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ABSTRACT
Affect recognition aims to detect a person’s affective state based
on observables, with the goal to e.g. improve human-computer
interaction. Long-term stress is known to have severe implica-
tions on wellbeing, which call for continuous and automated stress
monitoring systems. However, the affective computing commu-
nity lacks commonly used standard datasets for wearable stress
detection which a) provide multimodal high-quality data, and b)
include multiple affective states. Therefore, we introduce WESAD,
a new publicly available dataset for wearable stress and affect de-
tection. This multimodal dataset features physiological and motion
data, recorded from both a wrist- and a chest-worn device, of 15
subjects during a lab study. The following sensor modalities are
included: blood volume pulse, electrocardiogram, electrodermal
activity, electromyogram, respiration, body temperature, and three-
axis acceleration. Moreover, the dataset bridges the gap between
previous lab studies on stress and emotions, by containing three
different affective states (neutral, stress, amusement). In addition,
self-reports of the subjects, which were obtained using several es-
tablished questionnaires, are contained in the dataset. Furthermore,
a benchmark is created on the dataset, using well-known features
and standard machine learning methods. Considering the three-
class classification problem (baseline vs. stress vs. amusement), we
achieved classification accuracies of up to 80 %. In the binary case
(stress vs. non-stress), accuracies of up to 93 % were reached. Finally,
we provide a detailed analysis and comparison of the two device
locations (chest vs. wrist) as well as the different sensor modalities.
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1 INTRODUCTION
Affective computing is an emerging field, inspired by the vision
to improve human-computer interaction by building empathic ma-
chines. Empathic machines detect the affective state of a human
user, adapt their ’behaviour’ accordingly, and might even exhibit
own emotional traits. From a health care point of view, stress, de-
fined as ’nonspecific response of the body to any demand upon it’
[25], is a particularly interesting affective state. This is due to the
harmful effects of long-term stress, which can range from headaches
and troubled sleeping to an increased risk of cardiovascular diseases
[4, 16, 22]. According to the British Health and Safety Executive
(HSE), stress accounted for 37% of all work-related ill health cases
in 2015/16 [1]. These severe side effects of stress call for automated
detection methods.

In order to build a reliable stress detection system, it is important
to understand that stress is primarily a physiological response to a
stimulus, triggered by the sympathetic nervous system (SNS). Dur-
ing this response a mixture of hormones like cortisol or adrenaline
are released, leading to an increased breathing/heart rate and mus-
cle tension. These physiological changes prepare the organism for a
physical reaction (’fight-or-flight’). As shown by Kreibig et al. [13]
the physiological responses to certain emotional stimuli are also to
some extent specific. A psychological model well suited for captur-
ing affective states is Russel’s circumplex model [23]. According to
this model, affective states can be mapped into a 2D space, using
for example the axes valence and arousal. The valence dimension
indicates how negative/positive an affective state is perceived. On
the arousal axis, which is known to be impacted by stress [9], the
state is rated in terms of excitement.

In recent years, the specificity of the physiological responses to
stress and emotional stimuli was utilised to train machine learn-
ing models to predict the affective state of a subject. Using deep
neural networks, trained on audio and/or visual data, a high perfor-
mance in emotion classification is achieved [17, 29]. However, these
models are quite demanding in terms of computational resources
and are only partially applicable on embedded devices. Classify-
ing stress from audio samples was also successfully done, e.g., by
Lu [14]. However, recording audio and/or video data continuously
is in terms of privacy quite intrusive, and concerning technical
feasibility difficult. Hence, these modalities are only available in
specific occasions. Wearable electronic devices, in contrast, are only
minimally intrusive. Devices like smart phones/watches are already
popular among users. Contemporary wearables can be used to track
steps and monitor other physical activities. To keep up with the
current trend to quantify vital functions, a desirable next step is
to infer affective states based on multimodal wearable sensor data.
Plarre et al. [20] and Hovsepian et al. [8] trained stress detection
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systems on peripheral physiological data utilising electrocardio-
gram (ECG), respiration (RESP) and 3-axis accelerometer (ACC)
data, recorded by a chest-worn device. Gjoreski et al. [5] used the
data of a wrist-worn device recording blood volume pulse (BVP),
electrodermal activity (EDA), skin temperature (TEMP), and ACC
to train a stress detection model. In order to detect emotions in
response to music, Kim et al. [10] used ECG, RESP, EDA, and elec-
tromyogram (EMG) data. Distinguishing stress and emotions is not
a trivial task, since both have a strong impact on the autonomous
nervous system. However, in current affective computing research,
stress and emotion detection from wearables are commonly tackled
as two disjoint topics. Our work addresses this shortcoming. This is
important since, for a holistic affective user model, assessing both
stress and emotions is required.

As outlined above, multimodal setups have been used for stress
or emotion detection tasks. However, in contrast to many other
research fields, there is a lack of commonly used, standardised
benchmarking datasets for stress and affect detection. Hence, it is
difficult to compare results obtained by different researchers. Our
work intends to address this shortcoming as well.

The main contributions of this paper are threefold:
(1) A new multimodal, publicly available dataset1 is presented.

The data has been recorded using two different devices
(one chest-based and one wrist-based), each including high-
resolution physiological (BVP, ECG, EDA, EMG, RESP, and
TEMP) and motion (ACC) modalities.

(2) The dataset bridges the gap between previous lab studies on
stress and emotions, by containing three different affective
states (neutral, stress, amusement). In addition, the dataset
features self-reported values on the perceived affective state
of the subjects, which were obtained using several estab-
lished questionnaires. These self-reports can be used to train
personalised classifiers.

(3) A benchmark is created using a large amount of well-known
features (extracted from physiological and motion signals)
and common machine learning methods (Decision Tree (DT),
Random Forest (RF), AdaBoost (AB), Linear Discriminant
Analysis (LDA) and k-nearest neighbour (kNN)).

2 RELATEDWORK
In recent years, a number of studies have been conducted with the
aim to elicit and detect stress based on physiological parameters.
For this purpose, stressors like public speaking, mental arithmetic or
physical stressors (e.g. cold pressor) were employed [5, 8, 20]. How-
ever, these approaches focus on detecting and classifying stressful
vs. non-stressful states and do not take any other affective states
into account. Classical machine learning algorithms like the RF
were employed to the stress classification task, achieving a 72% ac-
curacy on a three class (no, low, high stress) problem [5]. Kim et al.
[10] used four songs to elicit different target emotions, which were
then classified using LDA, achieving a subject-independent correct
classification ratio of 70%. However, the topic of combining stress
and emotion detection systems has only received little attention.
Zenonos et al. [32] presented a mood recognition system capable of

1The dataset introduced in this paper is made publicly available, and can be downloaded
from: https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/.

distinguishing eight different moods with a subject-independent ac-
curacy of 62.14%. However, as the system was trained and tested on
only four subjects, the generalisation properties are questionable.

Although there is intensive research in the field of affective
computing from wearable devices, there is only very little publicly
available data. Healey et al. [6] published a dataset on driver stress.
This dataset features ECG (496 Hz), EDA (31 Hz), RESP (31 Hz),
and EMG (15.5 Hz) data. Moreover, Picard et al. [19] published a
dataset containing physiological data recorded from one person,
who is subject to eight different emotional stimuli over 20 days.
More recently, Koestra et al. [12] published DEAP, a database for
emotion analysis using physiological signals. The dataset contains
electroencephalogram (EEG) (512 Hz), facial videos and peripheral
physiological signals (recorded at 512 Hz, then down-sampled to
256 Hz). The data was recorded while the subjects watched 40 one-
minute excerpts from music videos. The final 40 clips were chosen
from a larger pool of videos, by asking volunteers to rate the clips
in terms of their valence and arousal value and then choosing the
ones that had the strongest rating with the smallest variance.

The way humans perceive and react to an affective stimulus is
very subject dependent. Hence, personalisation is an important
issue. In order to train personalised models, subjective ratings of
the different affective stimuli are required. These ratings are com-
monly generated by self-assessment of the subjects. For instance,
manikins can be used to generate personalised valence, arousal,
dominance, and liking labels [12]. In the study of Plarre et al. [20]
subjects reported their stress levels by answering five questions
(Cheerful?, Happy?, Angry/Frustrated?, Nervous/Stressed?, Sad?)
on a four point scale (NO, no, yes, YES). Other studies employed
more complex questionnaires such as the PANAS [18] and STAI
[5]. In field studies, smart phone apps offer ideal platforms for
self-reports, e.g., on mood [32].

In this paper we present a novel dataset for stress and affect
detection. The subjects (n = 15) were exposed to different affective
stimuli (stress and amusement). In addition, a baseline and two
meditation periods (introduced to de-excite the participants after a
stimulus) were recorded. The dataset contains high resolution phys-
iological (ECG, EDA, EMG, RESP, and TEMP) and motion (ACC)
data sampled at 700 Hz from a chest-worn device, and lower resolu-
tion data from a wrist-worn device. Finally, the data of each subject
is linked to several self-reports, which represent the subjective ex-
perience during an affective stimulus. The dataset is well-suited to
benchmark (personalised) stress and affect detection algorithms, a
first evaluation is presented in this paper.

3 DATA COLLECTION
This section provides details on the subjects, employed sensors,
sensor placement, the study protocol, and the self-reports. The
study was approved by the workers council and the data security
officer of our research center.

3.1 Participants
Due to the defined study protocol, we specifically targeted graduate
students at our research facility. Exclusion criteria, stated in the
study invitation, were pregnancy, heavy smoking, mental disorders,

https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/


Figure 1: Placement of the RespiBAN and the ECG, EDA,
EMG, TEMP sensors.

chronic and cardiovascular diseases. In total, 17 subjects partic-
ipated in our study. Due to sensor malfunction, the data of two
participants had to be discarded. The remaining 15 subjects had a
mean age of 27.5 ± 2.4 years. Twelve subjects were male and the
other three subjects were female.

3.2 Sensor Setup and Placement
For the data collection, we used both a chest- and a wrist-worn
device: a RespiBAN Professional2 and an Empatica E43, respectively.
The RespiBAN itself is equipped with sensors to measure ACC
and RESP, and can function as a hub for up to four additional
modalities. Using the four analog ports, ECG, EDA, EMG, and TEMP
were recorded. All signals were sampled at 700 Hz. The RespiBan
was placed around the subject’s chest (see Figure 1). The RESP is
recorded via a respiration inductive plethysmograph sensor. The
ECG data was recorded via a standard three point ECG. In order to
allow the subject to move as freely as possible, the EDA signal was
recorded on the rectus abdominis (the abdomen has a high density
of sweat glands [28], hence suitable for EDA measurement) and
the TEMP sensor was placed on the sternum. The EMG data was
recorded on the upper trapezius muscle on both sides of the spine.
In order to avoid wireless packet loss, the recorded data was stored
locally and transferred to a computer for further processing after
the experiment. All subjects wore the Empatica E4 on their non-
dominant hand. The E4 records BVP (64 Hz), EDA (4 Hz), TEMP (4
Hz), and ACC (32 Hz).

3.3 Study Protocol
The goal of the study was to elicit three different affective states
(neutral, stress, amusement) in the participants. In addition, the
subjects were asked to follow a guided meditation in order to de-
excite them after the stress and amusement conditions. The different
parts of the study protocol are detailed below:

Preparation: The participants had to avoid caffeine and tobacco
in the hour before the experiment was to begin. Further, the subjects
were asked to do no strenuous exercise on the day of the study.
Prior to the study the participants read and signed a consent form.
Upon arrival at the study location, the participants were equipped
with the sensors and a short sensor test was conducted. Then the
2http://www.biosignalsplux.com/en/respiban-professional
3http://www.empatica.com/research/e4/

RespiBAN and E4 were synchronised manually via a double tap
gesture.

Baseline condition: After the subjects had been equipped with
the sensors, a 20 minute baseline was recorded. During the baseline
the subjects were sitting/standing at a table and neutral reading
material (magazines) was provided. The baseline condition aimed
at inducing a neutral affective state.

Amusement condition: During the amusement condition, the
subjects watched a set of eleven funny video clips. Each clip was
followed by a short neutral sequence of five seconds. Eight of the
short clips were chosen from the corpus presented by Samson et al.
[24]. The remaining three videos were chosen by the authors. In
total, the amusement condition had a length of 392 seconds.

Stress condition: The subjects were exposed to the well-studied
Trier Social Stress Test (TSST) [11], which consists of a public
speaking and a mental arithmetic task. These tasks are known to
elicit stress reliably [20], as they are social evaluative and inflict
a high mental load on the subjects. In our version of the TSST,
the study participants first had to deliver a five minute speech on
their personal traits in front of a three-person panel, focusing on
strengths and weaknesses. The subjects were told that the three
panel members were human resources specialists from our research
facility. In order to boost their career options, the subjects were told
to try to leave the best possible impression. The study participants
had three minutes to prepare their speech but they were not allowed
to use their notes during the presentation. After the speech, the
panel asked the subjects to count from 2023 to zero, doing steps
of 17. Moreover, whenever the subjects made a mistake, they had
to start over. For both tasks, the subjects were given five minutes
by the panel and hence the TSST had a total length of about ten
minutes. After the TSST the study participants were given a ten-
minute rest period.

Meditation: The amusement and stress conditions, which both
aimed at exciting the subjects, were followed by a guidedmeditation.
The aim of this meditation was to ’de-excite’ the subjects and bring
them back to a close to neutral affective state. The meditation was
based on a controlled breathing exercise, instructed via an audio
track. Subjects followed the instructions with closed eyes, while
sitting in a comfortable position. The meditation had a duration of
seven minutes.

Recovery: At the end of the protocol, the sensors were again
synchronised via a double tap gesture. Then, the sensors were
removed and the subjects were informed that the panel members
were just ’normal’ researchers.

In total, the study had a duration of about two hours. Figure 2
summarises the protocol (without the preparation and the recovery
period). As detailed above, our lab protocol features two major
stimuli: an amusement condition and a stressful condition. These
two conditions were interchanged (see Figure 2) between different
subjects in order to avoid effects of order. In addition to these stim-
uli, a baseline and two meditation periods were recorded. In order
to induce variance in the subjects’ posture, the baseline, amusement
and stress conditions were conducted either standing or sitting. For
each condition, approximately half of the subjects were standing
and the other half were sitting. During the meditation, however, all
subjects were seated.



Version A

Baseline Amusement Medi I Stress Rest Medi II

Version B

Baseline Stress Rest Medi I Amusement Medi II

Figure 2: The two different versions of study protocol. The
red/dark boxes refer to filling in self-reports.

3.4 Obtaining Ground Truth
In order to validate the study protocol, we collected five self-reports
of each participant (timing indicated by red/dark boxes in Fig-
ure 2). Each of the self-reports contained several questionnaires.
Firstly, participants filled in a Positive and Negative Affect Schedule
(PANAS), which consists of 20 items (ten positive and ten negative
items) each rated on a five point Likert scale. PANAS reliably as-
sesses positive (PA) and negative affect (NA), which are two largely
independent dimensions [30]. PA reaches from ’sad and lethargic’
(low value) to ’concentrated and energetic’ (high value). NA ranges
from ’calmness’ (low value) to ’subjective distress’ (high value).
Furthermore, we added the items Stressed?, Frustrated?, Happy?, and
Sad?, which were scored by the subjects using the same scale as
in PANAS. These items can be used to generate the same labels
as used by Plarre et al. [20]. Secondly, similar to Gjoreski et al. [5],
we used six items from the State-Trait Anxiety Inventory (STAI)
to gain insight into the anxiety level of the participants. The items
were chosen according to their factor loads [2], and scored on a
four point Likert scale. Thirdly, we used Self-Assessment Manikins
(SAM) to generate labels in the valence-arousal space [12]. Finally,
after the TSST, nine items from the Short Stress State Questionnaire
(SSSQ) [7] were added to the questionnaires in order to identify
which type of stress (worry, engagement, or distress) was most
prevalent in the subjects. The values from these questionnaires can
be seen as subjective reports on how the participants felt during a
condition and may be used to train personalised models. However,
for the first evaluation presented in this paper, we used the study
protocol as ground truth.

4 METHODS
The analysis and evaluation of our dataset follows the classical
data processing chain, consisting of the following steps: prepro-
cessing, segmentation, feature extraction, and classification. Details
on these different steps are presented below (the first three steps
are explained together since they depend on the specific sensor
modality).

4.1 Feature Extraction
Segmentation of the (preprocessed) sensor signals was done using
a sliding window, with a window shift of 0.25 seconds. The ACC-
features were computed with a window size of five seconds, as
similar window lengths are broadly applied for acceleration-based

context recognition (e.g. Reiss et al. [21]). All features (except for
statistical- and frequency-domain EMG-features, see below) based
on physiological signals were computed with a window size of 60
seconds. This window size was chosen following Kreibig et al. [13].
In Table 1, the features extracted from the different modalities are
displayed.

On the raw ACC signal different statistical features, e.g. the mean
µacc,i and standard deviation σacc,i were computed. These features
were computed both for each axis separately (i ∈ {x ,y, z}) and as
absolute magnitudes, summed over all axes (3D). In addition, the
peak frequency was computed for each axis separately f

peak
acc,i .

On the raw ECG/BVP signal the heart beats were found based on
peak detection algorithms. Using the peaks, the heart rate (HR) and
corresponding statistical features (mean, standard deviation) were
computed. Moreover, from the location of the heart beats the heart
rate variablility (HRV) was derived, which is an important starting
point for additional features. For instance, the energy in different
frequency bands (f xHRV ) was computed. The frequency bands (x)
used, were the ultra low (ULF: 0.01-0.04 Hz), low (LF: 0.04-0.15 Hz),
high (HF: 0.15-0.4 Hz) and ultra high (UHF: 0.4-1.0 Hz) band. In [15]
the HR and HRV are described in detail.

The EDA is controlled by the sympathetic nervous system (SNS),
and hence it is particularly sensitive to high arousal states. First, a
5 Hz lowpass filter was applied to the raw EDA signal, similar to
related work [26, 27]. Then, statistical features were computed (e.g.
mean, standard deviation, dynamic range, etc.). Furthermore, the
raw EDA signal consists of a tonic (referred to as skin conductance
level (SCL)) and a phasic (skin conductance response (SCR)) com-
ponent. The SCL represents a slowly varying baseline conductivity,
while the SCR is a short term response to a stimulus. In order to
separate these two components, the method proposed by Choi et
al. [3] was applied. After separating the SCL and SCR, additional
features, e.g. number of peaks in the SCR (#SCR ), were computed.
Details about the EDA-related features can be found in Choi et al.
[3] and Healey et al. [6].

Two different processing chains were applied to the raw EMG
signal. In the first chain, the DC component was removed by ap-
plying a highpass filter. Then, the filtered signal was cut into 5-
second windows, and statistical and frequency-domain features
(e.g. peak frequency) were computed. In addition, the spectral en-
ergy (PSD ( fEMG )) was computed in seven evenly spaced frequency
bands from 0 to 350 Hz. Following the second processing chain, a
lowpass filter (50 Hz) was applied to the raw EMG signal. Next, the
processed signal was segmented into 60-second windows. On these
windows different peak features, e.g. number #peaksEMG and mean
amplitude µAmp

EMG , were computed. For a more detailed description
of EMG-based features, we refer the reader toWijsman et al. [31].

Before computing features on the RESP signal, a bandpass filter
(cut off frequencies: 0.1 and 0.35 Hz) was applied. Next, a peak detec-
tor was used to identify minima and maxima. Following Plarre et al.
[20] the mean and standard deviation of the inhalation/exhalation
(µI , σI , µE , and σE ) were computed. In addition, the ratio between
inhalation and exhalation (I/E), stretch ranдeRESP , inspiration vol-
ume volinsp , respiration rate rateRESP , and respiration duration
were derived

∑
RESP [20].



Table 1: List of extracted features. Abbreviations: # = number
of,
∑

= sum of, STD = standard deviation.

Feature Description

ACC

µACC,i , σACC,i Mean, STD for each axis sepa-
i∈{x,y,z,3D } rately and summed over all axes

∥
∫
ACC,i ∥ i∈{x,y,z,3D } Absolute integral for each/all axes

f peakACC, j j∈{x,y,z } Peak frequency for each axis i

µHR , σHR Mean, STD of the HR

µHRV , σHRV Mean, STD of the HRV

NN 50, pNN 50 # and percentage of HRV inter-
vals differing more than 50ms

T IN N Triangular interpolation index

rmsHRV Root mean square of the HRV

ECG f xHRV Energy in ultra low, low, high,
and x∈{U LF ,LF ,HF ,UHF } and ultra high frequency
BVP component of the HRV

f LF /HF
HRV Ratio of LF and HF component∑f
x

∑
the freq. components

x∈{U LF ,LF ,HF ,UHF } in ULF-HF

r el fx Relative power of freq.
component

LFnorm, HFnorm Normalised LF and HF
component

EDA

µEDA, σEDA Mean, STD of the EDA signal

minEDA, maxEDA Min and max value

∂EDA, ranдeEDA Slope and dynamic range

µSCL, σSCL, σSCR Mean, STD of the SCR/SCL

corr (SCL, t ) Correlation btw SCL and time

#SCR # identified SCR segments∑Amp
SCR ,

∑t
SCR

∑
SCR startle magnitudes and

response durations∫
scr Area under the identified SCRs

µEMG , σEMG Mean, STD of EMG signal

ranдeEMG Dynamic range

EMG ∥
∫
EMG ∥ Absolute integral

π̃EMG Median of the EMG signal

P 10
EMG , P 90

EMG 10th and 90th percentile

µ fEMG , f̃EMG , Mean, median and

f peakEMG Peak frequency

PSD (fEMG ) Energy in seven bands

#peaksEMG # peaks

µAmp
EMG , σAmp

EMG Mean, STD of peak amplitudes∑Amp
EMG ,

∑̄Amp
EMG

∑
and normalised

∑
of

peak amplitudes

RESP µx , σx Mean, STD of inhalation (I)
x∈{I ,E } and exhalation (E) duration
I /E Inhalation/exhalation ratio

ranдeRESP , volinsp Stretch, Volume

rateRESP Breath rate∑
RESP Respiration duration

TEMP µT EMP , σT EMP Mean, STD of the TEMP

minT EMP , maxT EMP Min, max TEMP

ranдeT EMP Dynamic range

∂T EMP Slope

On the raw TEMP signal common statistical features (mean,
standard deviation, min, max, etc.) were computed. In addition, the
slope of the signal ∂T EMP is used as a feature.

4.2 Classification Algorithms
The extracted features, detailed above, serve as input for the classi-
fication step. Five machine learning algorithms were applied and
compared within our benchmark: Decision Tree (DT), Random For-
est (RF), AdaBoost (AB), Linear Discriminant Analysis (LDA), and
k-Nearest Neighbour (kNN). As the entire data processing chain
was implemented in Python, we used the scikit-learn implementa-
tion of the aforementioned classifiers. For the AB ensemble learner,
decision tree was used as base estimator. For each of the decision-
tree-based classification algorithms (DT, RF, AB), information gain
was used to measure the quality of splitting decision nodes, and
the minimum number of samples required to split a node was set
to 20. The number of base estimators was set to 100 for both of the
ensemble learners (RF and AB). Moreover, a LDA and a kNN (with
k=9) classifier were used for classification.

4.3 Evaluation Metric
We used accuracy and F1-score as evaluation metrics. Accuracy
represents the number of correctly classified instances out of all
samples. The F1-score is defined as the harmonic mean of preci-
sion, indicating the reliability of the results in a certain class, and
recall, representing a measure of completeness. To obtain the final
F1-score, precision and recall were computed for each class sepa-
rately and then averaged. Applying the F1-score is recommended
for unbalanced classification tasks, which is the case when using
WESAD (since the various conditions were carried out at differ-
ent lengths during the study protocol). All models were evaluated
using the leave-one-subject-out (LOSO) cross-validation (CV) pro-
cedure. Hence, the results indicate how a model would generalise
and perform on data of a previously unseen subject.

5 RESULTS AND DISCUSSION
This section provides first an analysis of the collected self-reports.
Second, detailed results on the evaluation of the recorded sensor
data and processing chain are given, including a discussion on
the importance of the different sensor modalities and extracted
features. For the data analysis and evaluation presented here, we
only consider the data recorded during the baseline, stress (TSST),
and amusement parts of the study protocol (see Figure 2.)

5.1 Evaluation of the Self-reports
In this work, the analysis of the self-reported measures (see subsec-
tion 3.4) has been used to verify that the design of the experimental
conditions was suitable to manipulate the subjects’ affective state
as desired. Table 2 shows the results (mean and standard deviation)
of the three measures and subscales, respectively.

Comparing the self-reports after the amusement and baseline
condition reveals that the amusement condition had the desired
effect: the subjects report slightly higher scores on valence and
arousal (dimensional approach, DIM) and less anxiety (STAI). How-
ever, the effect of the condition is rather small. In contrast, the
impact of the stress condition is pronounced, across all question-
naires. The analysis of the SSSQ scores indicates that the subjects
felt more engaged and worried than distressed during the TSST
task (Engagement: 11.7 ± 2.3, Distress: 6.0 ± 2.9, Worry: 10.6 ± 2.3).



Table 2: Evaluation of the questionnaires.

PANAS STAI DIM
positive negative valence arousal

Baseline 25.5±6.0 12.3±2.0 10.8±1.9 6.7±0.9 2.5±0.9
Stress 31.3±4.7 22.0±6.4 18.5±2.0 4.5±1.6 6.8±1.8
Amusement 25.8±5.1 11.4±2.1 9.3±2.0 7.5± 0.6 3.0±1.6

The high ’Engagement’ score might result from the subjects’ high
motivation to perform well in the given task. The high ’Worry’
score suggests that the subjects were determined to give a good
impression on the panel. In our opinion, these scores demonstrate
that most subjects believed our cover story of the TSST.

After the stress condition, the PANAS showed increased scores
with respect to positive (PA) and negative affect (NA). The high
PA score indicates that subjects felt energised and concentrated
during the TSST, which coincides with the high engagement values
reported in the SSSQ. The elevated NA score indicates an increased
level of subjective distress. The DIM scores support these observa-
tions, indicating an increase in arousal and a decrease in valence.
Moreover, the STAI shows elevated values after the TSST, as ex-
pected for subjects in a stressful condition. The statistical difference
between the baseline and stress conditions were confirmed with the
Wilcoxon signed-rank test. Overall, the experimental protocol (es-
pecially with respect to the stress condition) is considered suitable
to induce the desired affective states.

5.2 Evaluation of Sensor Modalities and
Extracted Features

Based on the affective states of the study protocol (baseline, stress,
and amusement condition), we distinguish two classification tasks.
First, a three-class problem was defined: baseline vs. stress vs. amuse-
ment. Results on this classification task are presented in Table 3.
Second, a binary classification task was defined by combining the
states baseline and amusement to a non-stress class, posing the stress
vs. non-stress classification problem. Results of this classification
task are presented in Table 4. For both classification tasks, 16 differ-
ent modality combinations are evaluated:
• each of the four modalities of the wrist-based device sepa-
rately (ACC, BVP, EDA, and TEMP)
• each of the sixmodalities of the chest-based device separately
(ACC, ECG, EDA, EMG, RESP, and TEMP)
• all modalities of one device (wrist or chest)
• all physiological modalities of one device (same as last entry,
but without ACC)
• all modalities from both devices (wrist and chest) together
• all physiological modalities from both devices together (same
as last entry, but without ACC)

Finally, the evaluation was performed using each of the five ma-
chine learning algorithms, specified previously. Each setup (defined
by the classification task, applied classifier, and included sensor
modalities) was run five times, to report mean and standard devia-
tion of the evaluation metrics (F1-score and accuracy). Since LDA
and kNN are deterministic classifiers, only the mean values are
reported.

The data considered in this paper (belonging to the three affec-
tive states of interest) amount to approximately 36 minutes per
subject. With 15 subjects and using a sliding window of 0.25 sec-
onds, approximately 133000 windows were generated. Out of these
windows, 53 % belong to the baseline class, 30 % represent the stress
class, and 17 % originate from the amusement condition. In the last
two rows of Table 3 the baseline F1-score/accuracy of a random and
a sophisticated guesser on the three-class problem are displayed.
The random guesser is defined to choose one of the three possible
classes at random, thus reaching an accuracy of 33 % and a F1-score
of 32 %. In contrast, the sophisticated guesser would always choose
the majority class. Hence, a sophisticated guesser would reach an
accuracy of 53%. However, its’ F1-score would only be 32 %. In the
two last rows of Table 4, the same type of random and sophisticated
guesser are presented for the binary classification task.

Comparing the performance of the employed algorithms, on the
three-class task (Table 3) and binary classification task (Table 4), it
becomes apparent that the ensemble-based methods (RF, AB) and
the LDA reached similar classification scores. Depending on the
input modalities, these classifiers reach scores up to 80 % for the
three-class problem and up to 93 % for the binary task, respectively.
Concluding from Table 3 and Table 4, the kNN had the overall worst
performance, reaching accuracies of at most 60 % on the three-class
problem, and 78 % in the binary task.

Using only motion-based features (wrist and/or chest ACC)
leads to considerably lower classification scores compared to re-
sults obtained using physiological features. This suggests that the
physiology-based features provide a deeper insight into the affec-
tive states of the subjects than the motion patterns. Moreover, we
can rule out the possibility that our classifiers only learned to dis-
tinguish between motion patterns characteristic for the conditions
of the protocol.

In the three-class problem the accuracies using one of the wrist-
based physiological modalities range from 59 % to 70 %. Using one
of the physiological chest-based modalities on the same classifi-
cation problem, accuracies between 54 % and 72 % are reached. In
the binary classification task the accuracies using a wrist-based
input modality range from 69 % to 86 % and the accuracies using
one of the chest-based modalities range from 67 % to 88 %. In both
classification tasks the RESP is a particularly strong chest-based
modality leading to the best result of a single modality. Besides
the stress-related changes in the respiration, this can be partially
explained considering the fact that the study participants spoke dur-
ing the TSST. Hence, the classifiers might have partially learned to
distinguish between speaking (stress condition) and non-speaking
episodes (baseline and amusement condition). In both classification
tasks, using only the TEMP data, either chest or wrist-based, as
input leads to low classification scores. Obviously, TEMP is not a
well-suited modality to solely base the classification of affective
states upon. Comparing the results obtained using only the wrist- or
chest-based EDA data, the latter seems to hold more relevant infor-
mation leading to somewhat higher accuracies in both classification
tasks. In contrast, comparing the performance of classifiers solely
relying on the BVP or ECG data, the former leads to slightly higher
accuracies. The results reached using all physiological chest-based
modalities (three-class accuracy: 80 %, binary accuracy: 93 %) are
higher than the ones obtained using all physiological wrist-based



Table 3: Evaluation of the given modalities and classifiers on the three-class (baseline vs. stress vs. amusement) classification
task. Abbreviations: DT = Decision Tree, RF = Random Forest, AB = AdaBoost DT, LDA = Linear discriminant analysis, kNN =
k-nearest neighbour

DT RF AB LDA kNN
F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy

Motion:
ACC wrist 43.91 ± 1.16 53.71 ± 0.91 46.50 ± 0.26 56.40 ± 0.16 46.38 ± 0.64 57.20 ± 0.57 36.27 47.73 37.20 45.54
ACC chest 42.18 ± 0.4 51.14 ± 0.29 41.96 ± 0.29 53.48 ± 0.29 44.28 ± 0.75 56.56 ± 0.70 34.61 48.84 31.07 40.29
Wrist:
BVP 51.15 ± 0.31 57.57 ± 0.22 53.83 ± 0.11 64.09 ± 0.12 53.29 ± 0.16 64.46 ± 0.21 54.72 70.17 50.97 59.44
EDA 45.48 ± 0.17 54.36 ± 0.27 45.74 ± 0.06 56.57 ± 0.05 49.06 ± 0.59 59.85 ± 0.42 42.72 62.32 45.20 54.98
TEMP 41.46 ± 0.24 47.42 ± 0.36 41.85 ± 0.19 48.67 ± 0.21 41.19 ± 0.24 49.39 ± 0.23 40.89 58.96 38.97 44.32
Wrist physio 57.13 ± 0.86 63.34 ± 1.00 66.33 ± 0.36 76.17 ± 0.42 64.24 ± 0.39 73.62 ± 0.55 58.18 68.85 50.85 58.54
Chest:
ECG 51.69 ± 0.35 57.81 ± 0.36 52.24 ± 0.33 60.36 ± 0.22 52.48 ± 0.38 61.71 ± 0.40 56.03 66.29 47.77 54.76
EDA 43.88 ± 0.20 48.49 ± 0.29 42.40 ± 0.55 45.00 ± 0.61 48.33 ± 0.31 54.06 ± 0.45 46.83 67.07 37.26 40.03
EMG 34.65 ± 0.21 41.00 ± 0.19 38.10 ± 0.47 48.20 ± 0.51 37.68 ± 0.24 48.03 ± 0.24 37.72 53.99 35.97 42.73
RESP 59.08 ± 0.21 65.97 ± 0.20 60.69 ± 0.15 70.27 ± 0.14 61.76 ± 0.34 71.94 ± 0.30 60.09 72.37 45.86 60.45
TEMP 41.27 ± 0.29 47.53 ± 0.28 42.46 ± 0.24 48.40 ± 0.26 40.76 ± 0.8 47.98 ± 0.60 30.96 55.68 35.18 43.32
Chest physio 55.10 ± 0.92 58.62 ± 1.07 64.60 ± 0.54 71.37 ± 0.58 72.51 ± 0.17 80.34 ± 0.43 74.43 79.35 51.09 57.31

All wrist 43.62 ± 1.33 53.98 ± 1.79 62.86 ± 0.65 74.85 ± 0.20 64.12 ± 0.98 75.21 ± 0.77 63.24 70.74 37.20 45.54
All chest 53.06 ± 0.50 57.68 ± 0.40 60.80 ± 1.00 68.76 ± 1.35 64.89 ± 0.81 74.74 ± 0.94 72.49 76.50 38.39 46.18
All physio 55.71 ± 0.93 62.57 ± 0.80 64.23 ± 0.97 73.33 ± 0.95 71.10 ± 0.78 79.86 ± 0.62 72.48 78.19 52.94 59.61
All modalities 58.05 ± 1.61 63.56 ± 1.73 64.08 ± 1.68 74.97 ± 1.11 68.85 ± 0.89 79.57 ± 0.93 71.56 75.80 48.70 56.14
Baseline Random Guessing Sophisticated guessing

F1-score Accuracy F1-score Accuracy
31.66 33.33 23.13 53.12

Table 4: Evaluation of the given modalities and classifiers on the binary (stress vs. non-stress) classification task.

DT RF AB LDA kNN
F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy

Motion:
ACC wrist 55.36 ± 0.47 64.08 ± 0.49 59.02 ± 0.78 69.96 ± 0.55 61.70 ± 0.80 71.69 ± 0.45 44.93 60.02 52.72 63.80
ACC chest 61.92 ± 0.83 71.75 ± 0.53 59.91 ± 0.25 72.87 ± 0.08 62.17 ± 0.45 73.87 ± 0.30 57.52 72.05 47.79 57.81
Wrist:
BVP 78.27 ± 0.17 81.39 ± 0.15 81.35 ± 0.15 84.18 ± 0.11 81.23 ± 0.15 84.10 ± 0.13 83.08 85.83 78.94 82.06
EDA wrist 70.95 ± 0.37 76.21 ± 0.27 70.88 ± 0.20 76.29 ± 0.14 75.34 ± 0.57 79.71 ± 0.43 69.86 78.08 68.30 73.13
TEMP wrist 63.15 ± 0.18 68.22 ± 0.19 62.90 ± 0.10 67.82 ± 0.11 62.27 ± 0.25 67.11 ± 0.34 56.37 69.24 60.18 64.46
Wrist physio 82.37 ± 0.21 84.88 ± 0.11 86.10 ± 0.29 88.33 ± 0.25 85.86 ± 0.20 88.05 ± 0.18 83.77 86.46 78.93 81.96
Chest:
ECG 77.01 ± 0.37 80.17 ± 0.29 79.64 ± 0.15 82.78 ± 0.11 80.20 ± 0.25 83.37 ± 0.20 81.31 85.44 75.39 79.19
EDA chest 69.88 ± 0.41 73.55 ± 0.44 73.63 ± 0.18 77.51 ± 0.23 71.97 ± 0.26 75.50 ± 0.29 74.51 81.70 66.64 69.73
EMG 47.06 ± 0.20 56.25 ± 0.05 49.42 ± 0.35 63.44 ± 0.18 50.84 ± 0.44 62.88 ± 0.31 52.49 67.10 51.84 58.74
RESP 79.92 ± 0.19 83.03 ± 0.17 84.33 ± 0.10 86.63 ± 0.08 84.64 ± 0.06 86.87 ± 0.06 85.61 88.09 69.17 75.67
TEMP chest 57.40 ± 0.08 64.33 ± 0.07 56.75 ± 0.25 64.75 ± 0.28 55.03 ± 0.27 63.46 ± 0.21 41.00 69.49 51.64 58.25
Chest physio 81.29 ± 0.22 84.18 ± 0.20 90.44 ± 0.66 92.01 ± 0.51 87.11 ± 0.57 89.76 ± 0.48 91.47 93.12 77.27 81.05

All wrist 78.71 ± 0.53 82.19 ± 0.44 84.11 ± 0.31 87.12 ± 0.24 80.11 ± 0.93 83.98 ± 0.75 84.05 86.88 52.72 63.80
All chest 78.26 ± 0.46 81.29 ± 0.38 90.04 ± 0.84 91.70 ± 0.75 89.57 ± 0.61 91.58 ± 0.46 91.07 92.83 64.20 69.70
All physio 83.03 ± 1.61 85.16 ± 1.50 86.02 ± 0.55 87.91 ± 0.54 87.78 ± 1.38 89.77 ± 1.17 90.93 92.51 79.44 83.16
All modalities 80.83 ± 1.13 83.60 ± 1.08 85.71 ± 0.63 87.74 ± 0.60 83.88 ± 0.93 87.00 ± 0.78 90.74 92.28 69.14 74.20
Baseline Random Guessing Sophisticated guessing

F1-score Accuracy F1-score Accuracy
47.96 50.00 41.15 69.94



Table 5: Confusion matrix of the best setup trained on the
three-class problem.

True Baseline Stress Amusement
Estimated
Baseline 64577 1408 4444
Stress 3968 34997 899
Amusement 12153 2374 7773

modalities (three-class accuracy: 76 %, binary accuracy: 88 %). When
both wrist- and chest-based physiological modalities are combined,
an accuracy of 79 %/92 % is reached for the three-class/binary prob-
lem, respectively. This is no improvement compared to results
achieved using only the chest-based physiological modalities. This
indicates that if the chest-based modalities are available, the wrist-
based modalities become redundant. Nevertheless, the classification
scores reached using only the physiological wrist-based modalities
are promising, especially considering the minimal intrusive nature
of the device used.

Overall, the best performance result (in terms of accuracy) on
each of the classification task is:
• 80.34 % (three-class problem, using all chest-based physio-
logical modalities, AB classifier)
• 93.12 % (binary case, using all chest-based physiological
modalities, LDA classifier)

These results are comparable to the work of Gjoreski et al.[5],
who reported an accuracy of 72 % on a three-class problem (no, low,
and high stress) and an accuracy of 83 % in the binary case. In Table 5
the confusion matrix of the best classifier trained on the three-class
classification problem is displayed. The values indicate that the
classifier was able to distinguish well between the baseline and the
stress class. However, distinguishing between the classes baseline
and amusement was difficult. The explanation for this is twofold.
First, the physiological changes elicited by amusement are subtle.
Second, the self-reports indicate (see Table 2) that the subjects’
affective state was less influenced by the amusement condition
compared to the stress condition.

Using all physiological features and the LDA classifier, the subject-
specific accuracies range from 69% to 98% and from 82% to 100%, in
the three-class classification problem and the binary case, respec-
tively. However, only weak correlations were found between the
subject-specific accuracies and the self-report value (e.g. arousal/va-
lence) differences between the various affective states. Nevertheless,
the large inter-subject differences emphasise the need for personal-
isation methods.

In order to assess the feature importance, a decision tree was
trained for both the three-class and the binary classification task,
using all available sensor modalities as input. The feature impor-
tance is computed according to the Gini importance (which reflects
the reduction of the Gini criterion brought by the feature under
consideration). The results of this experiment are displayed in Ta-
ble 6. In both cases (three-classes and binary classification) the
two most important features (σRESP,E , and µECGHR ) were alike. This
suggests that the classifier in the three-class problem first learned
to distinguish between stress and non-stress states, before it learned
to classify the baseline and amusement classes.

Table 6: Feature importance for the three-class and binary
classification task considering all modalities.

Importance Three-class Importance Binary Task

0.23 σRESP, chestE 0.35 σRESP, chestE

0.11 µECG, chest
HR 0.20 µECG, chest

HR

0.07 minwrist
T EMP 0.09 maxwrist

T EMP

0.06 µchestACC, 3D 0.07 ranдewrist
EDA

0.05 ranдewrist
EDA 0.05 #chestSCR

6 CONCLUSION
We presented WESAD, a multimodal dataset for wearable stress
and affect detection. In contrast to other available datasets, WE-
SAD features all physiological modalities commonly integrated in
commercial and medical devices: blood volume pulse (BVP), electro-
cardiogram (ECG), electrodermal activity (EDA), electromyogram
(EMG), respiration (RESP), body temperature (TEMP), and three-
axis acceleration (ACC). By using these modalities, we hope that
our dataset will enable and support the development of new affect
recognition systems. The study protocol aimed at inducing three
different affective states (neutral, stress, amusement). Self-reports
on these states were collected from the study participants.

For benchmarking, we used standard physiological and motion
features and common machine learning methods. On a three-class
(baseline vs. stress vs. amusement) problem we achieved classifica-
tion accuracies of up to 80 %. Considering a binary classification
problem (stress vs. non-stress), accuracies of up to 93 % were reached.
These results should be interpreted with caution due to the limi-
tations of WESAD, regarding the number of subjects and the lack
of age and gender diversity. Nevertheless, since using the LOSO
evaluation scheme, our results indicate that generalisation is possi-
ble. We also performed a detailed analysis on the importance of the
two device locations as well as the different sensor modalities. Our
results suggest that a chest-based device leads to the overall best
classification results and by adding data of a wrist-based device no
further improvement is achieved. However, the results obtained us-
ing only a wrist-based device are promising, especially considering
the minimal intrusive nature of such a device.

Further work is required to take the self-reports into account.
These self-reports could be used to create personalised models
which are able to predict the affective state of a specific person.
Moreover, the meditation period could be added as an additional
class, posing a four-class classification problem. The dataset intro-
duced in this paper is publicly available, and can be downloaded
from https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/. We
invite the research community to consider it for algorithm develop-
ment and benchmarking.
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