is intended to couple to the environment. The

negative input (ECGN) directly couples to the body and enables

the measurement of the potential difference in reference to

4 Product website of the MAX30001 from Maxim Integrated,

Inc.: https://www.maximintegrated.com/en/products/analog/data-

converters/analog-front-end-ics/MAX30001.html (2021-06-16).

ECGP at the front. Labeled in the datasheet as body bias, the

third electrode (VCM) serves as a DRL circuit to improve

the CMRR. Its activation connects the body through a 499 k�

resistor 5 to the device’s internal common-mode voltage VCM of

0.650V.

3.2.1. Signal demodulation

To detect the landmarks, to determine their positions in

local time t′, and to decode the contained data d, the signal

processing pipeline, illustrated in Figure 5, is applied. It starts

with three 2nd order (2× 1st) infinite impulse response (IIR)

filter stages to extract the weak, desired signal. The use of

zero-phase forward-backward filters is expedient to preserve

the signal’s phase, which is important for the proposed

synchronization application. In Python, this filter type is well-

known as filtfilt filter from the scipy.signal library. First, an

anti-aliasing low-pass filter (LP) with a cutoff frequency fc of

5 The datasheet of the MAX30001 (p. 31) mentions a 200 k� resistor

while the schematic files of the MAXREFDES101# specify a value for R7

of 499 k�.
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FIGURE 4

The ECG sensing device MAXREFDES101# has three electrodes on its casing (A) a positive input (ECGP) at the front, a negative input (ECGN) and

a body bias (VCM) at the back. Detection of the artificial landmarks according to the capacitive coupling principle for IBC (B) ECGP and ECGN

resemble a parallel plate capacitor (green); ECGN directly couples to the human body (red); ECGP is floating, weakly coupling to the

environment to close the circuit (blue); VCM to improve CMRR (orange).

63Hz < fs/2 below the Nyquist frequency is applied. Then, the

power line’s humming noise at 50 / 60Hz is suppressed using a

band-stop notch filter (BS), to provide an interference-reduced

signal (IRS). Centered at the carrier’s fundamental frequency f0
of 20Hz, the desired frequency band is finally extracted using a

band-pass filter (BP).

As evaluated in Section 4.2, the wide bandwidth

B = fc, high − fc, low of 20Hz, i.e., from 10 to 30Hz, is

required to cover the sidebands of the OOK modulation.

After preprocessing, the short-time Fourier transform (STFT)

is applied to the IRS, yet before band-pass filtering, using a

von Hann window with a size of 4 s (512 samples) and 75%

overlap (384 samples). Then, analog to the determination

of the signal-to-noise ratio (SNR), the received signal

strength indicator (RSSI) of each window interval S is

derived from the STFT. It is computed according to

Equation (1) by averaging the bins associated with the

signal core Asignal = bs with bs ∈
〈

17.5, . . . , f0, . . . , 22.5Hz
〉

and the adjacent bins of in-band noise Anoise = bn with

bn ∈ 〈10, . . . , 17.5Hz〈 ∩ 〉22.5, . . . , 30Hz〉:

RSSIdB = 20 log10

(

Asignal

Anoise

)

(1)

The RSSI is a measure of the desired signal’s predominance

over the noise floor. It is applied as a metric to identify

the characteristic frequency components around f0, which are

associated with the presence of a landmark frame (Figures 2, 3B).

The subsequent steps are only continued if the RSSI exceeds

a significance threshold (THRS), i.e., at least the minimum

of 0 dB. Next, a universal frame template F with empty

data segment d = 0 is shifted along the relevant window

interval S and inspected using the Pearson product-moment

correlation (PPMC) coefficient r(S, F) by Pearson (1895), given

in Equation (2):

r(S, F) : =

∑

i(si − S)(fi − F)
√

∑

i(si − S)2
∑

i(fi − F)2
(2)

The significant and maximum correlation (MAX) between

the template F and S unveils the frame’s temporal position

t′. The data d are finally extracted by decoding the interval

according to the OOK scheme using an adaptive threshold

(ATHRS). Its level orientates on the amplitude of the frame’s

preamble and terminator, to distinguish the pulses from the

gaps and, therefore, to assign the symbols to the binary values

0 and 1. Depending on the target application, elaborated below

in Section 3.3, the frame position t′ and the contained data d

are then used to either synchronize devices or to contextualize

their measurements.

3.3. Proposed applications

With IBSync, we present a novel concept that makes use

of the human body as a unidirectional communication channel

between stationary transmitters and body-attached devices. In

this way, the body tissue enables the wearables to receive

landmark signals by simply touching, approaching, or passing

beacons, embedded into certain areas, surfaces, or objects.

These landmarks can be enriched with temporal information

to enable the alignment and synchronization of recordings

(Section 3.3.1) or can be enhanced with information about

the situational context (Section 3.3.2), e.g., the type of object

touched. The fundamental principle of capacitive coupling for

intra-body communication (Section 2.4) hence enables either

the intentional and continuous, or the implicit and incidental

reception of temporal or contextual information bymeans of the

obtained landmarks.Motivated through Figure 1, the scenario to
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FIGURE 5

The processing pipeline consists of four blocks: signal preprocessing, frame detection, frame positioning, and data decoding. First, the raw,

noisy signal is filtered. While the band-limited signal (BLS) is forwarded to the frame positioning, the less preprocessed, interference-reduced

signal (IRS) is provided to the frame detection block. It inspects the frequency components using a short-time Fourier transform (STFT) and

assesses the signal quality applying the received signal strength indicator (RSSI). If the RSSI metric exceeds a certain threshold (THRS), the

landmarks’ temporal position t is determined within the relevant interval using a Pearson product-moment correlation (PPMC). The data d is

decoded according to an on-o�-keying (OOK) modulation scheme applying an adaptive threshold (ATHRS) mechanism.

be evaluated and discussed uses a transmitter beacon, embedded

into a desktop, and two wrist-worn receivers.

3.3.1. Synchronization

The changes in the modulated quasi-electrostatic field are

virtually instantaneously detectable throughout the entire body

surface, which enables the use of IBC for synchronization

purposes. The simultaneous reception of significant landmark

signals by multiple devices allows the precise offline alignment

of recordings and the devices’ local times. Moreover, even the

exact temporal allocation of landmarks and, therefore, the online

synchronization of a single or multiple devices in respect to

absolute time is possible.

A landmark Li is defined as the ith packet frame at position

ti in absolute time t, transporting the data di:

Li = L(ti, di) (3)

Generated by the transmitter at ti, a landmark L′i is captured by

the receiver at the local time t′i . Its deviation from t is given

through the initial offset t′0, interpreted as the start time of a

device, and the drift rate δ:

t′(t) = (1+ δ) t + t′0 (4)

Therefore, the received landmark is given as L′i =

L(t′(ti), di), with the data d′i = di naturally remaining the same.

After the detection of landmarks at different devices, those could

be assigned to each other by aligning their closest temporal

occurance. The devices’ start times t′0 and drift rate δ are,

however, unknown. Furthermore, due to a continuous repetition

every 2.5 s, the pure packet frames would be interchangeable

and confusable. For any arbitrary but constant data x, all

landmarks at two devices A and B are therefore prone to

temporal displacement, ambiguous, and cannot uniquely be

assigned to each other. Consequently, the following condition

of an arbitrary assignment has to be avoided:

∀a, ∀b : da = db = x −→ L(t′a, x) = L(t′b, x) −→ L′a ∼ L′b

(5)

As illustrated in Figure 6, to actually match the coincident

landmarks, the information contained in the data segment

di between the delimiters is used. The data can transport a

landmark identifier such as an incrementing packet counter

(Figure 6A). To minimize the probability of a disrupted data

packet, e.g., through motion during a transmission at the

relatively slow symbol rate of 20Hz, the amount of carried data

per packet is limited to 8 bit. The identifier would, therefore, be

unique as long as the measurement time of 28 × 2.5 s = 640 s

(10min 40 s) is not exceeded. If two landmarks, detected at the

devices A and B, then contain the identical data da = db, these

must be originated in the same moment ta = tb, generated by

the transmitter at the same absolute time t. In this way, the data

enables the landmarks to be uniquely assigned L′a ∼ L′
b
and

aligned despite their different local times t′a 6= t′
b
:

∀a, ∃!b : da = db −→ L
(

ta, da
)

= L
(

tb, db
)

−→

ta = tb −→ L′a ∼ L′b (6)

To enhance the uniqueness beyond the aforementioned

time limit, and to furthermore improve the Hamming distance

between subsequent packets according to Hamming (1950),

the data can also contain a random number as a unique

landmark identifier (Figure 6B). Consequently, the probability

of two random numbers following each other in subsequent

landmark packets is very small, and of three or more ones in

a row even infinitesimal. Theoretically, the landmarks and their

order would remain unique for 28! repetition-free permutations,

resulting in a recurrence interval of 6.8× 10499 years.

The data could also be related to the absolute time, which,

however, is again constrained to the 8 bit of the proposed packet
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FIGURE 6

Proposed applications using the data segment of the landmark packet for synchronization (A–C) and contextualization (D): incrementing packet

counter as identifier for a limited recurrence interval of 28 × 2.5 s = 640 s, 10min 40 s, respectively (A); sequences of random numbers as unique

identifier patterns for a quasi-infinite recurrence interval of ideally 28! landmarks, lasting for 6.8× 10499 years (B); information related to absolute

time, preferentially with larger data segments of four bytes, unsigned long for ms-accurate timestamps (C); unique location or object identifier

to provide the situational context (D).

scheme (Figure 6C). A longer data segment of two, three, or even

four bytes for an unsigned long ms-accurate timestamp would

significantly upgrade this concept, however at cost of robustness

against disruption through motion.

3.3.2. Contextualization

Instead of temporal information, the landmark’s data

segment could also contain context information, as illustrated

in Figure 6D. In this way, the 8 bit of data can serve as a

context identifier and be associated with up to 256 areas,

surfaces, or objects. The exemplary scenario in Figure 1 shows

the beacon transmitter embedded into a desktop. Consequently,

the receiving wearable devices would get aware of the user being

close to and probably sitting at the desktop, likely to work on

the computer. The motion and the user’s vital signs, and hence

e.g., inferable arousal and stress, could now be interpreted in the

context of work. In contrast, e.g., sitting on the couch would

indicate the user’s leisure and intention to relax.

4. Evaluation

Three experiments have been conducted to first optimize

the filter parameters as well as to evaluate the performance

and to demonstrate the applicability of IBSync. The first

experiment (Section 4.1) aims to determine the characteristic

noise floor, caught from a typical environment, to dimension

carrier frequency f0, and to identify the applicable frequency

band. The second experiment (Section 4.2) concentrates

on the technical aspects of optimal bandwidth B, the

metrics RSSI and PPMC r, the packet error rate (PER),

as well as the synchronization error ǫ. Finally, the third

experiment (Section 4.3) demonstrates the applicability in

an everyday life usage scenario. Due to the persistent

pandemic, the evaluation is based on a single subject (male,

33 yr., 198 cm, 102 kg) only, however with 215min recordings

from two wearable devices, attached to the left and right

wrist, in a typical scenario with a desk in an ordinary

living space.
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FIGURE 7

Excerpts from raw measurements of the analog ECG front-end of the MAXREFDES101# device: touching the electrode at the front closes the

traditional lead I and results in visible, distinct ECG pulses (A); for a floating electrode, the pulses vanish into the noise floor and the heart beat

can only be guessed (B).

4.1. Noise floor characterization

The normal use of the wearables’ AFE according

to its original purpose, i.e., the measurement of the

natural ECG signal, requires a finger from the opposite

arm to form the traditional lead I (Figure 7A). Without

closing this circuit, the floating sensor predominantly

catches noise from the environment and the ECG signal

vanishes (Figure 7B). For the new purpose of detecting

the artificial landmark signals, the most suitable carrier

frequency f0 and possible bandwidth B had to be determined

first.

To estimate the present noise floor, measurements in

an ordinary living space have been recorded, performing

seven different activities such as sitting, working on a

computer, walking, and doing different gymnastics for 60 s

each. The respective periodograms, determined using the

method of Welch (1967) for power spectral density (PSD)

estimation, are shown in Figure 8A. The spectra indicate

that the frequency band from about 10 to 45Hz would be

applicable.

Unfortunately, the possible band is sporadically interfered

by oscillations at about 15Hz, accompanied by harmonics at

30 and 45Hz. The origin of this interference is not evident but

might either be induced from the environment or the device

itself. Because it is very specific to the device worn on the right

wrist, it could even come from resonance due to filter instability

and the absence of the ECG signal sought. While the high-

pass characteristic of the body channel favors a higher f0 in the

order of a few MHz, the sensor’s sampling rate fs of 128Hz, and

hence a Nyquist frequency of 64Hz, demands for a lower f0 to

increase the sample coverage Ns = fs/f0 of a unit pulse period

T0 = 1/f0. Therefore, as shown in Figure 8B, a trade-off is made

on f0 of 20Hz, resulting in 6.4 samples scanning a 50ms pulse

period. The determination of the optimal B is detailed below

in Section 4.2.

4.2. Controlled setting

To evaluate IBSync from a technical perspective, three

specific ways of coupling between the user and the transmitter

have been investigated: a) directly touching the transmitter

electrode, b) touching the desktop surface above the electrode

with both hands, and c) sitting at the desktop without touching

the electrode and leaning back in the office chair. Those

have been recorded consecutively, with each interval spanning

at least 15min. The interval of a) covers 379 landmarks

(15.8min) with 6.585 pulses and 2.511 gaps, b) covers 377

landmarks (15.7min) with 6.619 pulses and 2.429 gaps, and

c) covers 389 landmarks (16.2min) with 6.811 pulses and

2.525 gaps. For each interval, the pulses and gaps have semi-

automatically been annotated in the IRS and manually been

revised and validated. All results of this section are summarized

in Table 1.

4.2.1. Optimal filter bandwidth

To be able to adequately reconstruct the discontinuous

pulse wave, the filter pass-band is required to cover the

sidebands of the modulation, adjacent to the carrier f0. These

frequency components allow for a fast transient response, the

change between the two symbols pulse and gap representing

the binary values 1 and 0. As shown in Figure 9, the filter

bandwidth B considerably affects not only the shape of the

particular pulses but also the signal’s envelope contour and the

remaining ripple within the gaps. Therefore, the optimal B has

been discovered through 399 filter configurations, by applying

the bandwidths {0.1HZ, . . . , 39.9HZ} at steps of, centered at

the previously specified f0 of 20HZ. Since the right wrist’s

recordings are considerably interfered from an unknown noise

source (Section 4.1), only the results from the left wrist are

further evaluated here. For each way of coupling and each

configuration, the pulse heights p and the gap ripple |g|, the
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FIGURE 8

Analysis of the frequency spectra (PSD) of the noise floor (A): interference generated by seven activities; 50Hz power line noise (red band);

unknown interference source, oscillation at 15Hz with its first and second harmonics (orange bands). Analysis of the frequency spectra (PSD) of

the desired signal extracted from the raw measurements (B): noise floor, overall average of the activities (gray); raw signal (orange); filtered

signal (blue); selected bandwidth B of 20Hz, pass-band from 10 to 30Hz (green band).

TABLE 1 Results of the evaluation.

Coupling Device p in dig |g| in dig p / |g| B in Hz RSSI in dB PPMC r PER ×10−3 ǫ in dig ǫ in ms

a) Electrode left 73.0± 3.6 1.9± 1.5 39.3 20.6 23.504 0.847± 0.045 0.000 0.802± 1.543 6.262± 12.056

right 53.8± 6.7 4.1± 3.3 13.3 21.9 21.078 0.810± 0.041 23.747 0.654± 1.855 5.112± 14.490

b) Desktop left 28.8± 2.4 1.4± 1.4 21.0 20.6 21.558 0.822± 0.040 26.525 0.780± 1.514 6.093± 11.832

right 32.9± 6.9 5.5± 4.3 5.9 22.1 −4.581 0.684± 0.037 281.167 0.997± 2.483 7.792± 19.401

c) Leaning back left 44.5± 6.7 1.4± 1.4 31.4 19.8 22.945 0.835± 0.038 2.571 0.704± 1.503 5.503± 11.744

right 70.1± 11.3 6.6± 4.8 10.7 22.2 10.841 0.798± 0.040 0.000 0.864± 1.646 6.748± 12.858

Right device: results affected by in-band noise at about 15Hz.

absolute distance to the baseline, have been determined for the

labeled positions. After calculating their mean and standard

deviation, the ratio p / |g| of mean pulse amplitude p and mean

gap ripple magnitude |g| has been computed. As illustrated in

Figure 10, along with a minimal standard deviation among the

pulses and gaps, the pulse-to-gap ratio unveils the optimal filter

bandwidth B by reaching its maximum at about 20Hz for all

three couplings. In the optimal configuration, a) showed the best

coupling with a pulse-to-gap ratio of 39.3, b) showed the weakest

coupling with a ratio of 21.0, and c) is in between with a ratio

of 31.4.

4.2.2. Processing pipeline

Applying the determined optimal bandwidth B of 20Hz,

the processing pipeline and its discrete metrics have been

evaluated. Figure 11 visualizes the output of the consecutive

stages. It shows the generated STFT, the derived RSSI, the

PPMC correlation coefficient r, and the decoded data d along

the entire recording of both devices with the relevant intervals

a), b), and c). While the STFT of the device at the left wrist

shows a clearly distinguishable signal core, the right sensor

also caught the aforementioned oscillation at 15Hz. Starting

at about 900 s it unintentionally demonstrates the effect of in-

band noise on the metrics. While the average RSSI at the left

wrist is a) 23.504 dB, (b) 21.558 dB, and c) 22.945 dB, the signal

strength at the right wrist significantly decreases on occurrence

of the interference to values of a) 21.078 dB (semi-affected),

b) −4.581 dB, and c) 10.841 dB. Nevertheless, the normalized

cross-correlation coefficient r significantly indicates the presence

of the landmark signal with an average r of 0.835 at the left

and a marginally lower one of 0.764 at the right wrist. Despite

the presence of noise, the data is successfully decoded for most

landmark packets, even though the RSSI was partly below 0 dB.

The detection of erroneous landmarks and the relation to the

RSSI is evaluated in the following.

4.2.3. Packet error rate

The packet error rate (PER) is a measure of the number of

landmark packets that have not successfully been detected due

to at least one symbol being interfered and hence erroneous. It is

the quotient Nerror/Nsent of erroneous packets Nerror per total

packets sent Nsent. For the device at the left wrist, the PER of

a) is virtually 0 since all packets have been decoded correctly.

Interval b) shows the largest PER of 26.525× 10−3 with ten
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FIGURE 9

Matched landmark packets of two receivers worn at the left (blue) and right wrist (orange). Raw, unfiltered measurements (A).

Interference-reduced signal (IRS) after anti-alias filtering (LP) and power line noise rejection (BS) with contained data 000011002 (MSB first)

visible (B). Applied filter bandwidths B of 4Hz (C), 8Hz (D), 20Hz (E), 30Hz (F). Best result regarding fast transient response, pulse-to-gap ratio,

as well as minimal interference and baseline wander for a B of 20Hz (E).

FIGURE 10

Determination of the optimal filter bandwidth B, centered at f0, for the scenario’s three ways of coupling. From 0.1 to 39.9Hz in steps of 0.1Hz,
399 iterations each, considering the mean p and standard deviation of the pulse amplitudes p (blue), the mean |g| and standard deviation of the

absolute gap magnitudes |g| (red), the remaining ripple, respectively, and the ratio of the means p / |g| (green) with the maximummarked (red dot).

Best ratio 39.3dig for 20.6Hz by directly touching the electrode (A), second best 31.4dig for 20.6Hz by leaning back (C), and lowest 21.0dig for

19.8Hz by touching the desktop (B). The filter bandwidth B of 20Hz is, therefore, selected as optimal. Based on signals from the left wrist only.

errors occurred: five erroneously detected pulses and one missed

pulse in the data segment, two times a excessive fifth pulse and

once a missed pulse in the terminator, and once an undetected

pulse in the preamble. The PER of c) is 2.571× 10−3, only

one packet was erroneous due to a glitch in the data segment.

The noise present at the right wrist largely interferes with the

landmark signals and hence results not only in considerably

decreased RSSI and r but also in a significantly higher PER of a)

23.747× 10−3 and b) 281.167× 10−3. However, the coupling

of interval c) showed with a PER of 0 to be more robust against

the noise. In general, there is a manifest link between the RSSI

and the PER. However, a low RSSI, even below 0 dB, does not

inevitably result in a large PER. The RSSI is, nevertheless, a

suitable metric and helpful to indicate whether a signal interval

likely contains the desired landmark signal and should be further

analyzed, or not.

4.2.4. Synchronization error

To evaluate the synchronization accuracy achievable by

means of IBSync, the deviation of the landmark positions from

ground truth has been evaluated for both devices. The ground

truth positions are given through the labels that were set in

context of the bandwidth determination before. Despite of the

interference at the right wrist, the mean synchronization error ǫ

of 0.761± 1.521 samples at the left and of 0.838± 2.027 samples
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FIGURE 11

Output of the processing pipeline for the desktop experiment: (A) short-time Fourier transform (STFT) with a window length of 4 s (512 samples)

and 75% overlap, presence of the signal core in 17.5–22.5Hz (green lines) and in-band noise in 12.5–17.5Hz and 22.5–27.5Hz (red lines); (B)

received signal strength indicator (RSSI) derived from the signal core and the adjacent in-band noise, resulting in average RSSI of the segments;

(C) Pearson’s r, normalized cross-correlation, maxima of the detected landmarks resulting in mean r̄ of the segments; (D) decoded data d and

damaged information (red) due to erroneously detected pulses, resulting in PER of the segments.

at the right wrist are close. Consequently, the overall mean ǫ

is 0.800± 1.792 samples or 6.249± 14.004ms. Most determined

landmark positions distribute evenly with an error ǫ of either

0 or 1 sample, which is originated in the quantization. In a few

cases (161 landmarks or 7.03%), however, the cross-correlation

did not maximize at the position of the first pulse of the
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preamble but matched the position of the second one instead.

This effect is caused by ripple artifacts, remaining from filtering,

and the correlation template being non-ideal and edgy due

to sampling with a low sample coverage Ns = fs/f0 of 6.4.

Consequently, the determined landmark position skips one unit

pulse period T0 or its respective sample count Ns, resulting in

a deviation of 7 samples. This alignment error can, however,

easily be detected and corrected by algorithmically validating the

number of detected preamble and terminator pulses. By solving

this issue, the synchronization error further decreases to even

0.360± 0.482 samples or 2.811± 3.765ms which now is in the

order of the inevitable quantization error of±3.9ms.

4.3. Application in-the-wild

To finally demonstrate the concept’s feasibility and its

applicability in the wild, the two devices have been worn

for about 23min while performing activities of daily living

which includes partly working at the desk, equipped with

an IBSync beacon. In this way, the recording does neither

contain only the desired landmark signal nor the ambient

noise but both varying in an uncontrolled setting. As in the

previous experiment (Section 4.2), the landmarks transport a

continuously incrementing 8 bit packet counter which overruns

every 640 s. In this way, discontinuities in the decoded values

indicate packet errors. Figure 12 visualizes the output of the

processing pipeline. Again, as in the previous experiment,

the oscillation at 15Hz is visible and starts at about 900 s,

immediately decreasing both RSSI and PPMC r. Nevertheless,

the landmarks can successfully be decoded when the subject is

at the desk and either the arms or the thighs are in proximity

to the desktop and couple sufficiently to the beacon’s electrode.

There are periods in which the landmark signal is present at

both wrists, as intended. Interestingly, in other periods it is

only present at a single wrist. Therefore, we have to conclude

that the IBC signal does not always propagate well throughout

the entire body surface under all conditions. The observations

showed that the signal propagates better, and is hence available

at both wrists, when induced through the thighs. When induced

at one hand, the signal might, however, not be detectable at the

other one. One reason might be the larger distance between

the wrists, compared to the shorter one from the thighs to both

wrists. The presumably major reason, however, has already been

mentioned by Zimmerman (1995), the “feet are the best location

for [IBC] devices” since the coupling to both the body and the

environment is the strongest.

5. Results and discussion

In three experiments, we successfully demonstrated the use

of analog ECG front-ends, available in commercial wearable

devices, for the detection of artificial landmarks. We further

showcased the general feasibility of applying IBSync for the

synchronization and implicit contextualization of wearable

devices. The evaluation is based on an exemplary scenario

in which a transmitter beacon is embedded into a desktop

and two sensing devices record the ECG signal captured at

the user’s left and right wrist. In a controlled setting, the

coupling between the user’s body and the transmitter has been

evaluated in three different ways: a) directly touching the

electrode, b) touching the desktop, and c) leaning back in the

office chair and primarily coupling through the thighs. The

results are summarized in Table 1. Unfortunately, the recordings

at the right wrist are considerably affected by oscillations

at about 15Hz, unintentionally demonstrating the effect of

in-band noise on the proposed metrics. The proposed RSSI

metric successfully indicates the presence of a landmark signal

with values ranging from 21.6 to 23.5 dB. The maxima of

the normalized cross-correlation coefficient r, ranging from

0.845 to 0.863, then provide the positions of the landmark

packets in time and enable the decoding of the data segments.

In all three coupling cases, the reception of landmarks was

successful and resulted in a low PER of 0 to 26.5× 10−3. Based

on the manually revised and validated ground truth labels,

the achieved synchronization is promising with a mean error

ǫ of 0.800± 1.792 samples (6.249± 14.004ms). In 92.97% of

the landmarks, the position error was just in the order of a

single sample, resulting in an ǫ of 0.360± 0.482 samples or

2.811± 3.765ms, which is in the order of the quantization

error of ±3.9ms. The larger deviations of 7 samples are caused

by erroneous matching, due to filter ripple and a non-ideal,

edgy correlation template, but are easily solvable by validating

the number of detected preamble and terminator pulses. Due

to the interference, all measurements at the right wrist are

weaker and show a lower RSSI and r as well as higher PER

and ǫ. In general, the coupling a) apparently showed the best

results, but c) was somewhat unexpectedly good and even

better than b) which constantly showed the lowest yet sufficient

performance.

The ECG AFE’s low sampling rate of 128Hz limits the

realizable carrier frequency to 20Hz which is multiple orders

below the optimal frequency band of capacitive coupling IBC.

In combinationwith the discovered optimal bandwidth of 20Hz,

the filtered signal shows, however, a good ratio between the pulse

amplitude and the remaining gap ripple, in the range of 21.0

and 39.3. The relatively wide bandwidth is required to cover

the modulated sidebands and to adequately reconstruct the

discontinuous pulse wave, allowing for a fast transient response

between the symbols, representing the binary values 0 and 1.

However, the comparably slow carrier frequency results in a

slow symbol rate, and a landmark packet with in total 24 pulse

periods takes 1.2 s. Therefore, the achievable data throughput is

apparently not sufficient for the transmission of larger data, not

even of four bytes for an unsigned long ms-accurate timestamp.
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FIGURE 12

Output of the processing pipeline for the in-the-wild experiment: (A) short-time Fourier transform (STFT) with a window length of 4 s

(512 samples) and 75% overlap, presence of the signal core in 17.5–22.5Hz (green lines) and in-band noise in 12.5–17.5Hz and 22.5–27.5Hz
(red lines); (B) received signal strength indicator (RSSI) derived from the signal core and the adjacent in-band noise; (C) Pearson’s r, normalized

cross-correlation, maxima of the detected landmarks; (D) decoded data d, partly damaged information, erroneously detected pulses within the

data segment, considerable disruption through motion. Correlation excecuted if RSSI > 0dB, data decoded if r ≥ 0.65 and preamble amplitude

≥ 5.

To improve the noise immunity, future implementations should

consider the implementation of error-checking and -correction

techniques since redundancy can significantly improve the PER.

For the proposed applications, the 8 bit of data are sufficient to

either serve as a unique landmark for the temporal allocation

and synchronization, or to transport a unique object identifier

for contextualization. The strength of the coupling to the

environment but also the devices themselves and the tightness

of their attachment have large influence on the signal quality.

Also the user’s tissue composition has an influence on the signal
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amplitude, however the propagation velocity is less affected.

Consequently, the distance-related delay can be neglected and

landmarks are assumed to be immediately and without any delay

present throughout the entire body surface. This assumption

is particularly valid, considering that the ECG AFE’s low

sampling rate inherently limits the achievable accuracy to a

quantization error of ±3.9ms. So of course, the ECG AFEs

are neither originally intended nor optimal for the use in IBC

and the proposed applications. Since the AFEs are designed for

the sensitive detection of tiny potential differences in energy-

efficient wearable applications, the circuits allow, however, to

be repurposed.

6. Conclusions

With IBSync we have presented a novel method for

the intentional or incidental synchronization as well as the

implicit contextualization of wearable devices by touching,

approaching, or passing certain areas, surfaces, or objects. The

demonstrated scenario shows a desktop, equipped with an

embedded transmitter beacon that capacitively induces artificial

landmark signals into the user’s body. Because no off-the-shelf

IBC transceivers are available, the analog ECG front-ends of

commercial wearable devices have been repurposed. Those are

carefully designed regarding their energy efficiency and the

sensitive detection of tiny signals on the human skin. The

evaluation is based on three experiments. First, the ambient

noise captured by the ECGAFEs has been characterized. Second,

the optimal parameters and the system’s performance have been

evaluated in a controlled setting, investigating the coupling

between the user’s body and the transmitter beacon in three

different ways: a) directly touching the electrode, b) touching the

desktop, and c) leaning back in the office chair and primarily

coupling with the thighs. Third, the concept has been tested

in an everyday life setting, demonstrating its feasibility and

applicability in-the-wild.

The signal quality primarily depends on the coupling

strength between the transmitter’s electrode and the user’s

body. Of course, also the attachment of the devices has a

large influence on the captured signal. The deployment in-

the-wild discovered that, moreover, the induced signal does

not always propagate throughout the entire body surface.

When picking up the signal through one hand, it tends to be

available only at the respective wrist. However, leaning back and

coupling through the thighs showed somewhat unexpectedly

good signal quality at both wrists. One reason might be that

the distance between the wrists is larger than the ones from

the thighs to the wrists. Another reason might be the

extremely low carrier frequency that is several orders below

the optimal frequency range of IBC. Moreover, as already

mentioned by Zimmerman (1995), the presumably main reason

is that the “feet are the best location for [IBC] devices” since

the coupling to both the body and the environment is the

strongest.

Our proposed method IBSync enables both the

synchronization and implicit contextualization of wearable

devices using their on-board ECG sensor. With a

synchronization error of 0.80± 1.79 samples, or 6.25± 14.00ms

at a sampling rate of 128Hz, we outperformed the motion-

based offline synchronization methods, e.g., the methods of

Wang et al. (2019) and Ahmed et al. (2020) with a typical

error in the order of 250 down to 46ms. Moreover, the

research of Hessar et al. (2016) demonstrated the use of

commodity devices and their fingerprint or touch sensors to

transmit signals confined to the human body. With IBSync,

we now provide the receiver side, as well. The concepts’

combination would therefore enable wearable devices, such

as wristwatches, to transmit signals via a fingerprint sensor or

touchscreen, and to receive these signals using their analog ECG

front-end.
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