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With a smaller form factor and a larger set of applications, body-worn

devices have evolved into a collection of simultaneously deployed hardware

units, rather than into a single all-round wearable. The sensor data, logged

by such devices across the user’s body, contains a wealth of information

but is often di�cult to synchronize. Especially the application of machine

learning techniques, e.g., for activity recognition, su�ers from the inaccuracy

of the devices’ internal clocks. In recent years, intra-body communication

emerged as a promising alternative to the traditional wired and wireless

communication techniques. Distributed wearable systems will notably benefit

from its advantages, such as a superior energy e�ciency. However, due

to the absence of commercially available platforms, applications using this

innovative technique remain rare and underinvestigated. With IBSync, we

present a novel concept in which artificial landmark signals are received

by body-worn devices on touching, approaching, or passing certain areas,

surfaces, or objects with embedded transmitter beacons. The landmark

signals enable both the wearables’ intentional or incidental synchronization as

well as the implicit contextualization using supplementary information about

the beacons’ situational context. For the detection of the landmarks, we

propose to repurpose the on-board ECG sensor front-end available in recent

commercial wearable devices. Evaluated on a total of 215min of recordings

from two devices, we demonstrate the concept’s feasibility and a promising

synchronization error of 0.80±1.79 samples or 6.25±14.00ms at a device’s

sampling rate of 128Hz.

KEYWORDS

intra-body communication (IBC), synchronization, context awareness,

electrocardiography (ECG), wearable devices

1. Introduction

The last two decades showed numerous wearable devices entering the market and

targeting the wearer’s continuous ambulatory and non-invasive monitoring. With a

smaller form factor and a larger set of applications, these body-worn devices have,

however, evolved into a collection of simultaneously deployed hardware units, rather

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.915448
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.915448&domain=pdf&date_stamp=2022-09-08
mailto:florian.wolling@uni-siegen.de
https://doi.org/10.3389/fcomp.2022.915448
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.915448/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org






























Wolling and Van Laerhoven 10.3389/fcomp.2022.915448

FIGURE 12

Output of the processing pipeline for the in-the-wild experiment: (A) short-time Fourier transform (STFT) with a window length of 4 s

(512 samples) and 75% overlap, presence of the signal core in 17.5–22.5Hz (green lines) and in-band noise in 12.5–17.5Hz and 22.5–27.5Hz
(red lines); (B) received signal strength indicator (RSSI) derived from the signal core and the adjacent in-band noise; (C) Pearson’s r, normalized

cross-correlation, maxima of the detected landmarks; (D) decoded data d, partly damaged information, erroneously detected pulses within the

data segment, considerable disruption through motion. Correlation excecuted if RSSI > 0dB, data decoded if r ≥ 0.65 and preamble amplitude

≥ 5.

To improve the noise immunity, future implementations should

consider the implementation of error-checking and -correction

techniques since redundancy can significantly improve the PER.

For the proposed applications, the 8 bit of data are sufficient to

either serve as a unique landmark for the temporal allocation

and synchronization, or to transport a unique object identifier

for contextualization. The strength of the coupling to the

environment but also the devices themselves and the tightness

of their attachment have large influence on the signal quality.

Also the user’s tissue composition has an influence on the signal
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amplitude, however the propagation velocity is less affected.

Consequently, the distance-related delay can be neglected and

landmarks are assumed to be immediately and without any delay

present throughout the entire body surface. This assumption

is particularly valid, considering that the ECG AFE’s low

sampling rate inherently limits the achievable accuracy to a

quantization error of ±3.9ms. So of course, the ECG AFEs

are neither originally intended nor optimal for the use in IBC

and the proposed applications. Since the AFEs are designed for

the sensitive detection of tiny potential differences in energy-

efficient wearable applications, the circuits allow, however, to

be repurposed.

6. Conclusions

With IBSync we have presented a novel method for

the intentional or incidental synchronization as well as the

implicit contextualization of wearable devices by touching,

approaching, or passing certain areas, surfaces, or objects. The

demonstrated scenario shows a desktop, equipped with an

embedded transmitter beacon that capacitively induces artificial

landmark signals into the user’s body. Because no off-the-shelf

IBC transceivers are available, the analog ECG front-ends of

commercial wearable devices have been repurposed. Those are

carefully designed regarding their energy efficiency and the

sensitive detection of tiny signals on the human skin. The

evaluation is based on three experiments. First, the ambient

noise captured by the ECGAFEs has been characterized. Second,

the optimal parameters and the system’s performance have been

evaluated in a controlled setting, investigating the coupling

between the user’s body and the transmitter beacon in three

different ways: a) directly touching the electrode, b) touching the

desktop, and c) leaning back in the office chair and primarily

coupling with the thighs. Third, the concept has been tested

in an everyday life setting, demonstrating its feasibility and

applicability in-the-wild.

The signal quality primarily depends on the coupling

strength between the transmitter’s electrode and the user’s

body. Of course, also the attachment of the devices has a

large influence on the captured signal. The deployment in-

the-wild discovered that, moreover, the induced signal does

not always propagate throughout the entire body surface.

When picking up the signal through one hand, it tends to be

available only at the respective wrist. However, leaning back and

coupling through the thighs showed somewhat unexpectedly

good signal quality at both wrists. One reason might be that

the distance between the wrists is larger than the ones from

the thighs to the wrists. Another reason might be the

extremely low carrier frequency that is several orders below

the optimal frequency range of IBC. Moreover, as already

mentioned by Zimmerman (1995), the presumably main reason

is that the “feet are the best location for [IBC] devices” since

the coupling to both the body and the environment is the

strongest.

Our proposed method IBSync enables both the

synchronization and implicit contextualization of wearable

devices using their on-board ECG sensor. With a

synchronization error of 0.80± 1.79 samples, or 6.25± 14.00ms

at a sampling rate of 128Hz, we outperformed the motion-

based offline synchronization methods, e.g., the methods of

Wang et al. (2019) and Ahmed et al. (2020) with a typical

error in the order of 250 down to 46ms. Moreover, the

research of Hessar et al. (2016) demonstrated the use of

commodity devices and their fingerprint or touch sensors to

transmit signals confined to the human body. With IBSync,

we now provide the receiver side, as well. The concepts’

combination would therefore enable wearable devices, such

as wristwatches, to transmit signals via a fingerprint sensor or

touchscreen, and to receive these signals using their analog ECG

front-end.
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