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Validation of an open-source
ambulatory assessment system
in support of replicable activity
studies

Introduction

Wearable devices that track physical ac-
tivity and vital signs like heart rate for
health promotion and monitoring have
become prevalent, with fitness trackers
or smartwatches enjoying a rise in popu-
larity. In a recent Gallup poll, 19% of US
adults report at some point having worn
a fitness tracker or smartwatch (34%)
or having tracked their health statistics
on a phone or tablet (32%) (McCarthy
2019). Commercially available activity
trackers are more and more used in clin-
ical trials to assess the physical activity
behavior of study participants over time.
When the tracker’s original sensor data
arenotrecordedbut insteadpreprocessed
descriptors such as counts, steps, seden-
tary bouts, or activity levels are logged
in the study, replication problems arise.
Similarly, when such tracking devices are
upgradedorhave reached the endof their
shelf-life, the hardware and algorithms
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Studyparticipationwasvoluntary and informed
consentwasobtainedfromallparticipants.
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All participants gave written consent for
publication.

Code availability
Our application source code for the Bangle.js
smartwatch, ouralgorithmsand themobile app
can be inspected and downloaded at: https://
github.com/kristofvl/BangleApps and https://
github.com/kristofvl/Activate2.

that produced the data are often lost as
well.

The past decades have seen a shift in
the use of activity trackers for various
studies and clinical trials. Objectively
measured physical activity data are more
accurate compared to subjective physical
activity assessments like physical activ-
ity questionnaires (Garriguet et al 2015)
with frequent overreporting of vigorous
activities and underreporting of seden-
tary behavior (Fiedler et al 2021; Lines
et al 2020; Verhoog et al 2019). For
physical activity and health promotion
strategies and interventions, the accu-
rate recording and appropriate feedback
to theuser seemessential for intervention
success and data interpretation. Among
the commercially available trackers, the
ActiGraph1 series of inertial-based track-
ers are recognized as well validated and
reliable devices and have thus far been
predominantlyusedforamajorityofpub-
lished research studies (Wijndaele et al
2015).

Although the internal inertial sen-
sorsmeanwhile come as standard chipset
packages with well-understood data, are
well-calibrated, and have common inter-
faces, commercial inertial-based track-
ers are commonly sold as black boxes,
about little is known about the accuracy
of their algorithms (such as step detec-
tors) or inner workings (Brondin et al

1 ActiGraph, Pensacola, FL: https://www.
theactigraph.com/.

2020). Studies have shown that there re-
main uncertainties about the reliability
of the step counts reported by trackers,
for instance, during low-intensity activi-
ties andwhenwalkingwith assistive tools
(Alinia et al 2017). Few algorithms that
perform step detection in commercial in-
ertial-based trackers’ data are published
as open-source code so that they can be
reproduced, the work of Brondin et al
(2020) being an exception.

With the advent of inertial-based
trackers, algorithms have been devel-
oped to characterize the activity of
the wearer over time. Whereas ear-
lier studies focused on device-specific
measures, such as counts from legacy
devices in which a device-specific ac-
celeration threshold is exceeded (Brønd
et al 2017), more recent algorithms are
increasingly defined on standard units
that remain valid on any recordings of
raw inertial sensor signals, even when
the trackers are exchanged. In a study
by Migueles et al (2019) on young adults
wearing the ActiGraph GT3X inertial
sensor, for instance, cut points were
empirically found for dominant and
nondominant wrist placement, based
on the Euclidean norm minus one g
(ENMO) (van Hees et al 2013). These
values were found to be: sedentary time
(less than 50milli-g), light physical activ-
ity (50-–110milli-g), moderate physical
activity (110–440milli-g), and vigorous
physical activity (more than 440milli-
g). Other notable procedures include
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Fig. 18 The proposed components: data is collected and forwardedby an open-source smartwatch (Bangle.js), with our
customized firmware (a) and smartphone app (b), providing a transparent data pipeline to a back-end server database for
anonymized storage and inspection of all data across participants (c)

mean amplitude deviation (Vähä-Ypyä
et al 2015), High-pass filtered Euclidean
norm (van Hees et al 2013), high-pass
filtered Euclidean norm plus (van Hees
et al 2013), proportional-integrating
mode (PIM) (Jean-Louis et al 2001),
zero crossing mode (Acebo et al 1999),
and time above threshold (Fekedulegn
et al 2020).

Similar efforts haven been under way
for directly extracting other measures,
such as accumulated number of steps,
directly from the raw and normalized
acceleration signals so that these become
independent from the used sensors or
hardware.

The aim of the studies presented is to
further develop and evaluate an open-
source ambulatory assessment system
that produces data that can be com-
plemented and compared against later.
This consists of generic software and
open algorithms for capturing physical
activity under free living conditions,
with a special focus on persons with
noncommunicable diseases (diabetes,
cardiovascular diseases), which can be
used for research questions as well as
health promotion strategies.

Methods

Ourproposedsystemconsistsofanopen-
source smartwatch, which records raw
accelerometer data simultaneously with
locally computed aggregation measures
as an immediate feedback to the wearer,
a smartphone app that collects and for-
wards the collected data from the smart-
watch at regular intervals, and a back-
end server database. For all three com-

ponents, we contribute with open-source
software and algorithms.

Overview of components

The following sections will describe the
specifications of the three main ambula-
tory assessment system components and
motivate our choice for their selection.

Smartwatch. In order to decouple
the recorded data from the specific de-
vices that the data was recorded with,
a fully open-source hardware and soft-
ware design was used. The open source
Bangle.js (. Fig. 1a) is a smartwatch that
is equipped with inertial sensors, a heart
rate photoplethysmography (PPG) sen-
sor, GPS, and a temperature sensor. It
also sports a touch display and a vibra-
tion motor. Its processor is a Nordic
64MHznRF52832ARMCortex-M4pro-
cessor with Bluetooth LE, with 64kB
RAM 512kB on-chip flash and 4MB ex-
ternal flash. Both hardware design and
embedded software (firmware) are pub-
licly detailed, making it a fully replicable
and customizable device, with all details
of, for instance, the accelerometer sensor
(a KIONIX KX023-10252) known. The
smartwatch’s affordable cost of £54 in
bulk and its robust IP-68 design further-
more allows for large-scale study deploy-
ments.

Smartphone app. We developed
a custom smartphone app (. Fig. 1b) as
a cross-platform development for the
current major mobile operating sys-
tems, iOS and Google Android, through

2 https://www.kionix.com/product/KX023-
1025 (Lastaccess: 25November2021).

implementation using Flutter, a cross-
platform open-source app development
tool by Google. It is designed to be
easy to read and operate, and to seam-
lessly communicate with the smartwatch
using Bluetooth 5 (low-energy) adver-
tisements and serial communication on
a regular basis. The interface consists
of three main views and is displayed in
German. It was designed to encourage
participants to perform more physical
activities in their daily lives and simul-
taneously collect physical activity data
to be analyzed at a later date. Users
can set their personal goals for the day
and inspect their performance through
a graphical overview of the daily metrics
such as the number of steps, active min-
utes, and minutes spent in three levels
of intensity categories (light, moderate,
vigorous).

Server infrastructure. The server
communicates with the client via two
channels: information about the study
participants, such as gender or age, and
the confirmation of the consent form
are sent via SSL and basic authenti-
cation to a reverse proxy, which then
sends the information to the database via
localhost. This reverse proxy commu-
nicates via a REST-API with a Postgres
SQL database, where this information is
then stored in an anonymized form. The
recorded activity data, as well aggregated
measures such as daily steps and active
minutes, are sent daily via SSH to the
server and stored in compressed binary
files. At the server, these physical activity
logs can then be processed further at
a later date.
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Algorithms for data compression
and aggregation

The firmware on the Bangle.js smart-
watch contains, apart from custom rou-
tines to display information to the user
and handle user interaction, event-based
processes to (1) collect data from the on-
board sensors, (2) compress and store
these data efficiently on the local flash
storage in time-stamped units, and (3)
allow the wearer’s smartphone to con-
nect and collect the aggregate measures
(such as steps, sedentary, or active min-
utes during the day), as well as download
all recorded sensor data on a daily basis.
the remainder of this article will focus
on step detection as an example for such
aggregation algorithms and measures.

The collection and loss-less compress-
ingof accelerometerdata are both tackled
on the Bangle.js wristwatch. For every
new 2-byte sample delivered by the ac-
celerometer, a byte-wise delta-compres-
sion stage is executed, so that mostly in-
cremental data is stored, where the most
significant bytes (MSBs) are updated less
frequently during normal usage. Encod-
ing starts when subsequent samples all
contain the same MSBs, storing these
only once at the beginning together with
the least significant bytes.

Few step detection algorithms have
been published as open source in such
a way that they can be straightforwardly
implemented on raw acceleration data
from a wrist-worn activity tracker. We
have based our detection algorithm on
empirically validated work published
by Salvi et al (2018), which originally
assumed smartphone-based accelerom-
eter data and Brondin et al (2020) which
presents a modification toward wrist-
worn accelerometer data. The latter
reports accuracy performances between
77% for slow-walking activity and 98%
for outdoor walks, and its C source code
has been made publicly available online3
under an MIT licence. We have added
a more stringent component as intro-
duced by Salvi et al. (2018) to reduced
false positive occurrences when the

3 https://github.com/Oxford-step-counter/C-
Step-Counter (lastaccess: 4March2022).
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Validation of an open-source ambulatory assessment system in
support of replicable activity studies

Abstract
Purpose: Inertial-based trackers have
become a common tool in data capture for
ambulatory studies that aim at characterizing
physical activity. Many systems that perform
remote recording of accelerometer data
use commercial trackers and black-box
aggregation algorithms, often resulting in
data that are locked into proprietary formats
and metrics that make later replication or
comparison difficult.
Methods: The primary purpose of this
manuscript is to validate an open-source
ambulatory assessment system that consists
of hardware devices, algorithms, and software
components of our approach. We report on
two validation experiments, one lab-based
treadmill study on a convenience sample of
16 volunteers and one ’in vivo’ study with
28 volunteers suffering from diabetes or
cardiovascular disease.
Results: A comparison between data from
ActiGraph GT9X trackers and our proposed

system reveals that the original inertial
sensor signals at the wrist strongly correlate
(Pearson correlation coefficients for raw
inertial sensor signals of 0.97 in the controlled
treadmill-walking setting) and that estimated
steps from an open-source wrist-based
detection approach correlate with the hip-
worn ActiGraph output (average Pearson
correlation coefficients of 0.81 for minute-
wise comparisons of detected steps) in day-
long ambulatory data.
Conclusion: Recording inertial sensor data
in a standardized form and relying on
open-source algorithms on these data form
a promising methodology that ensures
that datasets can be replicated or enriched
long after the wearable trackers have been
decommissioned.

Keywords
Physical activity · Ambulatory assessment ·
Accelerometer · Open source · Activity trackers

wearer’s hand is inadvertently subjected
to an impact.

Step-detectionalgorithms fromthree-
dimensional accelerometer data com-
monly start by filtering the data with
a low-pass FIR-filter to cut off the noise
from frequencies above 3Hz and calcu-
lating the magnitude of the acceleration
vector that represents each sample in
the data. This ensures that rotations
of the accelerometer sensor are not re-
garded, and the pure impacts are visible
as positive peaks in this new signal. The
magnitude mag at time t is generally
calculated from the readings at that time
for all acceleration axes x, y, and z,
rx , ry , rz , as follows:

mag (t) =√ ∑
a∈{x , y ,z}

r2a . (1)

The result of this step is that subsequent
mag readings can then be analyzed for
positive peaksby searching for localmax-
ima p at time t. These peaks are then,
in what Brondin et al (2020) call a scor-
ing stage, amplified by using the relative

distances to the mag values before and
after the occurring peak and following
a window of size 2N around the time
where the peak p(t) occurred:

mag (t) = 1
2N

(2)

× N∑
k=−N ,k≠t

(mag (t) −mag (t + k)) .

Windowed maximum peaks are then
marked as steps by selecting candidate
steps when the following equation holds,
with µ the mean of the pastmag samples
and σ the standard deviation:

mag (t) − µ > σ ⋅ th. (3)

The above algorithm steps were im-
plemented in our Bangle.js firmware and
additionally in Python to carry out off-
line experiments on the recorded and
original 3D accelerometer readings, as
detailed in the following sections.
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Fig. 29 Time series plots
for a short segment of 3.4 s
of accelerometer data (in g)
fromone participant’s Ban-
gle.js andActiGraphGT9X
devices, while running at
vigorous speed (7 kmh−1)
on the treadmill. The top
(wrist) plots (a, b) show
that after rotating the ac-
celeration data, both de-
vices produce very similar
data; the Pearson correla-
tion coefficient across all
recording segments be-
tween thewrist-worn de-
vices achieved 0.97. The
presence ofminor devia-
tions in the amplitudes of
theY and Z axes’ accelera-
tion is likely due to slightly
imperfect alignment be-
tween the twowrist-worn
devices. The bottomplot
(c) shows that acceleration
at the hip shows larger dif-
ferences in patterns

Experimental design

Two subsequent studies were performed
to evaluate the use of our system: one
laboratory study in which participants
were asked to move on a treadmill at
varying speeds to elicit different activ-
ity levels (light, moderate, vigorous) and
to compare the raw accelerometer read-
ings. A second study was subsequently
performed to measure physical activity
behavior for one day during participants’
daily routines. In both studies, partici-
pants were asked to wear our customized
Bangle.js tracker at thewrist and theActi-
Graph GT9X sensor as the reference de-
vice, at the hip and at the wrist. The study
was approved by the ethics committee of
the medical association of (anonymized)
and was conducted in accordance with
the declaration ofHelsinki. Participation
was always voluntary and informed con-
sent obtained from all participants. To
support the following data analysis and
visualization routines, we developed and
used a series of custom Python-based
scripts that are supplied with this arti-
cle’s code. TheDeclarations section at the
end of this manuscript provides details
on where to obtain the source code.

Preliminary validation experiment
(lab study)

The first study aims at comparing the raw
inertial sensor data between the Bangle.js
open-source wristwatch and the com-
monly deployed ActiGraph GT9X across
different activity levels (light, moderate,
vigorous). Both devices contain a 3D ac-
celerometer, a 3D gyroscope, and a Blue-
tooth Low Energy (BLE) interface to ob-
tain access to locally stored sensor data.

For this preliminary calibration study
a convenient sample of 16 healthy vol-
unteers (9w, 7m) with a mean age
of 45.4 years (±6.8SD) and a BMI
of 24.2kgm−2 (±3.1 SD) was recruited
amonguniversity staff. Participantsmust
be able to walk and run on a treadmill.
Severe diseases or pain lead to study
exclusion. All participants were asked
to wear the Bangle.js and an ActiGraph
GT9X device next to each other on
the wrist of the nondominant hand,
as well as an ActiGraph GT9X on the
hip. These three devices were set to
record raw acceleration data at a sam-
pling rate of 100Hz and at a sensitivity
of ±8g. Data was recorded on the three
devices, converted to common-format
comma separated values (CSV) files per

experiment run, and synchronized in
two phases: once using the local time
stamps, and a subsequent fine-grained
adjustment by hand using the single im-
pact peaks occurring in all three devices’
three-dimensional signals. To choose
the activity intensity levels, we followed
the Compendium of Physical Activities
by Ainsworth et al (2011), to select
three target speeds on a treadmill, each
for 5 min: 3kmh−1 walking for light
intensity, 5kmh−1 walking for moder-
ate intensity, and 7kmh−1 jogging for
vigorous intensity.

Daily routine physical activity
experiment

With a focus on physical activity and
health promotion for persons with non-
communicable diseases like cardiovascu-
lar diseases (CVD) or metabolic diseases
like diabetes mellitus, the second study
measured the daily amount of physical
activity of 28 participants (14w, 14m)
with diabetes or CVD under real-life
conditions. Since the outcome of in-
terest for this study was daily physical
activity, and no additional activity was
to be performed, no exclusion criteria
were defined, for instance on the wear
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Fig. 38Using themean and standard deviation across slidingwindowshas shown that themean over Xand standard devi-
ationover theZ axis values results inanoptimal separationbetween lowandmoderate (accuracy:97.5%), andmoderate and
vigorous (accuracy: 86.7%) activity intensities, respectively

time per day. Sample size approxima-
tion was done on the basis of previous
studies with a comparable study design
(Imbodenet al 2018; Montoye et al 2020).
Participants were recruited in a rehabil-
itation sports facility with a mean age
of 65.6 years (±13.2 SD) and a BMI of
28.2kgm−2 (±8.0SD). Participants wore
a Bangle.js at the wrist and theActiGraph
GT9X at their waist to record both raw
accelerometer data. Using the ActiLife
software framework, we post-processed
the recordings from the ActiGraph in or-
der to obtain ActiLife’s aggregation met-
rics, such as steps, to compare our sys-
tem’s output to in terms of accuracy and
deviations in values and time.

Experimental results

The following sections will present the
outcome of the experiments as described
in the previous section, using both visual
inspection of the accelerometer signals,
as well as through the aggregated per-
formance metric of steps. All code for
the analysis was written in Python and
is made available online4.

4 (Url linkanonymized.).

Preliminary validation experiment
(lab study)

A first analysis of the wrist data between
both devices shows that the alignment
of acceleration axes requires that the y
axes be identical but that the x axes and
z axes be inverted. The two upper plots
of . Fig. 2 show similar signals for all
axes once the values of the ActiGraph
are changed according to the following
transformation: (x , y, z) to (−x , y,−z),
so that the internal three axes for bothde-
vicesarealigned. Asmalldifference inthe
signal amplitude for the y and z axes can
be observed, which can be explained by
the fact that the devices are not strapped
in exactly the same orientation and posi-
tion to the wearer’s wrist. The time series
are annotated on the left-hand side with
the standard deviation values for single
axes over larger windows, which are very
similar for the wrist signals.

Sliding windowed mean and standard
deviation statistics were used over all
three accelerometer axes to obtain a set of
optimal thresholds to separate between
the three activity intensities. By follow-
ing this procedure, the best-performing
axes and features were found to be the
mean over a window of minimally 3 s
sliding over the X axis and the standard

deviation over a window ofminimally 4 s
sliding over the Z axis. The classification
accuracyobtained todistinguishbetween
low-moderate or moderate-vigorous ac-
tivity is 97.5 and 86.7%, respectively.

Using the ActiLife software on the
recordeddata from theActiGraphGT9X,
weobtainedtheresultingstepsperpartic-
ipant per intensity class, for analysis and
comparison of both the wrist-worn and
the hip-worn devices’ data. These steps
data were obtained with time stamps for
each second in the datasets, so that the
resulting step counts could be compared
betweenthehip-wornandthewrist-worn
ActiGraph devices. After disregarding
the data from transitional periods, for
instance when participants moved from
one speed to another on the treadmill
or at the start and end of the exercises,
the step counts between our open-source
approach on the Bangle.js and the steps
estimated by the ActiLife software for
both the wrist and hip-worn ActiGraphs
matched exactly. It is important to note
here that in these laboratory-like settings,
where stepsoccurwithinacontrolledand
vigorous activity, step detection is known
to have become extremely reliable, as for
instance noted in Bassett et al (2016).
The following study will investigate such
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Table 1 Evaluation results fordetectedsteps fromtheActiLife softwareon thehip-wornActiGraphdata (ActiLife Steps), theopen-sourcealgorithmon
theBangledatausingoptimalparametersacrossparticipants(BangleSteps),andfortheparticipant-customizedparameters (Bangle,CSteps). Parametri-
sationwas done using the overall step counts as a target, hence the lowerdeviations in steps for the latter approach.Even though the overall correlation
results remain similar, performance for single participants tended to fluctuate significantly
ID (day) ID

(person)
Duration
(hours)

ActiLife
Steps

Bangle
Steps

Deviation
(%)

Correlation Bangle,
C Steps

Deviation
(%)

Correlation

000 001 8.86 2295 1914 16.60 0.72 2263 1.39 0.62

001 002 9.34 1608 3104 93.03 0.80 1664 3.48 0.93

002 002 8.86 2998 3496 16.61 0.79 3004 0.20 0.85

003 003 8.1 3771 3838 1.78 0.78 3838 1.78 0.78

004 004 8.93 11940 5337 55.30 0.53 12157 1.82 0.83

005 005 7.93 6387 5510 13.73 0.95 6582 3.05 0.92

006 005 8.06 4167 3676 11.78 0.94 4167 0.00 0.90

007 006 8.97 11718 4832 58.76 0.77 11237 4.10 0.74

008 007 10.03 3084 2582 16.28 0.80 3102 0.58 0.93

009 007 9.98 4283 3903 8.87 0.83 4299 0.37 0.86

010 008 2.21 302 302 0.00 0.55 302 0.00 0.55

011 009 9.53 5123 4588 10.44 0.87 5194 1.39 0.90

012 009 8.46 8597 6238 27.44 0.81 8614 0.20 0.81

013 010 7.08 3340 4494 34.55 0.73 3339 0.03 0.67

014 011 7.43 526 573 8.94 0.93 515 2.09 0.94

015 012 8.32 3407 4073 19.55 0.84 3578 5.02 0.72

016 013 8.92 4779 4060 15.04 0.84 4690 1.86 0.92

017 013 8.99 4638 3894 16.04 0.75 4616 0.47 0.88

019 015 6.33 725 1051 44.97 0.92 747 3.03 0.92

020 016 8.56 1248 1745 39.82 0.73 1252 0.32 0.58

021 017 8.77 2397 2066 13.81 0.89 2405 0.33 0.90

022 018 8.81 3608 3665 1.58 0.86 3665 1.58 0.86

023 019 7.99 1735 1800 3.75 0.80 1800 3.75 0.80

024 020 9.04 579 857 48.01 0.79 577 0.35 0.63

025 021 10.08 6944 7994 15.12 0.95 7014 1.01 0.94

026 021 9.72 5404 5603 3.68 0.98 5525 2.24 0.98

027 022 9.52 5453 4981 8.66 0.97 5384 1.27 0.97

028 022 9.3 3312 2620 20.89 0.72 3246 1.99 0.66

029 023 8.29 3988 3863 3.13 0.83 3979 0.23 0.69

030 024 5.8 3638 2990 17.81 0.74 3749 3.05 0.79

031 025 9.23 7920 6697 15.44 0.96 7952 0.40 0.92

Mean 8.43 4190.77 3510.81 21.34 0.82 4076.75 1.53 0.82

results in less-structured daily-life con-
ditions.

Daily routine physical activity
experiment

The analysis of the daily routine data
from the wrist-worn Bangle.js and hip-
wornActiGraphhad tobepreparedmore
meticulously, as both devices were pro-
grammed to start at a pre-defined time
and date, and as the study participants
were responsible for donning and doff-
ing the sensors themselves. The Acti-
Graphwas configured to record for 2days

continuously, whereas the Bangle.js was
configured to start and stop the record-
ings each day at set times. Two partici-
pants also took off the hip-worn device
in the middle of the recordings, which
led to one of the data streams gener-
ating data that was only partially us-
able. An additional hurdle was that for
somerecordings, theActiGraphs stopped
recording after approximately 24 to 30 h.
The resulting day-long recordings were
then trimmed to those times where valid
data existed between the two devices
and where the study participants were
demonstrably wearing both devices. The

left-most columns in . Table 1 show the
resulting synchronized recordings and
their duration in hours, as well as their
total number of steps as delivered by the
ActiLife software.

The synchronization of the data was
also verified by manually observing sim-
ilar impacts at the start and at the end
of the recordings. Since both devices
are equipped with a dedicated real-time
clock, this was found to be very accurate
already and did not need additional cor-
rections within the data. Similarly, since
both devices were set to record at the
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Fig. 49 Selection ofwell-
performing recordings 026,
029, 027, and 002, display-
ing three-dimensional ac-
celerometer data for the
wrist-worn Bangle.js (top)
and hip-worn ActiGraph
(middle)devices (in g),with
occurred andminute-ac-
cumulated steps (bottom).
X labels: day,month, and
hour of day
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Fig. 59 Selection of poor-
performing recordings 020,
010, 024, and 000, display-
ing three-dimensional ac-
celerometer data for the
wrist-worn Bangle.js (top)
and hip-worn ActiGraph
(middle)devices (in g),with
occurred andminute-ac-
cumulated steps (bottom).
X labels: day,month, and
hour of day
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a b

Fig. 68 Bland-Altman plots for visualizing differences in the steps as estimated by theActiLife step detection algorithmon
the hip-worn ActiGraphGT9X data, and the open-source algorithmon thewrist-worn Bangle.js data.We compare for the
latter twocases: for the parameters chosen across all participants (Bangle in the left plot a), and for the parameters optimized
per-participant (Bangle,C as depicted in the right plot b)

same ranges, the recorded values did not
need any normalization.

Steps were detected in these experi-
ments through three methods: (1) The
hip-worn ActiGraph using the internal
algorithm of the ActiLife software, to
compare our values with a well-known
method, (2) the detected steps as es-
timated by our open-source algorithm,
using parameters optimally selected to
match the number of steps of the Ac-
tiLife steps across all study participants,
and (3) the steps as detected by our open-
source algorithm, using parameters op-
timally selected to match the number of
steps of the ActiLife steps per study par-
ticipant. The distinction between the last
twohas beenmade to analyze the distinc-
tive power of the algorithm’s parameters.

The per-participant results can be
viewed in . Table 1 in the middle and
right-most columns. The steps detected
by theActiLife software on theActiGraph
device (hip-worn) or by the open-source
algorithm as described above on the
Bangle.js data were accumulated per
minute in which they occurred. The
Pearson correlation coefficient between
the resulting minute-by-minute step
count series was then calculated.

For the algorithm version where pa-
rameters were set in a participant-in-
dependent fashion, it can be seen that
the minute-to-minute Pearson correla-
tion coefficients tend to fluctuate signif-

icantly between both individual partic-
ipants and monitored days. The Pear-
son correlation coefficient is above 0.9
for several day-segments, showing high
correlation in steps predictions, and on
average 0.818 when using the optimal
parameters across all data segments or
a slightly higher 0.819 for the optimal
parameters selected per person. These
results are in line with those of other
studies that have compared commercial
activity tracking devices, as for instance
surveyed in Evenson et al (2015).

. Figures 4 and 5 display the raw time
series plots for selections of best-per-
forming data recording segments, dis-
playing the original three-dimensional
accelerometer data for the wrist-worn
Bangle.js (the top plot for each record-
ing) and hip-worn ActiGraph (middle
plot for each recording) devices, denoted
in g. These are synchronized and com-
bined with minute-accumulated steps in
each bottom plot. The plots are anno-
tated in the X axis with labels depicting
the day, month, and hour of day. The Y
axis is annotated with the source system
of the step estimates: A for ActiLife-de-
tected steps in the ActiGraphGT9Xdata,
B for the steps detected by the presented
open-source step detection algorithm on
the Bangle.js data, and G for the steps
detected by the presented open-source
algorithm on the ActiGraph GT9X data.

The visualizations contain several ex-
amples where the steps detected from
wrist-worn data tends tomatchwell dur-
ing longer bouts of walking, but shorter
clusters of steps show more discrepan-
cies. With the exception of the longer
walking segment in recording 000 at the
bottom in . Fig. 5, from around 10 to
11:30, and the segment in recording 029
in. Fig. 4 fromaround13:00 to13:00, the
recordings with poorer correlation coef-
ficients between the ActiLife steps and
those delivered by our own system tend
to occur especially outside such events.
Someof these occurrences canbe tracked
down to phases where the wrist data dis-
plays a lot of motion whereas the hip
data shows significantly less motion, as
for instance canbeobserved in. Fig. 4 for
recording002 at the bottomaround12:00
(with our Bangle.js-based steps display-
ing many steps, unlike the ActiGraph-
based setup).

. Figure 6 presents the Bland-Altman
plots for further analyzing the agree-
ment between the steps as found by
the ActiLife algorithm within the hip-
worn ActiGraph GT9X data, and the
open source step detection algorithm as
discussed in Sect. 2.2 on the wrist-worn
Bangle data. As in . Table 1, it can be
seen that differences in steps between the
two devices and algorithms are about
an order of magnitude larger for the
cross-participants parameters but also
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that even for those, larger step counts
still show relatively small differences.
Further examination using equivalence
testing, as recently suggested in O’Brien
(2021), would be a fitting methodology
to demonstrate the equivalence between
the ActiGraph-based hip-worn ActiLife
steps detection and the Bangle.js-based
wrist-worn approach presented here. As
this requires additional data preparation
and decisions, such as determining an
equivalence interval, this is left for future
research on our public dataset.

Conclusions and discussion

In summary, we proposed an approach
that relies on strictly open-source com-
ponents in order to be able to record
study data that can be re-analyzed and
supplemented afterwards, even after the
used devices and software have reached
their end-of-life limit or have gone out
of production. For mere collection, this
means that raw acceleration data needs
to be recorded at known units of sen-
sitivity and sampling, but for studies in
which devices offer direct feedback to
the participants, for instance displaying
the steps taken during the day, this also
requires open-source algorithms.

The purpose of the studies presented
here was to validate our approach of us-
ing a low-cost smartwatch and compare
the output, both the original sensor val-
ues and the aggregated measure such as
steps. We took recommendations of the
framework to evaluate devices that as-
sess physical activity behavior into ac-
count, with a focus on phase I (labora-
tory development) and phase III (nat-
uralistic validation) (Keadle et al 2019).
Experimental results can be summarized
into the following points. (1) The three-
dimensional accelerometer data, when
sampled at similar rates and set to the
same range, are highly comparable be-
tween devices. The preliminary study
where study volunteers walk and run at
different speeds on a treadmill show an
almost perfect correlation (Pearson cor-
relation coefficient: 0.97) between the
wrist-worn devices. (2) The detected
steps in natural environments from the
open-source algorithm from our custom
wrist-worn tracker show strong correla-

tion with the detected steps from a hip-
worn ActiGraph using the ActiLife soft-
ware suite. Deviations in step counts
between the two systems can be seen
by visual inspection especially in peri-
ods when study participants were only
walking for brief, intermittent periods.

Our studies focused mostly on raw
acceleration signals and evaluated step
counts as measured by our algorithms
and compared against the ActiLife soft-
ware suite. Although the Actigraph
GT9X is not the gold standard for val-
idating steps, it is probably one of the
most frequently used devices in physical
activity research and, therefore, seems
appropriate for studypurposes. This is by
farnot the onlymeasure that canbeput to
use for assessing physical activity in daily
life. Future research will inadvertently
have to focuson furthermeasures that are
both fast to comprehend by participants
and can be calculated from any given
acceleration signal. Robust estimates for
specific exercises and activities, energy
expenditure, or calorie consumption
could be candidates for such measures
and are similarly developed as an open-
source code base.

Beyond the recording of activity data
in a replicable way, systems such as the
one presented in this manuscript would
form an optimal basis for designing fu-
ture just-in-time adaptive interventions,
whereevents inthesensordatacantrigger
interventions on users’ phones or smart-
watches, as presented in Ebner-Priemer
et al (2013) and Giurgiu et al (2020) for
instance for smartphone-based triggers
based on sedentary behavior and physi-
calactivity. Interventionsbasedonevents
detected in the sensor data could be inte-
grated directly on the smartwatch, thus
guaranteeing that participants would im-
mediately become notified, but would
need additional attention to the usability
and the reduced interaction modalities
on such devices.

The anonymized experiment data de-
scribed in this articlewill beplacedonline
sothattheyaremadeavailablepubliclyfor
further analysis and comparisons: (URL
anonymized for double-blind review).
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